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časopis pro pěstování matematiky, roč. 96 (1971), Praha 

ALTERNATING CONNECTIVITY OF TOURNAMENTS 

BOHDAN ZELINKA, Liberec 

(Received February 2, 1970) 

This paper continues to investigate the concepts introduced in [2] in the case of 
tournaments. A tournament is a digraph in which any two different vertices u, v are 
joined exactly by one directed edge (either uv, or vu) and no loops exist. The concepts 
of (+ — )-path, (— +)-path, (+ — )-connectivity, (— +)-connectivity and alternating 
connectivity were defined in [2]. 

Theorem 1. Let a tournament Twith the vertex set Vhave a source u and no sink. 
Then T is (+—)-connected, but not (— +)-connected. The equivalence classes of 
the relation of being ( — +)-connected are {u} and V -=- {u}. 

Remark. A tournament can have at most one source and at most one sink. 

Proof. Let v, w be two vertices of T. As Thas no sink, there exist vertices v', w' 
so that tw', ww' are edges of T. As u is a source, there exist edges uv', uw'. Thus 
P = [v, vv', v', Vu, u, uw', w', w'w, w] is a (+ — )-path between v and w. As the ver
tices v, w were chosen arbitrarily, the tournament Tis ( H — ) connected. The source u 
forms an equivalence class of the relation of being (— +)-connected, because it 
cannot be joined by a (—h)-path with any other vertex; the first edge of such a path 
would be incoming into u which is impossible. If v, w are two vertices of T both 
different from u, then there exist edges uv, uw and P' — [v, vu, u, uw, w] is a (— +)-
path between v and vv. Thus V — {u} is an equivalence class of the relation of being 
(—+)-connected. 

Theorem 1'. Let a tournament Twith the vertex set Vhave a sink u and no source. 
Then T is (—\-)-connected, but not (H—)-connected. The equivalence classes of 
the relation of being (+ —)-connected are {u} and V — {u}. 

Proof is dual to that of Theorem 1. 

Theorem 2. Let a tournament Twith the vertex set Vhave a source u and a sink v. 
Then the equivalence classes of the relation of being (+ —)-connected are {v} and 
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V --- {v} and the equivalence classes of the relation of being (— +)-connected are {u} 
andV^{u}. 

Proof is analogous to the proof of Theorem 1. 

Theorem 3. Let Tbe a tournament without a sink which is not strongly connected. 
Then T is (H—)-connected. 

Proof. The reduced graph R [1] of the tournament Tis evidently an acyclic tour
nament. An acyclic tournament is evidently also transitive. Thus the vertices of R9 

i.e. the quasicomponents of T9 are totally ordered so that for two quasicomponents 
6i> Qi we have Qt -< Q2 if and only if & + Q2 and there exists and edge in T 
outgoing from a vertex of Qv and incoming into a vertex of Q2. (As Tis a tournament, 
from any vertex of Qt an edge goes into any vertex of Q2.) Assume that there exists 
no greatest element in this ordering and consider two vertices u and v of T Let Qt 

and Q2 be the quasicomponent of T containing u and v respectively. There exists 
a quasicomponent Q3 such that Qi *< Qz-> Qi -< Q3- Choose a vertex w of Q3. There 
exist edges uw9 vw and P = [v9 vw9 w, ww, u] is a ( + — )-path between u and v. Now 
assume that the above defined order has the greatest element; let this quasicomponent 
be Q0. Consider again two vertices u and v. If none of them is in g0 , the proof is the 
same as in the preceding case. Let u be in Q0 and v in some Qt + Q0. If Q0 consists 
of a single vertex, this vertex is a sink; this is excluded by the assumption. Thus Q0 is 
a strongly connected subtournament of Twith more than one vertex; therefore there 
exists an edge uw such that w is contained also in Q0. As Qx + Q09 we have Qt «< Q0 

and there exists also the edge vw. Then P = [w, ww, w, wv9 v] is a (+— )-path 
between u and v. Now let both u and v be in Q0. As Q0 is a strongly connected sub-
tournament of T, there exist vertices w, x in Q0 such that uw, wc are edges of T. 
If w = x, the proof is finished. If w + x, we choose a vertex y not belonging to Q0. 
There exist edges yw9 yx in T and P = [w, uw9 w, wy, j , j x , x, xv, u] is a (+ — )-path 
between u and v. 

Theorem 3'. Let T be a tournament without a source which is not strongly con
nected. Then Tis(— +)-connected. 

Proof is dual to that of Theorem 3. 

Before presenting the last theorem we shall prove some lemmas. 

Lemma 1. Let Tbe a tournament which is not acyclic. Then Tcontains at least 
one cycle of the length three. 

Proof. As Tis not acyclic, we may choose a cycle C- in it. If the length of Ct is 
three, the proof is finished. Assume that this length is /t > 3. Let ul9..., uh be the 
vertices of C1 and u^h^i for i = 1, . . . , l% - 1 and u^u[ be the edges of Cx. Consider 
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the vertices ut and n3. As Tis a tournament, it contains either the edge u&l, or the 
edge u^u[. In the second case the vertices ul9 ul9 u3 with the edges utu2, u2uZ9 u3u\ 
form a cycle of the length three. In the first case there exists a cycle C2 of the length 
l2 = lx - 1 with the vertices ul9 u3,..., uh. If l2 = 3, the proof is finished; if not, 
we repeat the procedure with C2 instead of Ct. In this manner we proceed until we 
obtain a cycle of the length three, which occurs after at most lx — 3 steps. 

Lemma 2. Let Tbe a tournament with the vertex set V without sources and sinks. 
Let ueVbe such a vertex that {u}9 V — {u} are equivalence classes of the relation of 
being (H—)-connected. Then the outdegree of u in T is 1 and the indegree of the 
vertex v such that uv is in Tis also 1. The equivalence classes of the relation of being 
(— +)-connected are {v}, V — {v}. 

Proof. The outdegree of u cannot be zero, because T does not contain sinks. 
Assume that there exist two vertices vl9v2 such that v1 =)= v2 and uv\ and uv2 are 
edges of T. As Tis a tournament, the vertices vt and v2 must be joined by an edge. 
Without any loss of generality let this edge be v^. Let w be an arbitrary vertex of 
V — {u}. As the set V — {u} is an equivalence class of the relation of being (+ — )-
connected, the vertices vx and w are (+— )-connected. There exists a (+—)-path 
P = [vl9..., w] between v1 and w. The path P2 = [w, uv^9 vl9 v2vl9 vl9..., w] is 
a (+ — )-path between u and w and the vertices u and w are (+ — )-connected, which 
is a contradiction with the assumption that {u} and V — {«} are the equivalence 
classes of the relation of being (+ — )-connected. We have proved that the outdegree 
of u must be one. Let i; be the terminal vertex of the unique edge outgoing from u. 
Assume that there exists a vertex x e F - {u} such that xv is in T. Then P3 = 
= [w, uv9 v9 vx9 x] is a (-1—)-path between u and x and x is (+ — )-connected with w, 
which is again a contradiction. Thus also the indegree of v must be one. The vertex v 
is ( - +)-connected with no vertex except itself, because any (— +)-path from v can 
only have the form [v9 vu9 u9 uv9 v9..., v]. Thus {v} is an equivalence class of the 
relation of being (+ — )-connected. Now let a9 b be two vertices of V — {v}. As T 
is without sinks, there exist vertices a'9 b' of V such that 'ara9 V$ are edges of T. 
If a' = u or V = v9 then according to the above proved a = v or b = v respectively, 
which was excluded. Thus a' eV — {u}9 b'eV— {u} and these two vertices are 
(+ -)-connected. Let P4 = [a'9..., b'] be a (+ -)-path between a' and b\ Then 
P5 == [a, S57, a'9..., b'9 b% b] is a (—+)-path between a and b and these two 
vertices are ( — +)-connected. As a, b were chosen arbitrarily from V — {«}, this set 
is an equivalence class of the relation of being (— +)-connected in T. 

Lemma 2'. Let Tbe a tournament with the vertex set Vwithout sources and sinks. 
Let veVbe such a vertex that {v}9 V — {v} are equivalence classes of the relation of 
being (— +)-connected. Then the indegree of u in T is 1 and the outdegree of the 
vertex u such that uv is in T is also 1. The equivalence classes of the relation of 
being (+ —^connected are {u}9 V --- {u}. 
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Lemma 3. Let Tbe a tournament with the vertex set Vwith at least four vertices 
without sources and sinks. Let M, V be two of its vertices such that {u}9 V — {u}are 
equivalence classes of the relation of being (H—)-connected and {v}9 V — {v} are 
equivalence classes of the relation of being (— +)-connected in T Let Tx a be tourna
ment obtained from T by adding a new vertex w and joining it by exactly one 
directed edge with any vertex ofVso that w is neither a source nor a sink in Tx. 
Then either Tx is alternatingly connected or {u}9 (Vu {w}) --- {M} are equivalence 
classes of the relation of being (H—)-connected and {v}9 (Vu {w}) — {v} are 
equivalence classes of the relation of being (—\-)-connected in Tx. 

Proof. According to Lemmas 2 and 2' the outdegree of u and the indegree of v 
are equal to 1 and uv is an edge of T. At .first assume that WM and vw are edges of Tx. 
Then the outdegree of u and the indegree oft? also in Tx are equal to one. Analogously 
as in the preceding lemmas we can prove that {M} is an equivalence class of the rela
tion of being ( + — )-connected and {v} is an equivalence class of the relation of being 
(—(-)-connected also in Tx. Any two vertices of V— {M} remain (H—)-connected 
also in Tx. Now let x e V -=- {M}. If x 4= v, then xw is in Tand also in Tx. The path 
Px = [x,XM, M, MW, w] is a (+—)-path in Tx and therefore x and w are (+—)-
connected in Tx. If x = r, then for any x ' e F - {M} the edge xx' is in T. We have 
x' 4= v9 thus x' e V - {M}. The vertex u is also in V ~ {v} and the edge WM is in Tx. 
The vertices x' and u are therefore (— +)-connected and there exists a (— +)-path 
Pi = [*'> ...»«] -n T and also in Tx. The path P3 = [v9 vx'9 x'9..., M, MW, W] is 
a (+ — )-path in Tx and therefore v and w are (+ —)-connected in Tx. We have proved 
that (Vu {w}) — {M} is an equivalence class of the relation of being ( + — )-connected 
in Tx. Dually we prove that (Vu {w}) — {v} is an equivalence class of the relation of 
being (— +)-connected in Tx. Now assume that uw is an edge of Tx. Ifvw is also in Tl9 

then P4 = [M, MW, W, VW, V] is a ( + —)-path in Tx and the vertices M, V are (+ — )-
connected. Now let x be a vertex of Vsuch that wx is in Tx\ such a vertex must exist 
because w is not a sink. We have x 4= M, X # v. The edge vx is also in Tl9 thus P5 = 
= [w, wx, x, xv9 v] is a (+ — )-path in Tx and the vertices v and w are also ( + — )-
connected. As V — {M} is an equivalence class of the relation of being (+ —^con
nected in T a n d the vertices u and w are both (+— )-connected with the vertex 
v e V — {u}9 the set Vu {w} is an equivalence class of the relation of being ( + — )-
connected in Tx and the tournament Tx is (+ —)-connected. According to [2] it is 
also (— +)-connected and thus it is alternatingly connected. If wit; is in Ti9 the path 
P6 -=- [M, MI?, v9 vw9 w] is a (+ — )-path in Tx and therefore u and w are (+ — )-con-
nected in Tx. Let x e V ~ {M; V}; there exists the edge vx. If wx is in TX9 then P7 == 
= [v9 vx9 x, xw, w] is a (+ —)-path in T t between v and w and these vertices are 
( + — )-connected. If xw is in Tl9 then P8 = [M, MW, W, WX, x] is a (+ — )-path between 
M and x and these vertices are ( + —)-connected. This means that either u or w is 
( + —)-connected with some vertex of V — {M}. As V — {M} is an equivalence class of 
the relation of being ( + —)-connected, we see that one of the vertices M, W is ( + —)-
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connected with all vertices of V — {w} and so is the other, because w and w are (+ — )-
connected. Thus the tournament 7\ is (+— )-connected and also alternatingly 
connected. 

Lemma 4. Let Tbe an alternatingly connected tournament with the vertex set V. 
Let 7\ be a tournament obtained from Tby adding a new vertex w and joining it by 
exactly one directed edge with any vertex of V so that w is neither a source nor 
a sink in 7\. Then 7\ is also alternatingly connected. 

Proof. It suffices to prove that w is (+— )-connected in 7\ with an arbitrary 
vertex w of T. Both w and w are not sinks; thus there exist vertices w', w' in Vsuch 
that ww\ ww' are edges of Tx. The vertices w' and w' are (— +)-connected in Tand 
also in T-. Thus there exists a path P1 = [w',..., w']. The path P2 = [w, ww\ w',... 
..., w', w'w9 w] is a (+ — )-path between w and w in Tx. 

Lemma 5. Let {Tt}t<a be a transfinite sequence of alternatingly connected tour
naments of the limit ordinal number a such that for i < x < a the tournament Tt 

is a proper subtournament of Tx. Then the tournament Ta = \J Tt is alternatingly 
connected. i<a 

Proof. Let w, v be two vertices of Ta. According to the definition there exist ordinal 
numbers *, x less than a such that w is in Tt and v is in Tx. Let X = max (i9 x). The 
vertices w, v are both contained in Tk and are (+ — )-connected in it. Therefore they 
are (+ — )-connected also in Ta whose subtournament Tx is. 

Lemma 6. Let {Tt}l<a be a transfinite sequence of tournaments without sources 
and sinks of the limit ordinal number a such that for i < x < a the tournament Tt 

is a proper subtournament of Tx. Let w, v be such vertices of T0 that for any i < a 
the equivalence classes of the relation of being (+ —)-connected in Tt are {w}, 
K — {w} and the equivalence classes of the relation of being (— +)-connected in Tt 

are {v}9 Vt — {v} where Vt is the vertex set of Tt. Then in the tournament Ta = \J Tt 
i < a 

the equivalence classes of the relation of being (H—)-connected are {w}, Va -=- {w} 
and the equivalence classes of the relation of being (—v)-connected are {v}9 

Va — {v} where Va is the vertex set of Ta. 

Proof. If x, y are two vertices of Va — {w}, we prove analogously to the proof of 
Lemma 5 that they are (+— )-connected. Now assume that w and some vertex 
x e Va are (+ -)-connected in Ta. There exists a (+ -)-path P between w and x in Ta. 
Let V(P) be the set of vertices of P and for a given yeVa let fl(y) be the least ordinal 
number such that y e Vfi(y); such a number must exist because of the well-ordering of 
the set of ordinal numbers less than a. Let p(P) = max p(y). As V(P) is a finite set, 

this maximum exists. The path P is contained in T0(P) and therefore TfiiP) is (+ — )-
connected, which is a contradiction. The rest of the assertion can be proved dually. 
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Theorem 4. Let T be a tournament with three vertices. Then only two cases can 
occur: 

(1) Tis a cycle of the length 3 (Fig. la). Then any equivalence class of the relation 
of being (+ —)-connected9 as well as of the relation of being (— +)-connected9 

consists only of one vertex. 

(2) T is acyclic (Fig. lb). Then if u9 v9 w are vertices of T and u < v •< w, then the 
equivalence classes of the relation of being (+ —)-connected are {u}9 {v9 w} and 
the equivalence classes of the relation of being (—+)-connected are {u9v}9 

{w}. 

The assertion is evident. 

Fig. la. Fig. lb . 

Theorem 5. Let Tbe a strongly connected tournament with at least four vertices 
Then either Tis alternatingly connected, or there exist two vertices u9 v in Tsuch 
that the equivalence classes of the relation of being (+—)-connected are {u}9 

V ~ {u} and the equivalence classes of the relation of being ( — +)-connected are 
{v}9 V --- {v} where Vis the vertex set of 71 

Proof. We shall carry out the proof by the method of transfinite induction. At 
first we shall investigate tournaments with four vertices. Let Tbe such a tournament. 
If a tournament is strongly connected, it is not acyclic. Therefore according to 
Lemma 1 it contains a cycle of the length 3. Consider the vertex of Tnot belonging 
to this cycle. It is neither a source nor a sink, because of the strong connectivity of T 
Thus either its indegree is 1 and its outdegree is 2, or its indegree is 2 and its outdegree 
is 1. We see that in both these cases we obtain a tournament isomorphic to the 
tournament on Fig. 2. In this tournament the equivalence classes of the relation of 
being (+ -)-connected are {u}9 V ~ {u} and the equivalence classes of the relation 
of being ( - +)-connected are {v}9 V- {v} which can be easily verified. Now let T 
be a strongly connected tournament with more than four vertices. It contains a cycle C 
of the length three; let a9 b9 c be its vertices, ab, be, ca its edges. If C does not belong 
to any subgraph of T isomorphic to the graph on Fig. 2, then for any vertex x of T 
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not belonging to C either the edges ax, bx9 ex or the edges xa, xb9 xc exist. If for 
each vertex x not belonging to C the edges ax9 bx, ex exist, the circuit C is a quasi-
component of T, which is a contradiction with the assumption that T is strongly 
connected. The same holds if for each vertex x not belonging to C the edges xa, xb9 lec 

Fig. 2. 

exist. Therefore, if X is the set of all vertices x of Tnot belonging to C such that the 
edges ax, bx9 ex exist and Y is the set of all vertices y of T not belonging to C such 
that the edges ya9 yb9 ye exist, then both X and Y are non-empty. As T is strongly 
connected, there exists at least one xeX and y e Ysuch that xy is in T Thus a, x, y 
form a cycle in T and the edges ab9 bx9 yb exist. The subgraph of T induced by the 
vertices a, b9 x, y is isomorphic to the graph on Fig. 2. We have proved that such 
a graph is a subgraph of every strongly connected tournament with more than four 
vertices. Thus we use the transfinite induction according to the number of vertices; 
this proof follows from Lemmas 3, 4, 5, 6. Obviously if we consider infinite tourna
ments, the Axiom of Choice is used. 

References 

[1] J. Sedláček: Kombinatoгika v teoгii a praxi. Űvod do teorie grafû. Praha 1964. (Geгman 

translation: Einführung in die Graphentheoгie. Leipzig 1968.) 

[2] B. Zelinka: Alternating connectivity of digraphs. Čas. p st. mat. (to appear). 

Authoґs address: Libeгec, Studentská 5 (Vysoká škola strojní a textilní). 

352 


		webmaster@dml.cz
	2012-05-12T04:07:47+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




