## Časopis pro pěstování matematiky

## Jaroslav Kurzweil

On solutions of nonautonomous linear delayed differential equations, which are defined and exponentially bounded for $t \longrightarrow-\infty$

Časopis pro pěstování matematiky, Vol. 96 (1971), No. 3, 229--238
Persistent URL: http://dml.cz/dmlcz/117720

## Terms of use:

© Institute of Mathematics AS CR, 1971

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

# ON SOLUTIONS OF NONAUTONOMOUS LINEAR DELAYED <br> DIFFERENTIAL EQUATIONS, WHICH ARE DEFINED <br> AND EXPONENTIALLY BOUNDED FOR $t \rightarrow-\infty$ <br> Jaroslav Kurzweil, Praha <br> (Received October 22, 1970) 

Dedicated to the memory of my teacher Prof. VoJtěch Jarnik

Let $M_{n}$ be the space of square matrices of order $n, R$ - the real line, $R^{+}$- the positive halfline (closed), $R^{-}$- the negative halfline, $A: R^{-} \rightarrow M_{n}, B: R^{-} \rightarrow M_{n}$ locally integrable. For $y \in R^{n}$ denote by $|y|$ the Euclidean norm of $y$ and for $C \in M_{n}$ put $|C|=\sup _{|y| \leqq 1}|C y|$.

For $\gamma \in R^{+}$let $\mathscr{Z}(\gamma)$ be the set of such solutions $x: R^{-} \rightarrow R^{n}$ of

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}(t)=A(t) x(t)+B(t) x(t-1) \tag{1}
\end{equation*}
$$

that

$$
\begin{equation*}
\sup _{t \leq 0} e^{\gamma t}|x(t)|<\infty \tag{2}
\end{equation*}
$$

Obviously $\mathscr{Z}(\gamma)$ is a linear manifold.
Theorem 1. Assume that $|B|^{2}$ is locally integrable and that

$$
\begin{equation*}
\sup _{t \leqq 0} \int_{t-1}^{t}|A(\tau)| \mathrm{d} \tau<\infty, \quad \sup _{t \leqq 0} \int_{t-1}^{t}|B(\tau)|^{2} \mathrm{~d} \tau<\infty \tag{3}
\end{equation*}
$$

Then the dimension of $\mathscr{Z}(\gamma)$ is finite. Moreover, there exists $\Theta:\left(R^{+}\right)^{3} \rightarrow R^{+}$such that if

$$
\begin{equation*}
\sup _{t \leqq 0} \int_{t-1}^{t}|A(\tau)| \mathrm{d} \tau \leqq a, \sup _{t \leqq 0} \int_{t-1}^{t}|B(\tau)|^{2} \mathrm{~d} \tau \leqq b^{2}, \tag{4}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{dim} \mathscr{Z}(\gamma) \leqq \Theta(a, b, \gamma) \tag{5}
\end{equation*}
$$

Note 1. $\Theta(a, b, \gamma)$ may be calculated (of course not the best one). Thus it may be shown that
(6) $\quad \operatorname{dim} \mathscr{Z}(\gamma) \leqq n, \quad$ if $e^{(n+1) y}\left[1+4 e^{2 a} \max \left(1, b^{2}\right)\right]^{n / 2} e^{a} b<1$
(7) $\operatorname{dim} \mathscr{X}(\gamma) \leqq n+1$, if $e^{(n+2) \gamma}\left[1+4 e^{2 a} \max \left(1, b^{2}\right)\right]^{n / 2} e^{2 a} b^{2}<1$

$$
\begin{equation*}
\text { if } e^{a} b \geqq 1 \quad \text { and } \quad e^{\gamma}\left(1+a e^{a}\right) b \rightarrow \infty, \tag{8}
\end{equation*}
$$

then

$$
\Theta(a, b, \gamma) \approx \frac{2 n e}{\pi^{2}} e^{2 \gamma}\left(1+a e^{a}\right)^{2} b^{2}
$$

(i.e. to any $\varepsilon>0$ there exists such a $\varrho>0$ that

$$
\left|\Theta(a, b, \gamma) \pi^{2}(2 n e)^{-1} e^{-2 \gamma}\left(1+a e^{a}\right)^{-2} b^{-2}-1\right| \leqq \varepsilon
$$

provided that $e^{a} b \geqq 1$ and $e^{\gamma}\left(1+a e^{a}\right) b \geqq \varrho$.
Note 2. Theorem 1 is related to applications of Theory of Invariant Manifolds to Delayed Differential Equations (cf. [1], [2], [3]). Let us review some results, which may be obtained for (1). For this purpose extend $A$ and $B$ to $R$ putting $A(t)=0=$ $=B(t)$ for $t>0$.

Proposition. Assume that A fulfils (4), that B instead of (3) and (4) fulfils

$$
\begin{equation*}
\sup _{t} \int_{t-1}^{t}|B(\tau)| \mathrm{d} \tau \leqq \beta \tag{9}
\end{equation*}
$$

and that there exists $L>0$ such that

$$
\begin{align*}
& e^{a}\left(e^{a}+L\right)^{2} \mathrm{~b} \leqq L  \tag{10}\\
& e^{a}\left(e^{a}+1\right)\left(e^{a}+L\right) \mathrm{b}<1 \tag{11}
\end{align*}
$$

Denote by $U$ a fundamental matrix of

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}(t)=A(t) x(t) \tag{12}
\end{equation*}
$$

Then there exists $Q: R \rightarrow M_{n}$, continuous, $|Q(t)| \leqq L$ for $t \in R$ such that every solution of

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}(t)=\left(A(t)+B(t)\left[U(t-1) U^{-1}(t)+Q(t)\right]\right) x(t) \tag{13}
\end{equation*}
$$

fulfils (1). Moreover, solutions of (13) belong to $\mathscr{Z}(\gamma)$ with $\gamma=a+\log [1+$ $\left.+\beta\left(e^{a}+L\right)\right]$, so that $\operatorname{dim} \mathscr{Z}(\gamma) \geqq n$.

As $\int_{t-1}^{t}|B(\tau)| \mathrm{d} \tau \leqq\left(\int_{t-1}^{t}|B(\tau)|^{2}\right)^{1} .^{2}$, Proposition may be applied if $B$ fulfils (4) and if (10) and (11) hold, $\beta$ being replaced by $b$.

Fix $a$ and choose $L$, e.g. $L=e^{a}$. Find such a $b$ that (10) and (11) are fulfilled for $\beta$ being replaced by $b$ and that the inequality in (6) is fulfilled with $\gamma \geqq a+\log [1+$ $\left.+b\left(e^{a}+L\right)\right]$. Then it may be concluded that $\operatorname{dim} \mathscr{Z}(\gamma)=n$ (provided that $A$ and $B$ fulfil (4)).

Theorem 1 will be deduced from Theorem 2, which will be formulated below. If $X, Y$ are linear spaces, $X \subset Y$ the codimension of $X$ with respect to $Y$ will be denoted by codim $(X \mid Y)$ or codim $X$ if no confusion can arise. If $Y$ is a Hilbert space, then $\langle x, y\rangle$ will be the scalar product of $x, y \in Y,\|y\|$ will be the norm of $y$ and if $C: Y \rightarrow Y$ is linear and continuous, then $\|C\|=\sup _{\|y\| \leqq 1}\|C y\|$.

Let $H$ be a Hilbert space, $k_{j}$ integers, $r_{j} \in R^{+}, j=0,1,2, \ldots$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} r_{j}=0, \quad 0=k_{0}<k_{1}<k_{2}<\ldots \tag{14}
\end{equation*}
$$

Denote by $\Omega=\Omega\binom{r_{0}, r_{1}, r_{2}, \ldots}{k_{0}, k_{1}, k_{2}, \ldots}$ the set of bounded linear operators $Q: H \rightarrow H$ which fulfil the following condition:
there exist linear subspaces $H^{(j)}$ of $H$ such that $H^{(0)}=H, H^{(j)} \supset H^{(j+1)}$, $\operatorname{codim}\left(H^{(j)} \mid H\right) \leqq k_{j}$ and $\|Q x\| \leqq r_{j}\|x\|$ for $x \in H^{(j)}, j=0,1,2, \ldots$
(Subspaces $H^{(j)}$ may depend on $Q \in \Omega$.)
Note 3. If $T \in \Omega\binom{r_{0}, r_{1}, r_{2}, \ldots}{k_{0}, k_{1}, k_{2}, \ldots}$, then $T$ is completely continuous. In order to show it, let $H^{(j)}$ be the linear subspaces of $H$ which correspond to $T$ according to (15). Denote by $Y^{(j)}$ the orthogonal complements of $H^{(j)}$ and define a linear operator $U^{(j)}: H \rightarrow H$ by $U^{(j)} y=T y$ for $y \in Y^{(j)}, U^{(j)} z=0$ for $z \in H^{(j)}$. By $\mathfrak{N}(U)$ denote the null-space of a linear operator $U$. Obviously $\mathfrak{N}\left(U^{(l)}\right) \supset H^{(j)}$ for $l \leqq j$ and it may be seen that the following conditions are fulfilled:

$$
\begin{equation*}
\operatorname{codim}\left(\prod_{l=0}^{j} \mathfrak{N}\left(U^{(l)}\right)\right) \leqq k_{j} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left\|1-U^{(j)}\right\| \leqq r_{j}, \quad j=0,1,2, \ldots \tag{ii}
\end{equation*}
$$

Therefore $T$ is completely continuous. On the other hand, if $T: H \rightarrow H$ is a linear operator and if there exist finitedimensional operators $U^{(j)}: H \rightarrow H$ such that conditions (i), (ii) are fulfilled, then $T \in \Omega\binom{r_{0}, r_{1}, r_{2}, \ldots}{k_{0}, k_{1}, k_{2}, \ldots}$.

Note 4. If $T: H \rightarrow H$ is linear and completely continuous, then there exist $k_{j}, r_{j}$ fulfilling (14) such that $T \in \Omega\binom{r_{0}, r_{1}, r_{2}, \ldots}{k_{0}, k_{1}, k_{2}, \ldots}$. Qtherwise there exists $\varepsilon>0$ such that
for any linear subspace $V \subset H$ such that $\operatorname{codim}(V \mid H)<\infty$ there exists $v \in V$, $\|T v\| \geqq \varepsilon\|v\|>0$. By induction there exists a sequence $v_{j} \in H, j=1,2, \ldots$ such that $\left\|v_{j}\right\|=1,\left\|T v_{j}\right\| \geqq \varepsilon,\left(T v_{j}, T v_{k}\right)=0$ for $j \neq k$. Followingly $\left\|T v_{j}-T v_{k}\right\| \geqq \varepsilon$ for $j \neq k$ and $T$ is not completely continuous.

For $\varrho \geqq 1, m=1,2,3, \ldots$ find $s$ that $k_{s}<m \leqq k_{s+1} s=0,1,2, \ldots$ and put

$$
S(\varrho, m)=\varrho^{m} r_{0}^{k_{1}} r_{1}^{k_{2}-k_{1}} \ldots r_{s-1}^{k_{s}-k_{s-1}} r_{s}^{m-k_{s}}
$$

Obviously $S(\varrho, m) \rightarrow 0$ with $m \rightarrow \infty$. Let $\vartheta(\varrho)$ be the smallest (nonnegative) integer such that $S(\varrho, \vartheta(\varrho)+1)<1$.

Let $Q_{i} \in \Omega$ for $i=-1,-2,-3, \ldots$ Denote by $Z(\varrho), \varrho \geqq 1$ the set of such sequences $\left\{x_{i}\right\}_{i=0}^{-\infty}, x_{i} \in H$ that

$$
\begin{align*}
Q_{i} x_{i}= & x_{i+1}, \quad i=-1,-2, \ldots  \tag{16}\\
& \sup _{i \leqq 0} \varrho^{i}\left\|x_{i}\right\|<\infty \tag{17}
\end{align*}
$$

$Z(\varrho)$ is obviously a linear manifold.

Theorem 2. $\operatorname{dim} Z(\varrho) \leqq \vartheta(\varrho)$ for $\varrho \geqq 1$.

## Corollary.

(18) if $\varrho r_{0}<1$, then $\vartheta(\varrho)=0$, i.e. $\operatorname{dim} Z(\varrho)=0$;
(19) if $\varrho r_{0} \geqq 1, \varrho^{k_{1}+1} r_{0}^{k_{1}} r_{1}<1$ then $\vartheta(\varrho)=k_{1}$, i.e. $\operatorname{dim} Z(\varrho) \leqq k_{1}$;
(20) if $k_{2}>k_{1}+1$, $\varrho^{k_{1}+1} r_{0}^{k_{1}} r_{1} \geqq 1$, $\varrho^{k_{1}+2} r_{1}^{k_{1}} r_{2}^{2}<1$, then $\vartheta(\varrho)=k_{1}+1$, i.e. $\operatorname{dim} Z(\varrho) \leqq k_{1}+1$ etc.
Let $G: R^{m} \rightarrow R^{m}$ be linear. Choose $\left\{e_{1}, \ldots, e_{m}\right\},\left\{f_{1}, \ldots, f_{m}\right\}$ - orthonormal bases in $R^{m}$ and put

$$
\begin{equation*}
\left(G e_{i}, f_{j}\right)=g_{j, i} \tag{21}
\end{equation*}
$$

i.e. $G \sum_{i} \lambda_{i} e_{i}=\sum_{i}\left(\sum_{j} g_{j, i} \lambda_{i}\right) f_{j}$. It is easy to see that $\operatorname{det} g_{j, i}$ does not depend on the choice of orthonormal bases $\left\{e_{1}, \ldots, e_{m}\right\},\left\{f_{1}, \ldots, f_{m}\right\}$; put $\operatorname{det} G=\operatorname{det} g_{j, i}$.

Lemma. Let $G: R^{m} \rightarrow R^{m}$ be linear. Let $V_{i}, i=0,1,2, \ldots, l$ be linear subspaces of $R^{m}, R^{m}=V_{0} \supset V_{1} \supset \ldots \supset V_{l}, \operatorname{codim}\left(V_{i} \mid R^{m}\right)=k_{i}, r_{i} \geqq 0, i=0,1,2, \ldots, l$ and assume that

$$
\begin{equation*}
|G x| \leqq r_{i}|x| \quad \text { for } \quad x \in V_{i}, \quad i=0,1,2, \ldots, l \tag{22}
\end{equation*}
$$

Then

$$
\begin{equation*}
|\operatorname{det} G| \leqq r_{0}^{k_{1}} \cdot r_{1}^{k_{2}-k_{1}} \ldots r_{l-1}^{k_{1}-k_{l}-1} \cdot r_{l}^{m-k_{1}} \tag{23}
\end{equation*}
$$

Proof. For $u, v \in R^{m}$ let $(u, v)$ denote the scalar product. Find an orthonormal basis $e_{1}, \ldots, e_{m} \in R^{m}$ such that $e_{k_{s}+1}, \ldots, e_{k_{s+1}} \in V_{s}$ for $s=0,1, \ldots, l$. Let $G^{\prime}$ be adjoint to $G$. Obviously $\operatorname{det} G=\operatorname{det} G^{\prime}$ and - by the usual identification of $R^{m}$ with its adjoint $-(\operatorname{det} G)^{2}=\operatorname{det} G^{\prime} G=\operatorname{det}\left(\left(G^{\prime} G e_{i}, e_{j}\right)\right) .\left(\left(G^{\prime} G e_{i}, e_{j}\right)\right)$ is a positive semidefinite matrix and by Hadamard inequality (cf. [4], II, $(10,3)$ or [5], IX, §5)

$$
\operatorname{det}\left(\left(G^{\prime} G e_{i}, e_{j}\right)\right) \leqq \prod_{i=1}^{m}\left(G^{\prime} G e_{i}, e_{i}\right)=\prod_{i=1}^{m}\left(G e_{i}, G e_{i}\right)=r_{0}^{2 k_{1}} r_{1}^{2\left(k_{2}-k_{1}\right)} \ldots r_{l}^{2\left(m-k_{1}\right)}
$$

and (23) holds.
Proof of Theorem 2. Take at first the special case $\varrho=1$ and put $m=\vartheta(1)+1$. If Theorem 2 is false, there exist $\left\{x_{i}^{(j)}\right\}_{i \leqq 0} \in Z(1), j=1,2, \ldots, m$ linearly independent. If $x_{i}^{(j)}, j=1,2, \ldots, m$ are linearly dependent for some $i<0$, then $x_{r}^{(j)}, j=1,2, \ldots, m$ are linearly dependent for any $r \geqq i$ with the same constants. Hence it can be shown that there exists such a $p \leqq 0$ that $x_{i}^{(j)}, j=1,2, \ldots, m$ are linearly independent for any $i \leqq p$.

For $i \leqq-1$ let $H_{i}^{(j)}$ be linear subspaces of $H$ such that (15) is fulfilled (with $Q=Q_{i}$ ). Find $s$ such that $k_{s}<m \leqq k_{s+1}$. Let $V_{i}^{(0)}$ be spanned by $x_{i}^{(j)}, j=1,2, \ldots, m$, $i \leqq p$. Obviously $\operatorname{dim} V_{i}^{(0)}=m$ and $\operatorname{codim}\left(V_{i}^{(0)} \cap H_{i}^{(j)} \mid V_{i}^{(0)}\right) \leqq k_{j}, j=1,2, \ldots$ Choose linear spaces $V_{i}^{(j)}, j=1,2, \ldots, s$ such that $V_{i}^{(j-1)} \supset V_{i}^{(j)}, V_{i}^{(j)} \subset V_{i}^{(0)} \cap H_{i}^{(j)}$ and $\operatorname{codim}\left(V_{i}^{(j)} \mid V_{i}^{(0)}\right)=k_{j}, j=1,2, \ldots$, s. $\left.Q_{i}\right|_{V_{i}{ }^{(0)}} \operatorname{maps} V_{i}^{(0)}$ onto $V_{i+1}^{(0)}$ for $i<p$ and by Lemma and by the choice of $m$

$$
\left|\operatorname{det}\left(\left.Q_{i}\right|_{V(0)}\right)\right| \leqq r_{0}^{k_{1}} r_{1}^{k_{2}-k_{1}} \ldots r_{s}^{m-k_{s}}=\chi<1 .
$$

Let $\Lambda_{i}, i \leqq p$ be the simplex with the vertices $0, x_{i}^{(1)}, x_{i}^{(2)}, \ldots, x_{i}^{(m)}$ and let $\lambda_{i}$ be its volume. Obviously $Q_{i}\left(\Lambda_{i}\right)=\Lambda_{i+1}$ and therefore $x \lambda_{i} \geqq \lambda_{i+1}$. Hence $\lambda_{i} \rightarrow \infty$ with $i \rightarrow-\infty$ and this is impossible, as $\left\{x_{i}^{(j)} \mid j=1,2, \ldots, m, i=0,-1,-2, \ldots\right\}$ is a bounded set. Theorem 2 holds in the special case $\varrho=1$.

If $\varrho>1$, put $\tilde{Q}_{i}=\varrho Q_{i}, \tilde{r}_{j}=\varrho r_{j}, i=-1,-2, \ldots, j=0,1,2, \ldots$ and for $\tilde{\varrho} \geqq 1$ denote by $\tilde{Z}(\tilde{\varrho})$ the set of such sequences $\left\{\tilde{x}_{i}\right\}_{i \geqq 0}, \tilde{x}_{i} \in H$ that $\tilde{Q}_{i} \tilde{x}_{i}=\tilde{x}_{i+1}$ for $i=-1,-2, \ldots$ and $\sup \tilde{\varrho}^{i}\left\|x_{i}\right\|<\infty$. If $\left\{x_{i}\right\}_{i \leqq 0} \in Z(\varrho)$, put $\tilde{x}_{i}=\varrho^{i} x_{i}, i=0,-1$, $-2, \ldots$ Obviously $\left\{\tilde{x}_{i}\right\}_{i \geqq 0}^{i \leqq 0} \leqq \tilde{Z}(1)$. Therefore $\operatorname{dim} Z(\varrho)=\operatorname{dim} \tilde{Z}(1)$ and the proof of Theorem 2 may be finished by applying Theorem 2 in case $\tilde{\varrho}=1$ to $\tilde{Z}(1)$.

Proof of Theorem 1. For $S \subset\langle-1,0\rangle$ Lebesgue measurable denote by $|S|$ the Lebesgue measure of $S$, let $v_{1}(S)=1$ if $-1 \in S, v_{1}(S)=0$ otherwise, let $v_{2}(S)=1$ if $0 \in S, v_{2}(S)=0$ otherwise and put $\mu(S)=|S|+v_{1}(S)+v_{2}(S)$. Let $H=$ $=L_{2, \mu}\left(\langle-1,0\rangle \rightarrow R^{n}\right.$ ), (i.e. elements of $H$ are classes of $\mu$-equivalent square integrable functions from $\langle-1,0\rangle$ to $\left.R^{n}\right)$. If $u, v \in R^{n}$, let $(u, v)$ be the scalar product of $u, v$ and for $x, y \in H$ define the scalar product by

$$
\langle x, y\rangle=(x(-1), y(-1))+\int_{-1}^{0}(x(t), y(t)) \mathrm{d} t+(x(0), y(0))
$$

Let $U: R^{-} \rightarrow R^{n}$ be a fundamental matrix of

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}(t)=A(t) x(t)
$$

Define $U_{i}:(-\infty,-i\rangle \rightarrow M_{n}$ by $U_{i}(t)=U(t+i) U^{-1}(i), i=0,-1,-2, \ldots$ and $Q_{i}: H \rightarrow H$ by

$$
\begin{equation*}
\left(Q_{i} y\right)(t)=U_{i}(t+1) y(0)+U_{i}(t+1) \int_{0}^{t+1} U_{i}^{-1}(\sigma) B(\sigma+i) y(\sigma-1) \mathrm{d} \sigma \tag{24}
\end{equation*}
$$

The estimate

$$
\begin{array}{ll}
\left|U_{i}(t+1)\right| \leqq e^{a}, & \left|U_{i}(t+1) U_{i}^{-1}(\sigma)\right| \leqq e^{a} \quad \text { for } \quad i=-1,-2, \ldots,  \tag{25}\\
& t \in\langle-1,0\rangle, \quad \sigma \in\langle 0, t+1\rangle
\end{array}
$$

follows from (4): Keep $\sigma$ and $i$ fixed and put $L(\tau)=U_{i}(\tau) U_{i}^{-1}(\sigma)$. Obviousiy $L(\tau)=$ $=I+\int_{\sigma}^{\tau} A(i+\zeta) L(\zeta) \mathrm{d} \zeta, I$ being the identity matrix and $L(\tau)=\lim _{j \rightarrow \infty} L_{j}(\tau)$ with $L_{0}(\tau)=I, L_{j+1}(\tau)=I+\int_{\sigma}^{\tau} A(i+\zeta) L_{j}(\zeta) \mathrm{d} \zeta, j=0,1,2, \ldots$ Put $\alpha(\tau)=\left|\int_{\sigma}^{j \rightarrow \infty}\right| A(\zeta)|\mathrm{d} \zeta|$. As $|I|=1$, we obtain by induction that $\left|L_{j}(\tau)\right| \leqq e^{\alpha(\tau)}$ for $\tau \in(-\infty,-i\rangle$ and the second inequality in (25) holds. The first inequality in (25) is a special case of the second one for $\sigma=0$.

For $x \in \mathscr{Z}(\gamma), i=0,-1,-2, \ldots$ define $x_{i} \in H$ by $x_{i}(t)=x(i+t)$ and put $P x=$ $=\left\{x_{i}\right\}_{i \leqq 0}$. The following Lemma is easy to verify.

Lemma 3. $P$ is a linear bijection of $\mathscr{Z}(\gamma)$ onto $Z\left(e^{\gamma}\right)$.
In order to deduce Theorem 1 from Theorem 2 we have to find numbers $r_{j} \in R^{+}$ and integers $k_{j}, j=0,1,2, \ldots r_{j} \geqq r_{j+1}, \lim _{j \rightarrow \infty} r_{j}=0,0=k_{0}<k_{1}<k_{2}<\ldots$ such that $Q_{i} \in \Omega\binom{r_{0}, r_{1}, \ldots}{k_{0}, k_{1}, \ldots}, i=-1,-2,-3, \ldots r_{j}$ and $k_{j}$ will dpend on $a, b$; we will denote the corresponding function $\vartheta$ by $\vartheta_{a, b}$ and we shall put $\Theta(a, b, \gamma)=$ $=\vartheta_{a, b}\left(e^{\gamma}\right)$. Obviously

$$
\begin{equation*}
\left\|Q_{i} y\right\|^{2}=|y(0)|^{2}+ \tag{26}
\end{equation*}
$$

$$
\begin{aligned}
& +\int_{-1}^{0}\left|U_{i}(t+1) y(0)+\int_{0}^{t+1} U_{i}(t+1) U_{i}^{-1}(\sigma) B(\sigma+i) y(\sigma-1) \mathrm{d} \sigma\right|^{2} \mathrm{~d} t+ \\
& +\left|U_{i}(1) y(0)+\int_{0}^{1} U_{i}(1) U_{i}^{-1}(\sigma) B(\sigma+i) y(\sigma-1) \mathrm{d} \sigma\right|^{2} \text { for } y \in H
\end{aligned}
$$

Using $(\alpha+\beta)^{2} \leqq 2\left(\alpha^{2}+\beta^{2}\right)$ we obtain from (25) and (26) that

$$
\begin{equation*}
\left\|Q_{i} y\right\|^{2} \leqq|y(0)|^{2}\left(1+4 e^{2 a}\right)+4 e^{2 a} b^{2} \int_{-:}^{0} y^{2}(\sigma) \mathrm{d} \sigma \tag{27}
\end{equation*}
$$

and hence we may put

$$
\begin{equation*}
r_{0}=\left[1+4 e^{2 a} \max \left(1, b^{2}\right)\right]^{1 / 2} \tag{28}
\end{equation*}
$$

Define linear functionals $\varphi_{k}: H \rightarrow R^{n}, k=1,2, \ldots$ by

$$
\begin{aligned}
& \varphi_{1}(y)=y(0) \\
& \varphi_{2}(y)=\int_{0}^{1} U_{i}^{-1}(\sigma) B(\sigma+i) y(\sigma-1) \mathrm{d} \sigma \\
& \varphi_{3}(y)=\int_{-1}^{0}\left(Q_{i} y\right)(t) \mathrm{d} t \\
& \varphi_{2 s}(y)=\sqrt{ } 2 \int_{-1}^{0}\left(Q_{i} y\right)(t) \cos (2 \pi(s-1) t) \mathrm{d} t \\
& \varphi_{2 s+1}(y)=\sqrt{ } 2 \int_{-1}^{0}\left(Q_{i} y\right)(t) \sin (2 \pi(s-1) t) \mathrm{d} t, \quad s=1,2,3, \ldots
\end{aligned}
$$

Put $H_{i}^{(0)}=H, H_{i}^{(j)}=\left\{y \in H \mid \varphi_{l}(y)=0, l=1,2, \ldots, 2 j-1\right\}, j=1,2, \ldots \quad i=$ $=-1,2, \ldots$; therefore we may define

$$
\begin{equation*}
k_{j}=n(2 j-1) \tag{29}
\end{equation*}
$$

If $y \in H_{i}^{(1)}$, then

$$
\left(Q_{i} y\right)(t)=\int_{0}^{t+1} U_{i}(t+1) U_{i}^{-1}(\sigma) B(\sigma+i) y(\sigma-1) \mathrm{d} \sigma
$$

hence $\left\|Q_{i} y\right\| \leqq e^{a} b\|y\|$ and we may put

$$
\begin{equation*}
r_{1}=e^{a} b \tag{30}
\end{equation*}
$$

It follows from the Fourier expansion of $Q_{i} y$ that
(31) $\left\|Q_{i} y\right\|^{2}=\sum_{l=2 j}^{\infty}\left(\varphi_{l}(y)\right)^{2}$ for $y \in H_{i}^{(j)}, j=2,3, \ldots, \quad i=-1,-2, \ldots$

As $\left(Q_{i} y\right)(-1)=0=\left(Q_{i} y\right)(0)$ for $y \in H_{i}^{(2)}$, it follows that

$$
\begin{aligned}
& \varphi_{2 s}(y)=\sqrt{ } 2 \int_{-1}^{0} \int_{0}^{1+t} U_{i}(1+t) U_{i}^{-1}(\sigma) B(\sigma+i) y(\sigma-1) \mathrm{d} \sigma \cos 2 \pi(s-1) t \mathrm{~d} t= \\
& =\frac{-\sqrt{ } 2}{2 \pi(s-1)} \int_{-1}^{0}\left[B(i+1+t) y(t)+A(i+1+t) \int_{0}^{1+t} U_{i}(1+t) U_{i}^{-1}(\sigma) B(\sigma+i) .\right. \\
& . y(\sigma-1) \mathrm{d} \sigma] \sin 2 \pi(s-1) t \mathrm{~d} t, \quad y \in H_{i}^{(2)}, \quad s=2,3, \ldots, \quad i=-1,-2, \ldots
\end{aligned}
$$

Hence (cf. (25))

$$
\left|\varphi_{2 s}(y)\right| \leqq \frac{\sqrt{ } 2}{2 \pi(s-1)}\left[1+a e^{a}\right] b\|y\|
$$

and similarly

$$
\left|\varphi_{2 s+1}(y)\right| \leqq \frac{\sqrt{ } 2}{2 \pi(s-1)}\left[1+a e^{a}\right] b\|y\|
$$

It follows from (31) that

$$
\begin{gathered}
\left\|Q_{i} y\right\|^{2} \leqq \frac{1}{2 \pi^{2}}\left[1+a e^{a}\right]^{2} b\|y\|^{2} 2 \sum_{l=j}^{\infty} \frac{1}{(l-1)^{2}} \leqq \\
\leqq \frac{1}{\pi^{2}(j-2)}\left[1+a e^{a}\right]^{2} b\|y\|^{2}, \quad y \in H_{i}^{(j)}, \quad j=3,4, \ldots, \quad i=-1,-2, \ldots
\end{gathered}
$$

and we may put (cf. (30))

$$
\begin{equation*}
r_{2}=e^{a} b, \quad r_{j}=\frac{1}{\pi}\left[1+a e^{a}\right] b(j-2)^{-1 / 2}, \quad j=3,4, \ldots \tag{32}
\end{equation*}
$$

The assumptions of Theorem 2 are fulfilled and Theorem 1 is proved completely (cf. Lemma 3).
(6) and (7) in Note 1 follow from (18) and (19) in Corollary and (28), (29), (30) and (32). Let us indicate, how (8) may be obtained. For $m=1,2,3, \ldots$ define the iteger $t(m)$ by

$$
\begin{equation*}
(2 t(m)+1) n<m \leqq(2 t(m)+3) n . \tag{33}
\end{equation*}
$$

As $e^{a} b \geqq 1$, it follows that $S\left(e^{\gamma}, m\right) \geqq 1$ for $m=\dot{1}, 2, \ldots, 5 n$, (cf. (28), (29), (30) and (32)). $S\left(e^{\gamma}, m\right)$ may be given the following form for $m>5 n$

$$
\begin{gather*}
S\left(e^{\gamma}, m\right)=\left(\pi^{-1} e^{\nu}\left(1+a e^{a}\right) b\right)^{m-5 n} \cdot e^{5 n \gamma}\left(1+4 e^{2 a} \max \left(1, b^{2}\right)\right)^{n / 2}  \tag{34}\\
.\left(e^{a} b\right)^{4 n} \cdot((t(m)-2)!)^{-n} \cdot(t(m)-1)^{-(m-(2 t(m)+1) n) / 2}
\end{gather*}
$$

Let $\eta$ be such an integer that

$$
\begin{equation*}
S\left(e^{\gamma}, \eta\right) \geqq 1>S\left(e^{\gamma}, \eta+1\right) . \tag{35}
\end{equation*}
$$

It is easy to see that $\eta \geqq 6$ and that $\eta$ is unique. $\eta=\Theta(a, b, \gamma)$ by definition of $\vartheta$ and $\Theta$.

Let $\varphi$ be the smallest integer greater than $\pi^{-1} e^{\nu}\left(1+a e^{a}\right) b$. Applying Stirling formula $\left(s!=(s / e)^{s} .(2 \pi s)^{1 / 2} \psi_{1}(s), \psi_{1}(s) \rightarrow 1\right.$ with $\left.s \rightarrow \infty\right)$ to (34) we obtain (cf.
(33)) that $S\left(e^{\gamma}, \varphi\right)>1$ so that

$$
\begin{equation*}
\eta \geqq \pi^{-1} e^{\gamma}\left(1+a e^{a}\right) b \tag{36}
\end{equation*}
$$

(the right hand side in (36) being sufficiently large).
(34) implies that

$$
S\left(e^{\gamma}, \eta\right) S^{-1}\left(e^{\gamma}, \eta+1\right)=(t(\eta+1)-2)^{1 / 2} \pi e^{-\gamma}\left(1+a e^{a}\right)^{-1} b^{-1}
$$

and by (35)

$$
\begin{equation*}
1 \leqq S\left(e^{\gamma}, \eta\right) \leqq(t(\eta+1)-2)^{1 / 2} \pi e^{-\gamma}\left(1+a e^{a}\right)^{-1} b^{-1} \tag{37}
\end{equation*}
$$

(36), (37) and (33) imply that

$$
\begin{equation*}
\left(S\left(e^{\gamma}, \eta\right)\right)^{1 / \eta} \rightarrow 1 \quad \text { with } \quad e^{\gamma}\left(1+a e^{a}\right) b \rightarrow \infty . \tag{38}
\end{equation*}
$$

By Stirling formula $(s!)^{1 / s}=(s / e) \psi_{2}(s), \psi_{2}(s) \rightarrow 1$ with $s \rightarrow \infty$. Observe that
(39) $\quad((t(m)-2)!)^{-n / m}=\left(\frac{2 n e}{m}\right)^{1 / 2} \psi_{3}(m), \quad \psi_{3}(m) \rightarrow 1 \quad$ with $\quad m \rightarrow \infty$
and $($ as $0<m-(2 t(m)+1) n \leqq 2 n)$

$$
\begin{equation*}
(t(m)-1)^{-(m-(2 t(m)+1) n) / 2 m} \rightarrow 1 \quad \text { with } \quad m \rightarrow \infty . \tag{40}
\end{equation*}
$$

Obviously

$$
\begin{aligned}
& \left(1+a e^{a}\right)^{-2} b^{-2} \leqq\left(1+4 e^{2 a} \max \left(1, b^{2}\right)\right)\left(1+a e^{a}\right)^{-2} b^{-2} \leqq 1 \\
& \left(1+a e^{a}\right) b \geqq e^{a} b \geqq 1
\end{aligned}
$$

and

$$
\left[\left(\left(1+a e^{a}\right) b\right)^{-1}\right]^{\left(\left(1+a^{a}\right) b\right)^{-1}} \geqq e^{-e^{-1}} .
$$

Therefore (cf. (36))

$$
\left(\left(1+a e^{a}\right)^{-1} b^{-1}\right)^{1 / n} \rightarrow 1 \quad \text { with } \quad e^{\gamma}\left(1+a e^{a}\right) b \rightarrow \infty
$$

and
(41) $\left[\left(1+4 e^{2 a} \max \left(1, b^{2}\right)\right)\left(1+a e^{a}\right)^{-2} b^{-2}\right]^{n / 2 \eta} \rightarrow 1$ with $e^{\gamma}\left(1+a e^{a}\right) b \rightarrow \infty$.

As $\left(e^{-a}+a\right)^{-1}=e^{a} b\left(1+a e^{a}\right)^{-1} b^{-1} \leqq 1$, it may be shown (in a similar way as (41)) that

$$
\begin{equation*}
\left[e^{a} b\left(1+a e^{a}\right)^{-1} b^{-1}\right]^{4 n / \eta} \rightarrow 1 \quad \text { with } \quad e^{\gamma}\left(1+a e^{a}\right) b \rightarrow \infty \tag{42}
\end{equation*}
$$

Substituting (34) in (38) and making use of the Stirling formula, (36), (39) -(42) we obtain that

$$
\pi^{-1} e^{\gamma}\left(1+a e^{a}\right) b(2 n e)^{1 / 2} \eta^{-1 / 2} \rightarrow 1 \quad \text { with } \quad e^{\gamma}\left(1+a e^{a}\right) b \rightarrow \infty,
$$

which is equivalent to (8).

## References

[1] A. Halanay, J. Kurzweil: A Theory of Invariant Manifolds for Flows, Rev. Roum. math. pures et appl., XIII (1968), 1079-1087.
[2] J. Kurzweil: Invariant Manifolds fo a Class of Linear Functional Differential Equations, Rev. Roum. math. pures et appl., XIII (1968), 1113-1120.
[3] J. Kurzweil: Invariant Manifolds I, Comm. Math. Univ. Carolinae 11 (1970), 309-336.
[4] E. F. Beckenbach, R. Bellman: Inequalities, Springer-Verlag, Berlin 1961.
[5] Ф. Р. Гантмахер: Теория матриц, Изд. Наука, Москва 1966.

Author's address: Praha 1, Žitná 25 (Matematický ústav ČSAV v Praze).

