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časopis pro pěstování matematiky, roč. 96 (1971), Praha 

ON SOME NEW PROPERTIES OF THE CANTOR SET 

SRI SACHI BHUSAN SEN G U P T A , Kalyani 

(Received September 16, 1969) 

Introduction and notations. Suppose that the real number x is expressed in the 
Scale g (g is a positive integer > 1) 

(1) x = £ i W + £iW + ... + £=W + ... 
v g g2 g" 

0 g ct(x) < g, i = 1, 2, . . . and that the digit b, 0 ^ b ^ g — 1 occurs nb times in 
the first n places of the expression (1) for x. 

If lim nbjn exists and equal to /? then we say that the digit b has frequency /?. 
n-*oo 

[See HARDY and WRIGHT [9]]. 

We say that x is simply normal in the scale g if lim nb\n = \\g, for each of the 
(g - 1) possible values of b [See [9]]. 

Let 
00 

(2) £d„ = <*, + d2 + d3 + ... + dn + ... 
n= 1 

be an infinite series and let {kn} be an ascending sequence of positive integers; then 
the series 

00 

(3) Id*„ = dkl + dk2 + ... + dfcn + ... 
» = i 

is called a subseries of the series (2). 
Let each number of the interval (0, 1] be expressed in the scale 2 with infinitely 

many digits equal to 1. 

Hence, if x e (0, 1], then 

(4) x ^ y €*(x) =
 c - ( * ) | £2(x) | . . . 

&= l 2 2 2 

where ek(x) = 0 or 1, and £*(*) = 1, for infinitely many k. 
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We have correspondingly an infinite series 

(5) (x) = £ *(*)</*. 
fc=l 

which is a subseries of (2). 

Also every subseries (3) of the series (2) can be obtained from (5), [by putting 
ekn(x) = 1, n = 1,2,... and ek(x) = 0 when k =t= kn, n = 1, 2, . . . ] . 

Hence all subseries of (2) can be mapped onto (0, 1]. We say that certain property P 
is valid for almost all subseries of (2), if the corresponding set {x}, xe (0, 1], has the 
Lebesgue measure 1. For instance, we know that almost all subseries of a divergent 
series are divergent. [See [8]]. 

n 

Let (5) be a subseries of the series (2), and let p(n, x) = £ ek(x). Then the numbers 
*-=i 

t \ i- • <• KM>x) (\ v P(w>x) 
Pi(x) = hm inf -•, p2(x) = lim sup ^ 

n-+oo n n->oo M 

are called l9wer and upper asymptotic density respectively of the subseries (5) in the 
series (2). 

If the limit p(x) = lim (p(n, x)/n) ( = lim (p(n, x)jn) = Em (p(n, x)jn)) exists, then 
J1-*00 

we call this number asymptotic density of (5) in (2). Obviously Plvx), Pi(x), p(x)e 
e[0, 1] [See [12]]. 

00 00 

Theorem 1. For almost all points (x) = £ (2ek(x)/3fc) = £ (ck(x)\3k) of the Cantor 
k=i * = i 

set C, each of the digits 0, 2 has the frequency \. 

[That is almost all points of C have nearly equal number of twos and zeros in the 
first n digits, where n is sufficiently large and each point is expressed in the ternary 
scale.] 

Proof. We know the Theorem that almost all numbers are simply normal in any 
given scale g [See [9]]. 

It follows that almost all numbers of (0, 1] are simply normal in the scale 2 (i.e. 
0 = 2 ) . 

00 

That is, if x = £ (ek(x)jlk) e (0, 1], ek(x) = 0 or 1 and ek(x) = 1, for infinitely 
j t = i 

many k and if the digit 1 (or 0), (i.e. b = 1 or 0), occurs nb times among the first n 
numbers et(x), e2(x),..., en(x), then 

(6) lim 5* = - , for almost all x e (0, 1] . 
«->oo n 2 
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Now consider the Cantor series 2/3 + 2/32 + ... + 2/3" -f ... we form the Cantor 
point 

" °° 2e (x) °° 
(x) == £ —!—-— , corresponding to x = _] 

*(*) 
k=i 3* *=i 2k 

It follows from (6) that the digit 2 (and also 0) has the frequency \ in the expression 

for (x), for almost all (x) e C. 

Hence the theorem. 

Note 1. For any Cantor point x = -SI = -5022 ... (Scale 3), (which is the left 
hand end point of an interval complementary to the Cantor set C, and 6 is a finite 
complex of 0's and 2's), we have 

lim ^ = 1 , lim 5° = 0 
n-*co n n-*ao n 

(nb is the number of b's in the first n digits of Si, b = 2 , 0). For the Cantor point 
x = <5, which is the right hand end point of a contiguous interval, lim (n2/n) = 0 
andlim(n0 /n) = 1. 

n->oo 

Note 2. If we represent the numbers in (0, 1] in the ternary scale as 

ci(x) ci(x) ck(x) i / \ ^ , ^ 
x = --±- + -\I- + ... + - - V + ... , where cix) = 0, 1, 2 

3 32 3* v 7 

and Nn(r, x) as the number of ck(x) in the first n terms, each having the integral value 
r (=0 , 1, 2), then we know that lim (Nn(r, x)\n) = %, for almost all x in (0, 1], [9]. 

n-*oo 

If we denote this set of simply normal numbers (of measure 1) by N3, then we know 

that the set N3 is of First Category [See [13]]. 

Also, if we denote the derived set of the sequence 

N,(r, x) N2(r, x) Nn(r, x) _ fNn(r, x) 

1 ' 2 ' " " n " " 1 n 

by {N„(r, x)jn}'n, it has been shown by TIBOR SALAT [13] that, for all x e (0, 1], 
except for a set of the first Category (F.C.), [including N3] 

{Njtl^V = [ o , l ] , for each r ( = 0 ,1 ,2 ) . 

If we now consider the perfect set C (the Cantor set) instead of the whole interval 
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[0, 1], where each point (in the scale 3) x is given as x = £ (2ekvx)/3k), ek(x) == 0, 1, 
we have seen above in Theorem 1 that k=i 

lim-^iO-I, 
n-*oo n 2 

for each r ( = 0 or 2) for almost all xe C. 

We can, therefore, say that 'Almost all numbers belonging to Cantor set C are 
simply normal' (with respect to C). We denote the set of such numbers by N3j2. (It 
should be noticed that none of Cantor points can be simply normal with reference to 
the whole interval [0, 1] and the scale 3, as none of the Cantor points contain the 
digit 1, as x = 1/3 = 0/3 + 2/32 + 2/33 + ..., and so on.) 

The question now arises, whether the other two properties mentioned above hold 
good for the Cantor set as well: That is 

(i) Is the set N3 2 ( = the set of simply normal numbers of Cantor set C, as defined 
above) of first category with respect to C? 

(ii) Is it true that except for a set of first category (with respect to C) including N3>2, 
for other points x e C, which form a residual set (with respect to C), 

{Nj^cfҐ = [ o , 1] for r = 0,2? 

Since C is mapped onto [0, 1], that the answers to both the above questions are 

in the affirmative may be conjectured from Tibor Salat's Theorem [13]: 

For all x e (0, 1], 

[*-!/-f, e.W-O^p^-tO,!], 

with the exception of a set of the first category, for each r ( = 0 , 1). 

We give below a formal theorem: 

Theorem 2. For all x e C , with the exception of points of a set of the first category 
in C 

| ^ j ' - [ 0 , 1 ] , ( r = 0 , 2 ) 

holds. 

Proof. The proof of this theorem follows as a Corollary to the following theorem 
Of P. KOSTYRKO [10]: 
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Let 
00 00 

an>09 A =^an< +co9an> Rn=Yjan+k9 (n = 1, 2, . . .) . 
n = l J k = l 

oo 

Let W denote the set of all numbers x of the form x = £ enan, where en = 1 or — 1 
n = l 

(n = 1,2,...). Letf(w, x) denote the number of k's, k ^ n, for which sk = 1. Then 
for all x e IV with the exception of points of a set of the first category we have, 

p^)j '= [ 0 > 1 ] . 
If we now put an = l/3n (n = 1,2,...), the conditions an > 0, A = £ a n and an > 

> Rn ( = 1/2.3") are all satisfied. In view of the fact that the Cantor set C is obtained 
by a translation of W(C = W+ A = W+ 1/2,since A = X(l/3") = 1 / 2 )> t h e a b o v e 

theorem follows from P. Kostyrko's result [10]. 

Theorem 3. Almost all points of the Cantor set C have each an asymptotic density \ 
in the Cantor series 

2 2 2 - + - + . . . + - + . . . 
3 3 2 3fc 

Proof. Let x be a point of (0, 1] given by 

(A) * - I ^ 
jt=i 2 

where ek(x) = 0 or 1 and ek(x) = 1, for infinitely many k's. 

We have correspondingly the Cantor point 

/r»\ / \ 2e1(x) 2e2(x) 2afc(x) 
(B) (x) = ~^-1 + —^-J + ... + - ^ + ... 
v ) w 3 3 2 3fc 

OO 

which is a subseries of £ (2/3fc). 
* = i 

Now, number of twos in the first n terms of (B) in the right hand side is the same as 

Hence 

Xe*(x) = P(n,x) = nb9 (b = 1). 
fc=i 

l imá^L) = И m ^. 
Я-+00 П Л-+0O П 
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Since by Theorem 148 page 125 [9], lim (nb\n) = \ (b = 1,0), for almost all 
R-*00 

x e (0, 1], it follows that lim (p(n, x)\n) = \, for almost all (x) e C. Hence the theo-

rem. 
We know from Randolph's Theorem [11] that every point e [0, 1] lies midway 

between a pair of Cantor points. BOSE MAJUMDER [See [6]] gave an alternative proof 
of this theorem. He further showed that almost all points of [0, l ] are each midway 
between a continuum number of pairs of Cantor points [6] . 

We now prove the following 

Theorem 4. Each point X of (0, 1) is the midpoint of a unique pair of Cantor 
points if and only if X itself is a Cantor point. 

Proof. It has already been seen [6] that, taking 

0___(<* + - W = Ž ^ , <5.- = 
i= 1 ó 

_, if d є Г - 1 , 1 ] , 

we get 

d 

2 І - І - I J , vj = 
1=1 ò 

- 1 
0 
1 

Generally this representation is unique. But if \d (and hence A — _•) has more than 
one such representation, then there are only two such representations and \d (and 
hence X — _) is given by, 

or else by 

_ _ f - v 1 v 2 . . . v _ _ 1 ( - l ) l l l . . . 

2 l - v 1 v 2 . . . v _ _ 1 ( 0 ) ( - l ) ( - l ) ( - l ) . . . 

_ •v1v2...v__1(0)(l)(l)(l)... Í - J ] 
2 l - v 1 v 2 . . . v „ _ 1 ( l ) ( - l ) ( - l ) ( - l ) . . . ' ' _ 

Now since 

where 

đ - 2v< - y 2(& - "0 _ y 2ß< 2a< - v _ x 

yeC, xeC. 
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By choosing 
a, = 1 , Pi =0 if \i = - 1 

a . = 0 , pi = 1 if v,. = 1 

and either 

*{ or < if V: = 0 . 
\Pi = 0 (& = 1 

00 

Hence d = £ (2^/3*) is uniquely representable as d = >> — x, y e C, x e C, if and only 

if no v4 is a zero, i.e. if and only if no <5fis an 1, that is if and only if X ( = (d + l)/2) 
is a Cantor point. And in this case y — x=dory — x =2X — \ ox 2X = y + 
+ (1 '— x) or 2X = y + x' where y e C, x' e C (as the Cantor set C is symmetrical). 

Hence the theorem. 

Corollary. Each Cantor point is the arithmetic mean of a unique pair of Cantor 
points. 

We know that the set N3 of simply normal numbers in [0, 1] in the scale 3 has the 
measure 1 [9] and also the set Tc of numbers d e [0, 1], each being the difference of 
continuum number c of pairs of elements of the Cantor set C has the measure 1 [See 
BOAS [1] and BOSE MAJUMDER [5]]. 

Hence the set E = N3 n Tc is also of measure 1 [See BOSE MAJUMDER and DAS 

GUPTA [7]]. We thus have the theorem: 

Theorem 5. Excepting possibly for a set of measure zero, every point in [0, 1] 
which is expressible as the difference of a pair of Cantor points in continuum 
number of ways is necessarily a simply normal number in the scale 3 and vice 
versa. 

N o t e 1. That the two sets are not identical can be seen from the fact that there 
exists d e [0, 1] which belongs to Tc but does not belong to N3. For instance, let 
d = -<5 (scale 3), where 8 is a complex containing a finite number of zeros and twos 
and thus ending with a 2. This represents the right hand end point of a contiguous 
interval of the Cantor set C. As this representation of d does not contain any 1, it 
follows that this can not be a simply normal number. But it is known that [See [2], 
[3]] this d can be expressed as the difference of a pair of Cantor points in continuum 
number of ways. Hence d e Tci but <5 e N3. 

No te 2. Though Tc and N3 are each of measure 1, it is interesting to note that Tc 

is a residual set [See [4]], but N3 is a set of the first category [See [13]]. 
In conclusion, I offer my sincere gratitude to Dr. N. C. BOSE MAJUMDER of 

Calcutta University for his kind help and guidance in the preparation of the paper. 
I am also thankful to the Reviewer for his kind suggestions to improve this paper. 
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