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Časopis pro pěstováni matematiky, roí. 96 (1971), Praha 

A NOTE ON MEASURABLE FUNCTIONS 

BELOSLAV RIECAN, Bratislava 

(Received September 23, 1969) 

Let S be a c-algebra of subsets of X. A real-valued function/ on X is called measur
able (with respect to S) if f1(B) e S for every Borel subset of the line. There are at 
least two generalizations of the notion defined above. P. R. HALMOS in [1] assumes 
only that Sis a a-ring; S need not containX. R. SIKORSKI in [4] assumes thatXeS 
and S is a cr-lattice (of course, according to his terminology); S need not be a <7-ring. 
In the present paper we construct a more general theory of measurable functions 
containing both mentioned theories as special cases. In other words we omit in 
Sikorski's theory the assumption XeS. The idea of producing such a theory is due 
to T. NEUBRUNN. 

In Section 1 we give definitions and examples. In Section 2 we prove that the sum 
of two measurable functions is a measurable function. In Section 3 we prove that the 
limit of a sequence of measurable functions is a measurable function and in Section 4 
we prove that any measurable function can be approximated by a simple measurable 
function. 

In some theorems we consider functions / :X -> Y where the range space Y is 
a more general space than the real line. 

P. R. Halmos assumes that S is a cr-ring (i.e. 0 e S and En e S for n = 1, 2,... 
00 

implies E1 - E2 e S, U En e S); a function/: X -+ ( - oo, oo) is called to be measur-
n = l 

able if/_ 1(B) n N(f) e S for every Borel set B, where 1V(/) = {x :f(x) # 0}. 
R. Sikorski assumes that S is a a-lattice (i.e. S + 0; EneS for n = 1,2,... 

00 i 

implies \J EneS9 C\EneS) and X e S . A function/:X -• (-oo, oo) is called to be 

measurable if/" 1(B) e S whenever B has either the form (—oo, c) or the form (c, oo), 
c being any real number. 
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If S is a (r-lattice but we do not know whether X e S or not, we can formally use 
the Halmos' definition. 

Definition 1. Let S be a tr-lattice. We shall denote by Jft the family of all functions 
/ : X -• (—oo, oo) such that N(f) nf-x(E) e S whenever EeB where B is the family 
of all sets of the form ( — oo, c) or (c, oo) where c is any real number and N(f) = 
= {x :f(x) * 0}. 

It is well known that JKt coincides with the family of all functions measurable in 
the Halmos' sense if S is a tr-ring. If S is only a cr-lattice (X need not belong to S) 
we do not obtain a convenient theory. As M. OKLESTEKOVA-PLESKOVA showed in [3] 
the sum of two functions of Jft need not belong to Mv 

If S is a c-ring then the Halmos' definition of measurability is equivalent to the 
following definition: / is measurable if and only if the following two conditions are 
satisfied: 1. N(f)eS. 2. E e S , FeB=> E nf~l(F)e S. (B has the same meaning 
as in Definition 1.) It seems that this property is more suitable to be used as a defini
tion in the general case. 

Definition 2. Denote by Jt2 the family of all functions/ : X -• ( — oo, oo) satisfying 
the following two conditions: 

1. N(/)eS. 

2. EeS.FeB^Enf-^eS. 

Evidently Ji2 c: Jix and Mx = M2 if S is a a-ring or X e S. In the latter case 
feJti if and only if f1(E)e S for every EeB. The following proposition may be 
more interesting. 

Proposition 1. 1/ S is closed under the countable unions and intersections then 
%4€ j -=- %M2% 

Proof. Let feJ?u EeS, Fe B. Evidently N(f) = N(f) n / ' ^ - o o , oo)) = 

= U (N(f) tVHC-00' »))) e S. Further 
B = l 

(E - N(f)) nf~\F) = E "hHF n ( - £, £)) e S, 

therefore 

E nf-\F) - (E nN(f) nf~\F)) u ((E - N(f)) nf-*(F))eS. 

If we obtain a suitable theory for J(2 then we shall have a common generalization 
of the both theories mentioned above as well as a theory with respect to S closed 
under countable unions and intersections. 

Of course, we can give a general definition including all the classical cases. 
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Definition 3. Let X9 Y be arbitrary non-empty sets, S, T families of subsets of X9 B 
a family of subsets of Y. Let N be a map 1V : Yx -> 2X associating with any function 
/ : X -> Y a subset N(/) of X. Then we say that a function / is measurable (with 
respect to S, T, B and N) if 

1. N(f)eS. 

2. E nf~\F) e S for all E e T9 F e B. 

Denote the family of all measurable functions by Jt(S9 T9 B9 N). 

Examples. 1. S = T is a a-lattice, 7 = (—oo, oo), B = {(-oo, c) :c real 
number} u {(c, oo) : c real number}, N(f) = {x :/(x) 4= 0}. We obtain the system 
Jt2 including both Halmos' and Sikorski's theory. 

2. We can obtain Sikorski's theory also in another way, if we put 1V(/) = X for 
a l l / : .K-*y. 

3. Let Y be a metric space, B a base of open sets in Y, S be a a-ring of subsets of X, 
N(f) = 0 for all / : X -> Y9 T = {K}. / is measurable if f'\E) e S for all E e B 
(see [2]). 

In this section we assume that Y is an Abelian topological group satisfying the 
second axiom of countability. 

Theorem 1. Let S be a o-lattice9 B a base of open sets. Let f g :X -+Ybe such 
functions that / _ 1 (F) , g~*(F) e S for all FeB. Then also (f + g)~l (F) e S for 
all FeB. 

Proof. Let {Vn} be a countable base consisting of elements of B. Let U e B. We 
must prove (f -\- g)"1 (U) e S. Put y = {(m, n) : Vn + Vm <z U}. First we prove 

( / + 0 y ( U ) = U rl(Vn)ng-*(Vm). 
(m,n)ey 

If x G / ' ^ j n i / - ^ ) , (m9n)ey9 then f(x)eVn9 g(x)eVm and hence f(x) + 
+ #(x) e U. Let /(x) + #(x) e U. Then there are open sets V9 W such that /(x) 6 V, 
g(x) eW9V+ WczU. Take V„, Vm from the base such that f(x) e Vn9 g(x) e Vm and 
V„ cz V9 Vm c IV. Then Vn + Vm c [7 and hence (m, n)ey. 
Now we see that (/ + g)~l (U) e S for all U e B and Theorem 1 is proved. 

Theorem 2. Let S be a a-lattice9 B a base of open sets in Y. Let for any f: X -* Y 
beN(f) = {x :/(x) 4= 0}. Then J( = M(S9 S, B9 N) is closed under the operation of 
addition, i.e. f9geJ£:=>f+ ge M. 
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Proof. First we prove that N(f + g)eS. Let {Vn} be a base of open sets that are 
elements of B. Put 

6-{(m,n):Vm + VmczU = Y-{0}}. 
Then 

N(f+9)= U rWng-^VjeS. 
{mtn)ed 

Now let EeS. Put S' = {E n F : F eS}. S' is a (j-lattice. By the assumption, 
/ - 1 (F ) 6 S' for all F e B and fe M. Herice by Theorem 1 we have (/ + g)'1 (F) e 
e S' for any f,geJK and any FeB. Therefore 

En(f + g)~1(F)eS 

for all E e S, F e B and Theorem 2 is proved. 

Corrolary. The family JK2 from Definition 2 is closed under the operation of 
addition. 

In the last two sections we shall use the following notation. 

Definition 4. Let X, Y be any non-void sets, S and B families of subsets of X, Y 
respectively. By ^ 3 we denote the family of all functions satisfying the implication 
EeB -^/-^.Ej'e S. Let yeY be a fixed point. For any / : X -> Y put 1V(/) = 
= {x :f(x) 4= y}. Then by Jl\ (Jf'2) we denote the family of all functions satisfying 
the implication F e B =>N(f) nf-^eS (EeB, FeS=>N(f)eS, /""X(F) n 
nFeS). 

Theorem 3. Let Y be a regular topological space satisfying the second axiom of 
countability. Let B be a countable base in Y, let S be closed under countable unions 
and intersections. Let {/„} be a sequence of functions of JK'3 converging to a func
tion / . Then fe M'$. If fn e JC2 (n = 1, 2,...) and moreover Y is Hausdorff space 
then f e JC2. 

Proof. The first conclusion follows immediately from the equality 

{x:l im/ l l(x)e£}= U U IT) {x :ftt(x)e A} . 
A<zE,AeB JV--1 n=-JV 

To prove the second assertion we show first that 

iV(lim/.,)= U U fï {*:/,(*) є j4} . 
ЛєB.yфЛ N = l n = N 
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00 

Since N(limfn) c (J N(fn), we have 
П-Í 

N(limfn)= U U !T\[{x:fn(x)eA}n\JN(fn)). 
AeB,ytA /V=l n=iV » = 1 

oo 

Since fneM'2 (n = l,2,. . .) we have (JN(fn)eS, hence al$o {x :fn(x)e A} n 

n U N(fn) e S. Therefore N(limfn) e S. 
n = l 

To prove the second property of Jl'2, for fixed FeS put S' = {G n F :G : S}. 
If/„ G ^ 2 w-tl- respect to S then /„ e M'z with respect to S' and hence also / e * ^ 
with respect to S' and F nf~l(E) e S for all FeS,EeB. 

Now let 7 be the real line, y = 0. 

Theorem 4. Lef S be closed under the countable unions and intersections. Let B 
consist of all open intervals in Y. If fn e Jf'3 or fn e Jt'2 = Ji2 = JtY (n = 1, 2,...) 
fhe« sup/„ e Jt'z, inf/„ e Ji'3 or sup/, 6 ^ 2 , inf/n G ^2> respectively. 

Proof. Let a < b,fne JC'3(n = 1, 2,...). Then 
00 

{* : sup/„(x) > a} = \J{x :fn(x) >a}eS, 
n = l 

{x : sUpf„(x) < b} = U 0 C\\x:fn(x)<b-- + ]XeS. 
m = l n = l * = 1 ( m K) 

Similar assertions hold for inf fn. 
If /„ e M'2 (n = 1, 2,...), E e S and we want to prove that E n {x : sup/w(x) e 

e (a, b)} e S, we can proceed similarly as in the previous theorem. Further N(fn) e S, 

N(supfn)c:\JN(fn)eS2Lnd 
n = l 

N(supfn) = IUN(fn)n {x :supfn(x) > 0}] u [UN(fn)n {x :supfn(x) <0}]eS. 
n = l n = l 

Definition 5. A function / : X -> Y is called simple if there is a decomposition 
{I?!,..., En} of X such that/is constant on every Et. 

Definition 6. We shall say that the family B of subsets of Y satisfies the condition 
n 

(A) if for any U, Ve B there are Ul9 ...,UneB such that U U( = U u Vand {1/J is 
i-=i 

a refinement of the system of all non-void sets among U — V9U nV,V — U (i.e. any 
t/*i is a subset of some of them). 
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Theorem 5. Let Ybe Hausdorff space satisfying the second axiom of countability. 
Let S be closed under finite unions. Let B be a countable base of neighbourhoods 
in Y (the elements of B need not be open), and let either B satisfy (A) or S be a ring. 

If 0 e S then to any fe Jt\ there is a sequence {fn} of simple functions of JH[ 
such thatfn -> / i.e. fn(x) -* f(x)for any xeX. 

IfYeBorXeS then to any fe Jt'2 (fe Jf'3) there is a sequence {/„} of simple 
functions of J(2 (JS'3) such thatfn -* f. 

Proof. Put B' = {EeB : y £ £ } in the c a s e / e ^ ; otfeM'2 and B' = B in the 
case/6 J('3. Let B' = {V/Ĵ Li- Construct the sequence {/„} as follows. 

n k 

There are Wt (i = 1, 2,. . . , k) such that U Vt = U Wt a n d e a c h wt i s a subset of 
f P i - i i = i 

a set n ^ n f ] V'\ moreover, either Wt eB (according to (A)) or f"l(W)e S (if S 
i = i j=-i 

is a ring). Choose arbitrary yt e Wt, yt 4= y. Then put /„(x) = yt for x ef~l(W), 

i = l , . . . , k, and fn(x) = y for x * U / " 1 ^ ) -
i * i 

The functions /„ are simple. We have to prove that /n(x) -• f(x) for any xeX. 
Let U be a neighbourhood of f(x). Choose N such that f(x) e VN c U. Let n > N. 
Then /n(x) = y, where /(x) e Wi9 f(x) e VN, hence Wt c VN c U. Then /„(x) e U for 
any n > N. This means that /^(x) -> /(x). 

Now let /e ur;. If y 4 E, then #(/,) n/h
_1(£) = U W ) n / ~ W ) e S, since a 

ie* 

is the finite set of indices i for which /^(E) = U / " 1 ^ ) - I f 3> G E t h e n /«"'(£) n 

tea 

n M/») = 0 e S or U f ^ i ) e S. Hence/n e ̂ ; . 
If feJt^, XeSorYeB then/""1^), X - /"' (IF,)e5, hence/„e-4^. 
\ffeJt2, then similarly £ n / " 1 ^ ) e S , £ - /^(Wi) e S. N(/„) = {x :/M(x) * 

4= y} - UT W = U/" W n M/)e 5-
Corrolary ([2], lemma 3). Let Y be a separable metric space, X a topological 

space, S the a-algebra of all Borel subsets of X,B a base of neighbourhoods in Y. 
Then to any fe Jt'^ there is a sequence {/„} of functions of Jl'^ converging to f. 
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