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Časopis pro pěstování matematiky, roč. 97 (1972). Praha 

SPACES OF FUNCTIONS ON DOMAIN Q, WHOSE k-TH 
DERIVATIVES ARE MEASURES DEFINED ON Q 

Jifci SOUCEK, Praha 

(Received January 8, 1970) 

INTRODUCTION 

In §1. a new kind of a functional space is defined, the space W*(Q) of functions, the 
first derivatives of which are measures on Q and the properties of this space are in
vestigated. In §2. we use results from §1. to define the space W*(Q), the space of func
tions, the k-th derivatives of which are measures on H. 

Let Q cz EN be a bounded domain with the boundary of the class C1. Generally 
speaking, we can say that the space W^(Q) is the completing of Sobolev's space 
JVJ(.G) in weak convergence, by this weak convergence we mean the weak convergence 
of the function together with weak convergence of their derivatives. Now, it can be 
seen that element of W* is not already a function on Q in usualy sense: if two weak 
convergent sequences of functions from W\ has the same limit function in LM (in the 
sense of weak convergence in LM), then their derivatives need not have the same weak 
limit in LM, these limit measures can be different on dQ. 

The space W*(n) is the space of all (N + l)-couples (a0, a,,..., ccN) of measures 
on D, for which there exists a sequence of functions un e W\(Q) such that un -*• a0 

and at the same time dunjdxt -* <xt. It will be seen that a0 must be absolutely con
tinuous with respect to Lebesgue measure and hence a0 has the density w, which is 
integrable on Q. The derivatives of this function u in the sense of distributions are 
then the restriction a^p. Further there exists uniquelly determined measure pe 
e LjjdQ) (we will call it the trace of (a 0 ,..., aN) such that the Green theorem holds in 
this form 

J (pVi dp = uq>Xi dx + \ (p da f, V<p e C\Si). 
Jen JQ Jn 

The following important assertion is true: 
If we take the function u e Lt(Q) and if for any measures <xl9..., a^ e Ljft) there 

exists the measure p e LjdQ) such that Green theorem holds, then (w, a1 ?..., a#) e 
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e Wl(!T). It will be seen that the element (M, a,) e W\ is uniquelly determined by the 
function u and by the trace ft e LjdQ). In theorem 3 there are discussed necessary 
and sufficient condition for u and /? to define an element from JV*. It will then be 
shown that /? e LjdQ) can be arbitrary and only some conditions must be supposed 
about the function u. The trace /? depends continuously and weakly continuously 
on (M, aj) e W*. Further there are proved the theorems on imbedding into Lq(Q) and 
the theorem on equivalent norms. The unit ball in PV* is weakly compact. A so called 
inner trace of (M, aj) e W* is defined as the trace of the element (M, aj) e W*> where at 

is the restriction alJft, which is uniquelly determined by u. The side of an element 
(M, <X|) is, on the contrary, determined by the restriction a(^n and equals the difference 
between the trace and the inner trace. 

In the next sections the possibility of joining together of two functions is in
vestigated, which are defined on the neighbouring domains. We can join together 
two such functions, if they have the same trace on the common part of the boundary. 
The function (M, af) e W\ can be extended to the greater domain, if the trace of this 
function is absolutely continuous with respect to Lebesgue measure on dQ. By 
suitable extentions it is possible to define the regularisation of element (M, a*) e W\ 
and by this regularisations we are able to prove that for each (M, a,) e W\ there 
exists a sequence of the functions un e W^(Q) such that 

(w„, unXl9..., unXN) -* (M, ctl9..., a*) 

and moreover lim ||wn||Wr1i = ||(M, a , ) ! ^ . . 
n-»oo 

In §2. the space W^H) is defined as the space of functions, the (k — l)-th derivatives 
of which belong to the space W*. The analogic properties are investigated there as 
was done for the space W*9 but the situation is more complicated, namely for exten
sions of elements from JV£. 

The reason for investigation of these spaces is following. We can consider a func
tional of the type of minimal surface 

I(M, Q) = J f(x, M, uxi9..., uXN) dx , Me W\(Q). 

Let f(x9 u9p) be a continuous and nonnegative function, which is convex in the 
variable p = (pl9..., pN) and which satisfied the condition 

Ci\p\ - c2 = / (* , M, p) ^ c3|p| + c4 ; Vx, M, p ; cl9..., c4 = 0 . 

We will look for minimum of this functional on the set of all M e W\9 u -= u' on dQ; 
M' e Lt(dQ) fixed. There is one great difficulty, we cannot use direct methods of the 
calculus of variations because the space W\ does not have a weakly compact ball. 
But the space W* has a weakly compact ball and we can extend the function J to the 
whole space W\. Theorem 6 on weak compactness of the ball in W\ together with 
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Theorem 2 that the trace /? of element (w, a,) e W\ depends weakly continuously 
on (u9 af) are then basic for using of the direct method. Also futher properties of the 
space W* are very useful for investigation of this variational problem. By this 
method we obtain weak solution in W\ for each boundary condition uf e Lt(dQ) and 
for domains Q, which does not satisfy the usual condition of convexity. 

We can also consider the analogic variational problem with derivatives to the fc-th 
order. On this problem there were no results till now. These variational problems 
will be investigated in next papers. 

Finally, the author wishes to thank dr. J. KACLTR for his kindness in reading the 
whole text and for valuable suggestions and particulary wishes to thank Professor 
J. NECAS for the leading of his aspiranture and for helpful conversations during the 
course of this work. 

Notation 

Q — a bounded domain in EN with its boundary dQ belonging to C1 class, 
v = (v-,..., vN) — exterior normal to Q9 

c — a constant which depends only on Q9 

C(E) — the space of all continuous functions defined on the compact E c EN9 

W^Q) — Sobolev's space of functions possessing distributive derivatives up to the 
.fc-th order in LP(Q)9 

|a| — total variation of the measure a, 
LM(E) — the Banach space of all Borel measures (<r-additive, general measures) 

defined on the Borel set E c EN and satisfying ||a||x,M(£) = |a[ (E) < oo, 
|£| — N-dimensional Lebesgue measure of the measurable set E c JB̂ , 
dS — (N — l)-dimensional Lebesgue measure, 
jE <p da — Riemann-Stieltjes's integral, where E is a compact in EN9 (p e C(E) and 

aeLM(£), 
ti|£, aj£ — the restriction respectively of a function u and of a measure a on the 

Borel set E c EN9 

Kk(x) — N-dimensional mollifier. 

Important agreement 

Each absolutely continuous measure (with respect to the N-dimensional Lebesgue 
measure) will be identified with its density with respect to Lebesgue measure, i.e., 
a € LJ[D) will be identified with the function u e Lt(Q) such that 

iydcc = 
Jn Ji 

cpu dx , Ҷq> є C(й) . 
n 
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Each absolutely continuous measure (i e LJ(dQ) will be identified with its density 
with respect to the measure dS on dQ i.e. with such function u' e Lt(dQ) that 

[ ę dß = Г ęu' dS, Vę Є C(õQ) . 
JЄQ J ЄO 

This identification will be used throughout the whole paper. 

§1. SPACE WJ, 

1. Definition of spaces Wx and M1 

First of all let us recall some well-known notions and theorems (see [1]). 
Let £ be a compact in EN. A sequence an e Lj^E), n = 1, 2,... is said to be w*-

convergent to a e L^E), if 

ę daя -*• \ ф da , V<p є C(£) . 

This convergence will be denoted by --. 
The following assertions hold (see [1]): 

1) an -*- a in the space L^E) iff 
(i) there exists k > 0 such that ||an||L/4(£) S k, n = 1, 2, . . . 

00 SE 9 da„ -• J£ <p da for each <peX,X being a dense subset of C(£). 
2) If an e LJ[E), n = 1, 2, . . . are from a ball in L^L), then there exists a subsequence 

{a,*}, which is w *-convergent in LJ(E). 
3) If a, - a in LM(£), then ||O.||LM(JB) =" lim ||an||ME). 

n-»ao 

4) The space LM(£) is the dual space to C(E) with respect to the duality a(<p) = 
= !E <P da, a e L^-E), <p 6 C(£). 

Definition 1. ^(.(2) is the space of all (N + l)-tuples (a0,..., a,y)e [L.,(3)]*+1 

for which a sequence un e W\(Q), n = 1,2,... exists such that 

(0 wB -- a0 , wnX| - af 

in the space Ljfo), i = 1,...,N, where «nJCf = dujdxi and the functions i/n, ii.̂  are 
identified with the absolute continuous measures according to the agreement. 
Wl(fi) is the space of all (a0,..., as)e[Lp(B)Y+1 for w h i c h t h e r e e x i s t s une 
e W\(Q), n = 1, 2, . . . satisfying (1). 

If the w*-convergence by components is introduced in the space [LM(£)]*+if 

then W\ is the "closure" of W\ with respect to the w*-convergence and W\ is the 
„closure" of W\. At the same time, W\ is imbedded canonically into \LJ$)Y*X by: 
u e W\ -> (u, uXl,..., uxs) e [L„(S)f+1. 
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, І - 1 , . . . , І V . 

Theorem 1. Suppose (a 0 , . . . , aN) e Wl(G). Then 

(0 a. |G = ^ao/^x„ i = 1 , . . . ,N in the sense of distributions, 

(ii) the measure a 0 is absolutely continuous with respect to the Lebesgue measure. 

Let us denote its density by ue Li(Q), 
(jii) there exists a unique measure p eLjdQ) such that Green's theorem holds: 

(2) | q>Vi dp = | uq>Xi dx + \ q> d a f , V<p e CX(U) 
Jen J A J a 

The measures cct are called the derivatives of the element (u, a,) and the measure p 
is called the trace of the element (w,af). Analogously to the space W\(Q), the elements 
of Wl(H) are called functions. 

Proof. According to the definition of W*(D) there exists a sequence un e W[(Q)f 

n = 1, 2, . . . such that (1) is satisfied. Let un e Lx(dQ) denote the traces of un. Con
sidering [2], we obtain that the functions un satisfy Green's theorem 

(3) J u'/pv% dS = J unXiq> dx + J uncpXt dx , V<p e CHD) . 
JdQ JQ JQ 

If we substitute functions from C$>(Q) for q> in (3), we obtain with respect to (1) 

<?*. da0 = - <pdaf, i = 1, . . . ,N 
Ja Ja 

and assertion (i) is proved. 

With regard to (1), there exists a constant fc > 0 such that 

(4) K l i f i twSfc , n = 1,2,... 

Theorems of imbeddings imply 

(5) K | L I W S c k , \\un\\LqW^ck, 1 / ^ 1 - 1 / N , n = l , 2 , . . . 

There exists a suitable subsequence {u„k}, a measure p e LjdQ) and u e L€(0) such 
that 

(6) < - j 8 in L,(dQ), unk-±u in Lq(Q). 

Due to (1) u^ -v a0 in LM(S) and if we pass to the limit with fc -> oo we obtain 

I ę da0 = j (pu dx , Vф є C(ü) 
JЂ Jл 

Thus, assertion (ii) is proved. 

Now, we pass to the limit in Green's theorem (3) for unk. With regard to (6) we 
obtain Green's theorem for (u, <xu ..., uN). It can be seen from (2) that the measure p 

is independent of the sequence {un}. 
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The norm in the space W^fi) is defined by 
N 

||(M, al9 ..., *N)\\wHHB) = Hln-(fl) + I lla«ll«5) • 
1 = 1 

In the space W^D) we introduce w*-convergence by components, i.e. (un9 anj) -* 
-* (M, at) in ^ ( 0 ) iff un -> M, ani -* a, in 1^(0), i = 1,..., N. Now, we shall describe 
the functions of W^(D) explicitely using Green's theorem (2) for the purpose. 

Definition 2. M\Q) is the space of all (N + 2)-tuples (M, al9..., aN9 0) for which 

(i) M eLX(Q)9 al9 ...9aNeLM(S), p eL,(ffl2), 
(ii) (2) holds for each <p e C\Q). 

Let us denote MX(Q) = {(M, ai9 p) e M^fi); p = 0}. The norm in the space MX(H) 
is defined by 

N 

||(w, *t9 P)IMHO) = IMkw + IJhlk(B) • 

From Theorem 2 it will be clear that ||)S||LM(«O) c a n be omitted in the formula for the 
norm it M1. It can be seen from (2) that the measure p is uniquely determined by the 
(1V + l)-tuple (M, a,). Therefore (u9 af) will be written sometimes instead of (M, ai9 P). 
In this sense Wl(H) is a subset of M\D) and Wl(Q) <= MX(U). One of the aims of the 
next section is to prove equalities in these inclusions. 

Similarly, in view of (2), the measures al9 ...,aN are uniquely determined by the 
pair (M, p). Thus (u9 p) can be written instead of (u, ai9 /?). The function u uniquely 
determines the measures at in Q9 i.e. the measures a^Q. Namely, a ^ are distribution 
derivatives of u. 

The space JVJ(;Q) is canonically imbedded into W\(H) by: 

ueW\ -*(u9uXl9...9uXN)eWl 

in the sense of our agreement. We introduce w*-convergence in the space M1(£T) as 
the w*-convergence of the first (N + 1) components. 

2. Decomposition of the unit 

Definition 3. By the product of \j/ e C(E) (E c EN being a compact) and of a measure 
a G LJ(E) we understand the measure a = \//. a e Lj^E) defined by 

(7) f q> da = | ^ da, V<p e C(E). 
JE JE 

By the product of ij/ e C\ST) and (u, ai9 p) e M^ST) we understand a function 
(u, ai9 ff) = \l/(u9 ai9 P) for which u = uif/, at = u\l/X( + \j/ai9 /? = il/^p with respect 
to (7) and to our agreement. 
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It can be seen easily that i//(u9 <xt, ft) satisfies (2) and hence it belongs to Ml(Q). At 
the same time there is 

(8) \fy(u, «u P)U'ia>£ (N + 0 Ikilcw • |(«. «i. flll-w • 

Suppose the domain Q to be of the class C1. There exists a finite number of open 
cubes Kr in EN9 r = 1,..., R covering the boundary dQ. Let us denote Qr = Kr n. (2. 

R 

There exists a domain Q09 £i0 c: Q such that Q = \J Qr. 
r = 0 

For each r ^ l a linear orthogonal transformation can be carried out such that Kr 

is of the form Kr = {x e 2^; 0 < xt < b} in the new variables, where b is the edge 
of the cube Kr. At the same time a part of boundary dQ n Kr can be described by 
xN = fl(xB,..., xN_ t) where a is a function of the class C1. The cubes Kr and the trans
formations can be chosen in such manner that 

(9) vN £ c> 0 

on 3.Q n Xr in the new variables. 
R 

For the decompsition Q = \J Qr there exist functions yr e C^fi) such that yr ^ 0, 
.R r = 0 

supp yrczQru dQ, £ yr = 1 on ft Suppose (w, a,, J?) e MX(S). Then (M, a„ j?) = 
R r = 0 

= Z ("r» ari. Pr) where 
r-=0 ' 

(10) («„ ari, A) = yr(«, a„ fi) e M\D) . 

Due to (8) we obtain 

||(«r. «,„ /7P)(|Mi(a) <. cj(«, a„ ^)[|M'(O) , 

( H ) ll(«. ««• /*)IU'CO) ^ c I ||(«-> «„-. /*r)||M.(S, • 
r-=0 

At the same time we obtain 

(12) ||/MlMao)^|/*lk(*°>' MwmZ'iWwm-
r = 0 

The function (ur9 <xrl9 fir) belongs after the application of a linear orthogonal transfor
mation again to Ml(H) and (11), (12) are satisfied. 

3. The direct and inverse theorems on imbedding into the traces 

First of all, we must regularise the measure 0 e Lj(dQ). Let us set for xeEN 

(13) R\x) =-t—eWW-^, \x\<h, 
xh 

R\x) - 0 , |x| fc A . 
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The constant x is chosen so that 

Rh(xi9..., X*-!, 0)dx t, ..., dxN„t = 1 Í. ' EN-I 

holds. 
Suppose cp e C(dQ), p e LJ(dQ). Let us set 

(14) U*)= f Rtyc-y)dS(y)9 
J en 

(15) <p„(x) = f ^ f x - ^ ^ d S ^ ) , 
Jan 

(16) u'h(x)= f H * ( x - y ) d ^ ) . 
J an 

Now, we prove a lemma which will turn out very useful. 

Lemma 1. (i) There exists a function c(h), h > 0 depending only on the domain Q 
and satisfying 

max |^A(x) - 1| = c(h), lim c(h) = 0, 
JC60.G fc-+0 

(ii) <ph-* q> in C(dQ)9 

(iii) uh-* p in LjdQ) and at the same time 

||w*||iLi(a.Q) - * | | ^ | | L M ( W J ) -

Proof. First we prove that lim min \//h }z 1. Easily we find out that ^A is continuous 
h-*0 dQ 

on dQ. For each h > 0 there exists xA e dQ such that min \//h = «AA(xA). Let us suppose, 
en 

on the contrary, that lim il/h(xh) < 1. Thus there exist hn -> 0 and e0 > 0 such that 
A-O 

xAn -• x p e 3 Q , ^ A n (x A n ) = 1 - e0 , n = 1, 2, . . . 

There exists a cube K and a suitable linear orthogonal transformation such that 
dQ n K is described in new variables by xN = a(x'), x' = (x l f . . . , x^^j) and at the 
same time 

(17) x 0 e 3 f l n K , ax<(xo) = 0, i = l , . . . , N - l . 

For large n there is 

* J* J = f **« - / . -<0 - «(/)) V(- + |v«(/)|2) d/. 
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Applying the substitution y' - x'^ = hn(z' -^ X'J w e obtain 

(18) * J * J = f * '(- ' - < , - ; [«(xi„ + fc„(z' - xij) - a(xU] • 

. (i + |va(x;n + hjLz>- xkn)\>y'2 dz>. 

For z' fixed there holds with regard to (17) and to the fact that a e C1 

I [ a K + ftII(2'-^))-a(xU] = 

= f " x > » K + -*•(-' - x'J) (z - < ( ) d* -> 0 . 
J o i = : 1 n-+oo 

Now, let n increase to infinity in the integral (18). Thus we obtain lim ^hn(xhn) = 
n-">oo 

= JEH-! Rl(z' ~ *o> 0) dz' = 1 which is a contradiction. 
Similarly we prove the inverse inequality lim max ^ ^ 1- We can set c(h) = 

h-*o dn 
= max |^h — l| and thus assertion (i) is proved. 

dn 

\<ph(x) - <p(x)\ = I f Rh(x - y) [<p(y) - <*>(*)] dS(y) + 
\Jdn 

+ I" f R"(x - y) dS(y) - l l <p(x)\ = 

^(l + c(h))8(h)+\\<p\\C(mc(h) 

where 5(h) is the modul of continuity for q>. Hence we conclude (ii). 

f u'h<p dS = f f 2?"(x - y) <p(x) dp(y) dS(x) = 
Jdn J dnj dn 

= f (P»(y)<iP(y)-> [ <(>(y)W(y)-
jdn fc-oJao 

This fact implies uh -*• /? and hence J|j?||LM<afl) -§ lim ||wi||x.1<a.o>' 

IKIU«> = f Kl ^ = f f «*(x - j» d|/?| (y) dS(x) = 
Jan jdnJeP 

= f ^(y)d|^|(y) = ( l + c ( h ) ) W M M ) -
Jao 

Lemma 1 is proved. 
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Theorem 2. (i) The imbedding M\Q) -> LjfiQ) is continuous, i.e. for each 
(u, a„ P) e M\n) there is 

(ii) The imbedding Ml(D) -> LjfiQ) is ̂ -continuous, i.e. (un, <xni, Pn) -* (u, a,, p) 
in Ml(fS) implies that 

Pn-P in L,(dQ). 

(iii) For each measure p e LjfiQ) there exists a function (u, a() e W*(@) such that P 
is the trace of (u, a,) and 

IK". a.)l"V(fl) = cMw*a> • 
Proof. Suppose (u, ai9 j8) e Ml(Q). We conclude from the section on decomposi

tion of the unit that it suffices to prove assertion (i) for a domain of the form Q = Qr9 

r = 1,..., JR and for a function (u, ai} P) = (ur, ari, pr) whose support is in Qr u 
u (d:Q n Xr). Let us set 

B = {cpe C\dQ n K,); |M|c<aftnKr) = 1} • 

An arbitrary <peB will be extended on Qr as a constant on the lines parallel to the 
coordinate axis xN (in the new variables). For such q> there holds 

(pvNdp=\ <pXNu dx + I q> d<xN = q> d<xN . 
JdQnKr JQr J Or J Or 

According to (9) there holds vN ^ c > 0 and hence we conclude 

• Ud/Já «!(«,«.) ||iM(«Ont) = SUP I? dP š C|H«, «JÜMHä.) 
(peB 

Thus, assertion (i) is proved. 
Suppose (un, ani, /?„) -* (u, ai9 /J) in M 1 ^ ) . Let us take (/> e C^S) and substitute 

it into (2). 

q>Vidpn = u ^ . d x + \j>docni -> u<pXidx + \j> da,. = <pvfdy?. 
J aft J ft J ft n-*°°Jfl J ft J aa 

The linear hull of the set of functions possessing the form <p\ds>vh <p e CX(Q), i = 
= 1, ...,N is a dense set in C(d.G). It is sufficient to prove that the norms of pn9 

n = 1, 2, . . . are bounded. (uB, ani) -* (u, a4) implies that ||(un, a„,)||j»fi(fl) are bounded 
and thus assertion (ii) will be proved by using assertion (i). 

Suppose P G LjfiQ) and u'h e Lx(dQ) is a function from (16). According to Gagliar-
do's work [3] there exist functions uh e W\(Q), h > 0 such that u'h is the trace of uh 

and the estimate 

(19) k l k ' W = ^ilwwi) 
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is satisfied. Considering (iii) from Lemma 1 we conclude 

(20) * W k w -? <#lk<*» 
for small h > 0. 

There exists a suitable subsequence {uhn} and (w, a,.) e Wl(B) such that uhn -* (w, af) 
h„-*0 n-*ao 

in W^i(S). By limiting process in Green's theorem for uhn we conclude that (w, a<) 
possesses the trace /? and with respect to (20) 

||(">«i)flwV(«) = Urn I K I k - w -S c\\p\\L^dQ) 
II-+CO 

holds. Theorem 2 is proved. 
Frorri the next theorem it will be seen that the trace p of a function (u, a,, j?) e 

6 M ^ S ) is independent of the function u itself. 

Theorem 3. Let us set for u e LX(Q) 

(21) d[u] = sup | f uq>Xi dx ; q> e C\B), | |p(|C ( 5 ) = 1 , i = 1, ..., A T | . 

A pair (u, p) is from M\B) iff fie Lj^dQ), u e Lt(Q) and d[u] < oo. Moreover 

(22) |(«, fi)lMHS} = \\u\\LiW + N(d[W] + [ j B | M W ) , 

(23) d[u-]^c\\(u9P)\\Ml^ 

hold. These facts imply in particular that (0, /?) is in Ml(B) for an arbitrary 
PeLjldQ). 

Proof. We shall construct measures ateLJ(B) so that (u9 (xi9 P) e Ml(B). For 
<p e Cl(B) we set 

jt)da f = <pvťdj8 -
Jí. J díí J Q 

uq>Xidx> i = 1, ...,N. 

The measure a, is defined by this formula as a functional on CX(S). In order to prove 
that oti is a measure, we must prove 

sup j j \ > da, ; 9 e Cl(B) , ||<p||C(37) = 11 

For <p e C\B)9 |H|c(U) -S 1 there holds 

< 00 

|j>* IІMвO) + d[u] . 
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Hence the estimate (22) follows. On the contrary, let us suppose (M, a„ 0) e Ml(D). 
Then for <p e CX(Q), \q>\ ^ 1 on Q there is 

If I If f 
I u<pXi dx = I cpvt dp — I <p da,- ^ 

\jn I I Jan J a 
= ||0||.M«» + h l k w = C||(M, aOflM^w < oo . 

4. The equality JV* = M1 

Let us set 

(24) Kh(x) = - i - e Ma/<Ma-*> , | x | < A , 

K*(x) = 0, |x| = A 

where x is a constant satisfying J*£N K*(x) dx = 1. Let us denote 

(25) Sh = {x e Q; dist (x, dQ) < h] . 

Lemma 2. Le/ Ms suppose (u, af, /?) e M^-O), i.e. /? = 0. T/ien /or each A > 0 
with A < c there holds 

(26) f HdxScfc|I(ii,al)||Mt(5). 
Jsh 

Proof. We decompose the function (M, af, 0) using the decomposition of the unit 
R 

("> af) = £ (Mr, ari). 
r = 0 

From Section 2 it is clear that it suffices to prove Lemma 2 in the case when Q = 
= Qr, (M, af) = (Mr, ari), r = 1,..., R and (M, a,) has its support in Qr u (dQ n Xr). 

First of all we prove the following assertion: 

(27) neL1(Sjb)-->f |M|dx = s u p | f M^ dx ; feC?(Sh), \ty\\c(Sh) g l | . 

Let e be a positive number. Then there exists Q' c Sh9 Si' c: Sh such that fSh-Q> \u\ dx < e. 
Let us set 

\jj = sign M on fi', \j/ = 0 on EN — Q'. 

Obviously Jfl, |M| dx = J^, M^ dx holds. Let us set for k > 0 

(28) * * ( * ) - f J ^ - J O ^ G O ^ -
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For small K function i//k belongs to <Co(Sh). Then \//k -* i// a.e. on Q' and 

|k||c(Sh) = 1 , # * d x "M # dx . 
JiT *-*°J-T 

For small fc > 0 there holds 

u\l/k dx = I u\//k dx — e ^ I wi/' dx — 2e = 
JSH Jfl' Jfl' 

= | \u\ dx - 2e ^ J |ti| dx - 3e. 
J.O' J-Jh 

Now, we can prove Lemma 2. Let us take \j/ e C1(S) with ^ = 0 on fi - Sfc and 
(Mica?) ^ 1. Let us denote 

<p(x',xN)= iKx',t)dt. 

Then fl^lca?) 1= ch holds and with respect to (2) we obtain 

# dx = u<pXN dx =- - <p d<*H ^ ch[|(w, a,)||Mi(n). 
Jsh Jsh Jsh 

Theorem 4. (i) For each (u, a,) e M !(fi) fhere exisf w„ e W\(Q), u = 1, 2,... such 
that 

(29) «.-(«,«,) fa Ml(Q), 

(30) k k « w i ^ . « i ) l | M i w . 

(ii) For each (u, <xt) e Ml(fi) there exist u„eW\ such that (29) and (30) hold. 
This fact imply the equalities M^fi) = W*(B) and M\U) = ^ ( S ) . 

Proof. We prove assertion (ii). Let us denote 

(31) Qh = {x G fl; dist (x, dQ) > h} = Q -Sh. 

There exist functions i//h e C^(f2), h > 0 (h being small) with properties 

(32) 0 = ^A = 1 on Q, i//h = 1 on G 4 A , ^ = 0 on S3hf 

max|^ t o | | á 7 , ř = 1, . . . , N . 

Let us set 

(33) uj[x) = f K\x - () и(í) й # ) d{ 
Jя 
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Evidently uh belongs to CQ(Q). We prove the inequality 

C34) N k ' w = 4(u> a»)IUi(«). 
The assertion 

f \u„\ dx^H Kh(x - I) |«(«)| ^ ) d? dx j£ f |«| d£ 
Jo J ft J A J a 

holds. With respect to (2) and (w, a,) e A/1 we obtain for x e :Q 

i.ta,fr) = - f X*,(x - i) «(«) ^(£) df = 

= f K*(x - i) «({) *«,(*) <»* - f [K*(x - {) *,#)].,«.(£) di = 
J-Q Jft 

= f K"(x - f) «({) fc,#) df + | \ K * ( X - «?) ^ ) d a # ) . 
Jo Jn 

Further, we use Lemma 2 and assumption (32): 

f |«te,| dx = fdlaj (?) + f |u(?)| |^.,(?)| d? = 
JQ JQ Jfl 

^||(-i,«i)|kt(5, + ^ f Hd{_Sc||(u,atl)||ifi(5) hJs4h 

which proves the estimate (34). 

Easily we find out that uh -* w in L_(;Q). For <p e C((3) we obtain 

f uhcp dx = f f K'(x - {) cp(x) «({) * # ) dc; dx , 
Jn JQJQ 

( K\x-f)<p(x)dx-+<p(e) in Lt(Q) 

and hence 

f | V ( x - < ^ ( x ) d x L ^ ^ a.e.in Q9 i.e. 

I Mfc(x) <p(x) dx -• u(x) (p(x) dx . 
JQ JQ 

Suppose q> e C1(D). O n account o f (2) we have 

uhXicpdx= - uh<pXidx-+ - w<pX|dx-= I <pda f . 
JQ JQ JQ JQ 

The estimate (34) implies the assertion (29) and (ii) is proved. 
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Suppose (M, af, /?) e MX(D). Assertion (iii) from Theorem 2 implies that there exists 
(M1, aj, 0) 6 W^(U). In the proof of the Theorem 2 we found u\ e W\(Q), n = 1, 2, ... 
satisfying with*respect to (20) 

(35) M1-^(M1,aJ,)8) in Wflfi), ||iij !„,.<,„ = C||jB||wwl). 

Function (M2, a2, 0) = (M, a,-,j?) — (M1, a}, /?) belongs to the space Ml(Q). Making 
use of Theorem 2 we obtain the estimate 

(36) | ( « a . « ? )U . (B ,^c | (« ,«0U^-

On account of the assertion (ii) just proved there exist M2 G W}(Q) 

(37) - M2^(M2,a2,0) in M\U), \\u2
n\\Wli = C||(M2, a 2 ) ^ ^ . 

Relations (35), (36), (37) and Theorem 2 yield 

M1 + u\ - (M, a,.) in M\U) 

H + UnlWlHn) ^ C\\(U, 0C^\\MHa) . 

5. Theorems on imbedding and on vv*-compactness of the ball in W1 

Theorems on imbedding W*(H) into Lq(Q) are the same as those for the space 
Wl(Q). 

Theorem 5. Suppose (u, af) e W*(H). Then u e Lq(Q) and the following estimate 
is valid: 

(38) B«||i,(-)-5cI(«»««)k.(5). -q =
 l ~ ^ -

The imbeding W*(£i) -> Lq*(Q) is compact for q* < q, q* ^ 1. 

Proof. According to Theorem 4 there exist un e Wl such that 

«„- (« ,« , ) in Hftfi), KJir1 igC| |(ii ,a l) | | i r | i . . 

On account of the theorem on imbedding W?(Q) -> L4(.G) we obtain 

(39) K l k w = C|(II, ai)||nv(5). 

From the convergence un -* M in LM(D) and from (39) we have u e Lq. It is sufficient 
to choose u„k -* M in Lg(fl) which implies u = M, Mn -* u in L,..(.G). 

Hence 

| « l t , g l i m | | u ( , | | t 4 ^ c | ( U ) a J ) | ^ 
holds. 

Now we prove the compactness of the imbedding of W* into Lq*. Let us suppose 
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that the norms of (t/„, ocni) e W* are bounded. Due to Theorem 2 there exist unk e W? 
such that 

(40) unk jz:£ (un, ccni) in Wf , \\unk\\Wlt ^ c , n, k = 1, 2 , . . . 

For each n there exists a subsequence {unkm}™= t which is convergent in Lq*, and it 
must converge to un e Lq*, because unk jzr^ un in L^Q). For each n there exists an 
index m such that vn = uwkni satisfies 

(41) K-«-llv----

With respect to (40) there exists a subsequence {v,.J converging in Lq* (due to the 
theorem on imbedding w£ -* Lg*). This implies that the subsequence {u„k} is conver
gent in Lq+ regarding (41). 

Theorem 6. The space W*(Q) is closed with respect to the w*-topology as a sub-
space of [Ltl(Q)Y+1 (see Section 1). Any ball in the space W*(Q) is compact in the 
w*-topology. The same assertions hold also for the space W^(D). 

Proof. Firstly, we show that W* is closed with respect to w*-convergence. Suppose 
(un, ocnt) e Wl, (a0 , . . . , a*) e L*+1 and 

(42) un - a0 , a„. -> a, in L^ , i = 1,. . . , N . 

This implies that there exists a constant K > 0 such that 

(43) \\(un,ani)\\Wtil^K. 

From Theorem 5 we conclude that there exists a subsequence {unk} converging to 
u e Lt(Q) in the Lj-norm. Considerating (42) we obtain a0 = u (see our agreement). 
Let us denote by pn the trace of (un, a.,.). With respect to Theorem 2 we have 
||AI||LH(MJ) S cK and hence there exists a subsequence {ftnk} such that pnk~* pe 
eLj^Q). 

By limiting process in Green's theorem for (u„k, <x„ki, Pnk) we obtain Green's 
theorem for (u, <xi9 p) on account of (42). Thus (u, af, P) e Mx(ti) = W*(Q). Banach's 
theorem ([4], section V. 4.) implies that W*(S) is closed in the w*-topology. The 
ball in the space [Lfl(H)Y+i is compact in the w*-topology ([4], addition to V.) and 
this implies the compactness of the ball in W*(S). The assertions on the space W*(D) 
are obtained by Theorem 2. 

In the space WJ(D) the theorem on the equivalence of the norms is valid. 

Theorem 7. Suppose (u, af, P) e W^(0). Then the function 
N 

(44) 10, a., /Olliv = ||/*1MO»> + I . M M - ) 

is an equivalent norm in the space W*(fl)-
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Proof. Inequality \\(u, oc^\\Witi = c\\(u, a,)||^i follows from Theorem 2. On the 
contrary, let us suppose that the inequality 

|(«)aj)I^gc||(u)«j)|^1 

is not valid. The there exist functions (un9 (xni, Pn) e Wj such that 

(45) KM., a„,, fim)lwj == 1, n = l , 2 , . . . , 

(46) l(u„znhPn)\\ws->0, n - o o . 

If we choose a suitable subsequence with regard to Theorems 5 and 6, we can suppose 

(47) , (un9 ani, pn) - (M, a„ p) in W} 

(48) un -• u in Lx . 

From (45) and (46) we conclude that ||Mn||Ll -> 1 and hence, with respect to (48), we 
obtain |juj|£l = 1. Theorem 2 and (47) imply Pn -> p in Lj^dQ). From (46) and (47) 
we have 

hlk =lim \Kl = o. IÎ BMW) = l i m
 I^IIM^) = ° • 

Thus we have 

(49) ||M||Li = l , a . = 0 o n S , i = 1, . . . ,N, j3 = 0 on dQ. 

There exists a function «/r e CQ°(-EN) satisfying j ^ uî  dx 4= 0. Easily we find a function 
q> e C™(EN) such that (pXi = \j/. From Green's theorem we conclude 

I uij/ dx = I uq>Xl dx = I <jov1 d/? — (/> dcct = 0 
Jfl J.Q JdQ JQ 

and hence we obtain a contradiction. 

6. The sides and the inner traces of functions from Wj 

Theorem 8. Suppose (u9 ai9 p) e W*(G). Let us set 

(50) a- = a,, on dQ , a | -=0 on Q, a£ = af — a'f on D . 

Then (u9 a,),(0, a^eW^S) . 

Proof. Let us suppose /? = 0 and let us denote 

(51) u„(x) = {кk(x-y)u(y)ày, xeQ. 
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On the ground of Green's theorem we obtain 

(52) uhXi(x) = fKh(x - y) d«£y), xeQ, i = 1,.. . , N . 
Jft 

Let us consider cp e C(H), extending it continuously on EN. Denote 

(53) il/h(x) = f K\x -y)dyy xedQ, 
J» 

(54) q>h(x) = J Kh(x - y) q>(y) dy , x e FN , 
Jft 

(55) ^,(x) = f KYx - y) 9(3;) dy , x G £ „ . 
J E * 

Evidently ^ -> q> in C(D). From the fact that the domain Q belongs to the class C l 

we obtain (see Remark below) 

(56) ^h-^i in C(dQ). 

By the same method as in the proof of Lemma 1 (ii) we obtain 

(57) <ph -» \q> in C(dQ) . 

Now we prove 

(58) uh - (11, a, + iaj) in Wftfi). 

Evidently wfc -» w in L^O). Making use of (52) and (57) we conclude 

cpuhXi dx = cp(x) Kh(x - y) d a ^ ) dx = 

Xgft 
yell 

= <p„ daf + <pfc da, + (cph - ^fc) da, 
Jan Jft Jsh 

-> i<p da, + \ (p da, = \<p dfo + ia'f) , 
J 0ft J .0 J ft 

because 9fc = 9* on Qh and for small A there is 

\\ (<p - 9i.) da, = c||9||c(ft)> |«i| 0s*) -* 0 . 
IJs* I 

Successively we obtain from (58) 

(u,a, + | a ; ) , (0,±a;), (0,af)€W^ 
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and hence 

(u^i) = (u,^-(0,^eW^. 

In the case j8 =# 0, (u, ai5 J8) G JVM* Theorem 3 implies that there exist measures 
it G Ljfi) such that (u, af, 0) G W*. At the same time a( = af in (2. From the facts 
just proved we conclude (u, af) e W*, where af = af = af in .Q, af = 0 on dQ. 

Remark. We prove assertion (56). The normal v is uniformly continuous on dQ. 
Suppose x0 G dQ. We realise a linear orthogonal transformation of coordinate 
variables such that x0 will be mapped into point 0 and xN = 0 will be tangent hyper-
plane with respect to dQ at the point 0. 

For |x| "small" dQ will be described by xN = a(x'). The normal v can be expressed by 

vrx' a(x')\ . ( -M*') --»,-,(*0 1 \ 
1 ' K )} \(l + |Va(x')|2)1/2 ' (1 + |Va(x')|2)1/2 ' (1 + |Va(x')|2)1/2/ 

On account of the uniform continuity of the normal v we conclude that for "small" |x| 
even |Va(x')| is "small". From 

a(x')=SaXi(tx')x'idt 

we obtain — c|x'| ^ a(x') ^ c|x'| where c is sufficiently "small". 

Definition 4. Suppose (u, af, ft) e W*(H). The measure av G LJ(dQ) satisfying 

(59) av = £ vfluda i e - <P dav = £ ^vf da f , <p G C(5Q) , 
'=- Jan i=zlJdo 

is called the side of the function (u, ai? j8) on 3Q. 
The trace j8° of the function (u, af) G Ŵ 1 from Theorem 8 is called the inner trace 

of the function (u, ai5 ft). It is evident that the measure j8° is uniquely determined by 
the function u. 

If p = j8°, then af = a, must hold, i.e. aj = 0 on dQ and hence av = 0. 

Theorem 9. Suppose (u, af, 0) e W*(D), let f}° be the inner trace of (u, a4, ft) and 
ai? ot'i the measures from (50), i.e. (u, 0Lt, j8°) G W*. 

Then j8 = /?° + av and af = vfav on dQ, i.e. 

I <p daf = <pvf dav , V<p G C(<9(2) , i = 1, ..., JV . 
J en J fl.0 

Proof. On account of Theorem 8, (0, a'4) = (u, a,) - (u, a4) belongs to the space W* 
and hence the function (0, a$ possesses the trace j8 - j8°, i.e. 

(60) f q>Vi d(j8 - j8°) = f <p da, , 9 G C(dQ) 
Jen Jdn 
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holds with respect to (2). We substitute the function <p by cpvt and then we add (60) 
for i = 1,..., N. Thus we obtain 

£ f <pv?d(/?-/,°) = £ f ^ d a , i.e. /?-/J<>=av . 
i = = 1 j 0 . Q i=iJen 

Formula (60) implies 

<?v< dav = q> da f. 
J 8Q JdQ 

Theorem 10. The inner trace of a function from W*(S) is absolutely continuous 
with respect to the Lebesgue area measure dS on 8Q. 

Proof. According to the definition we can suppose 

(u, a„ p°) e Wl , a, = 0 on 5Q , i = l,...,N. 

Fig. 1 

From the Section 2 on the decomposition of the unit it is evident that it is sufficient 
to prove the theorem in the case when Q has the shape as suggested in the figure. 

L = 8Qr\K, Sh= {(x', xN) e Q; a(x') - h < xN < a(x')} . 

Let e > 0 be an arbitrary number. We prove that there exists a S > 0 such that 

(61) <peC\L), ||<p||c(L) = 1, f dS ^ 5 => I f <pdp = e . 
J supp<p IJ L I 

Let h be a positive number such that 

(62) f d | « , | < 8 . 
Jsh 

There exists S > 0 such that 

(63) 
McQ, \M\ <Sb=> f \u\dx < h 

JM 

Suppose that <p satisfied assumptions from (61). We extend <p on Q so that <p € C1(fi)9 

(p = 0 on Q - Sh \(pXN\ ^ c\h on Sh and <p(*', x*) * 0 if (p{x\ a(x')) =- 0. Let us 
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denote 

M = {(x', xN); (x', a(x')) e supp q>, 0 < xN < a(x')} . 

Then \M\ < 5b and with respect to ajv = 0 on Lwe obtain 

cpvN dp = u<pXN dx + \ q> docN . 
JL in in 

Due to (62) and (63) the following estimate holds: 

f <pvNdp\ g ^ f \u\dx+ f d\*N\ = c e . 
|JL I hiM ish 

Since Vjy ̂  c > 0 on L(see (9)), 

If I 1 If I <p dp ^ — II cpvN dp ^ c e 
\h I VJV|JL 

holds. Thus (61) is proved. 
Let M c L be a Borel set with JM dS = 0. There exists an open in L set G =5 M, 

G c Lsuch that jG dS < 5. Then we obtain with respect to (61) 

| l | (Afj = \p\ (G) = sup | f <pdp\ ; <p e C*(L), W|C(L) = 1, supp <p <= c | = e . 

7. Restrictions and extensions of functions from W* 
\ 

Suppose Q' cz Q is a domain of the class C1 with 0' <z Q and (M, ai5 /?) e W^(fi). 
The restriction of this function may be defined in many ways. It depends on the part 
of the side on dQ which we add to the restricted function. 

Let us denote 

(64) u' = ti | iy , a; = a,,^ . 

Theorem 11. Under the above assumptions, the function (ur, atyfrom (64) belongs 

to the space W*(D') and its trace p' e LJ(8Q') is absolutely continuous with respect 
to the measure dS on dQ'. 

Proof. With regard to Theorem 8 w£ can suppose a, = 0 on dQ and hence p = 
= P° GLi(dQ) is the trace of (u, a )̂. From Theorem 4 we conclude that there exist 
uneW*(Q) such that un -* (u, a,) in W£(8), \\un\\WlHQ) ^ c||(w, a,)||irMi(.o). Let us 
denote Q" =-= fi- S \ u" » u\Q\ a, = a, in Q" and aj = 0 on dQ". Kifl"}**i i s 

a bounded sequence and there exists its subsequence such that unk^ -*- (u, a*) in 

30 



W*(D")* Evidently u = u in Q" and af = oct inside of Q". Due to Theorem 8 (u"9 oc'l) e 
e W*(Q"). Let v't be the i-th component of the exterior normal to Q'. The function 
(u"9 oc'l) possesses the trace p° on dQ. Let us denote its trace on 8Q' by p'. jS' is at the 
same time inner trace of (u", oc'l) anc* hence P' e Lx(dQ') according to Theorem 10. 
Now we prove that (u\ oc'h P') e WJ(Q'). 

Green's theorem holds for (u, a,) and (u"9 oc'l) w*th a function cp e Cl(D): 

I <pvt dj?° = I ucpx. dx + I q> doci9 
J dQ JQ JQ 

J <pvf dj8° - J <pv\ &F = J u<pXi dx + J q> da,. 

Subtracting these formulas we obtain Green's theorem for the function (u\ aj, P'). 
By the same method we can prove (u\Q<>9 oc^) e W*(Di") and at the same time the 

trace of this function is the inner trace of the function (u\ aj) e W*(H'). 
If two functions from W* possess the same trace on the common boundary, then 

it is possible to join them together. Suppose Q* •=> fl is a domain of the class C1, 
Q' = Q* - Q. 

Theorem 12. Let (u, af, p) e W*(Q), (u'9 aj) e JV^fl') and suppose that (u\ aj) 
possesses the trace P* on dQ* and P on dQ9 i.e. the same trace as (u, oci9 P) on dQ. 
Let us set 

(65) u* = u on Q , u* = u' on Q', 

a? -= aj on Q, af = a* + a- on dG, af = oc{ on Q* - Q. 

Then (u*9 af, P*) e Wftfl*). 

Proof. It suffices to consider Green's theorem for (u, a4) and for (u\ aj). By 
adding them we obtain Green's theorem for the function (u*, af). 

f 

8. Regularizations of functions from W* 

In order that the mollified functions uh of u satisfy uh ^ u, we must take into 
account the side of the function (u, a,). We proceed in the following way: 

First we extend (u, a4) on a larger domain, so that the side of the extended function 
on dQ is twice the side of (u, af). Then we mollify the extended function. This method 
we can use only for functions possessing the traces from Lt(dQ). A similar result is 
obtained for the functions possessing the trace from LjdQ) by the diagonal method 
and Lemma 1. 

Theorem 13. Suppose (u, oci9 P) e W*(8) and let P be absolutely continuous with 
respect to the measure dS on dQ. Suppose Q* 3 fl is a bounded domain of the 
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class c1. Then there exists (u*, a?, p*) e W*(D*) such that 

(66) u* = u on Q, ocf = oc( on Q , a? = 2ag- on 5.Q . 

For 5mal/ /i >. 0 /et us set 

(67) KA(X) = f K*(x - y) u*(y) dy , x e £ . 
J.O* 

Then uh e W*(Q) and 

(68) uh - (w, a,) m Wj(0) ,* \\uh\\WlHQ) -+ \\(u, a ^ , ^ . 

Proof. Suppose aj are the measures defined by (50). With regard to Theorem 8, 
(0, a-) € W*(fi) and the trace of this function is equal to the side of the function (w, a,), 
i.e. (0, aj, av) e W*(D) on account of Theorem 9. From this fact it follows (uf a, + ah 

p + av) = (u, af, jff) + (0, aj, av) e W*(B). p being absolutely continuous implies 
that av = p - /?° is absolutely continuous (see Theorem 10), i.e. p + av is absolutely 
continuous. With respect to [3] there exists u' e W{(Q* - fi) with the trace p + av 

on dfi (see our agreement). Now, we join together the function u' e W{(Q* - (3) and 
the function (u, at + aj, P + av) e W*(fi) and thus, by means of Theorem 12, we 
define the function («*, af) e W*(B*). The first part of the theorem is proved. Evident
ly uh -• w in L îG). Suppose <p e C(fl*). Let us denote 

Sh == {xeG; dist (x, (9(2) < h} , S* = { x e O * ~ S ; dist (x, 3.0) < h} . 

For y e Q* we set 

cph(y) = f K'(x - j>) cp(x) dx , <ph(y) = f K*(x - y) <p(x) dx . 
Jn Jn* 

With r e g a r d to (57 ) <ph -* £<p ho ld s in C ( 3 0 ) . Easily we find that <ph-» <p in C(£2), 
cphz= iph on Q - Sh a n d 

(69) wtel(*) = f K*(x - y) dz*(y) , x e 0 . 

Then 

f ***,<? dx = JJ K*(x - >,) <p(x) dx da?(y) = 

xci7 
yen* 

X£i7 jrc.O xeD 
yeQ yedQ yeSh* 

= $h da, + (<pA - yh) da, + 2^^ da, + \ <ph da? . 
JA J-sv* Jen Jsh* 



2N|c<ñ«)» d(a.) "• ° 
JSь 

For h -* 0, Jfl <?,, da,- -> Jfl <p daf holds 

(</>*- P/,) da r 

IJsh* 
With respect to (57), J ^ 2<pA daf -> J ^ p da,-, 

If ^ d a f U |M|c<*), f d[a* |-0. 
Ush* Jsh* 

This implies uh -* (u, a,) in W^l(-^) and thus 

\\(^^i)\\w^Hn)^M\\uhlWlHO)' 
h->0 

Now we prove the converse inequality. j ^ |t*A| dx -+ /# |M| dx holds on account of 
the convergence uh -> u in Li(iQ). From (69) we deduce 

f KJ dx = IT Kh(x - y) d\«*(y)\ dx = 
xeQ 
yeQ* 

- f f - f f - f f - -
jceift x e f t jce.Q 

= f d|a,.| + f(2K\x - y) dx d|a,| (y) + f d|«f | . 
J ft J J Jsh* 

jce-O 
yedQ 

The third right-hand side term converges to zero for h -• 0. From (56) we conclude 
j*n K*(x — y) dx -> ̂  uniformly for y e 3(2 and thus the second term converges 
to jdSid\(Xi\. 

Theorem 14. Suppose (w, af, /?) e W^(H). Then there exists a sequence un e W\(Q) 
such that 

u„ - (M, a,) in Wf(Q) and \\un\\Wli(Q) -> |(u, ^Ww^m • 

Proof. As in (50) we set 

a- = a, on dQ, aj = 0 on :Q, â  = ag - aj on (3. 

Then (u, a„ /?°), (0, aj, av) e W^(U) where /?° is the inner trace of the function (u9 a*) 
and av is its side. 

Similarly as in Lemma 1 we set 

u'h(x) = \ RH(x-y)d*y(y), xedQ. 
JdQ 
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Making use of Lemma 1 we obtain 

. « ^ « v in L^dQ) , K | | L I O T ) - W k ( * » • 

From Theorem 9 we conclude aj = v ^ on dQ. Let us define 0Lhi e LJ^D) by 

(70) j q> d<x'hi = V̂jMj; d S , q> G C(d.G); a J ^ O in Q. 
J W3 J 00 

We find easily that (0, aAi, uh) e W^(S) and 

(71) (0,aA i)-*(0,a;) in Wftfi). 

We prove that 

(72) ||(0, «; .) | |-v-> 1(0, a O l ^ , . 

f d|«i«| - f h | • K | dS g f f |v,(x)| R*(x - y) d|a,| (y) dS(x) £ 
JoQ JdQ J J 

xєõQ 
yєÕQ 

sf (|^0)d|«.|(y)-f N d H - H 
J ČÍÍ J a» 

||LM(fl.Q) ' 
J 0O J dQ 

We used 

(73) | H = tyr| . |a| , ^ e C(dfl) , a € L„(50) 

in our reasoning. 

The converse inequality can be obtained from (71). Let us set 

(74) (u9 aAi, A) = (ii, a, + aAi, j8° + t/A) e R^fi) 

(see our agreement), where ph is absolutely continuous with respect to dS. Theorem 13 
implies the existence of u^ e Wi(Q)9 k > 0 such that 

(75) «AA - (w, aAi) in J*;1 , \\uhk\\Wli -* \\(u, cchi)\\WfAi. 
*-*o »->o 

From (71), (72) and (74) we conclude 

(76) (u9 aAI) - (u9 a,) in W* , ||(u, cchi)\\Wtil -> |j(u, oc^\\Wu,. 

Suppose {<pJ}?*i is a dense subset in the space [C(-3)]N+1. For cp = (<p0,..., cp^e 
e C ^ 1 , (M, a j e ^ ( f i ) we define 

(77) <(w, a,), <p> = M<p0 dx + £ <?<<**< • 
Jfl i ,BElJ« 
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For each positive integer n, there exists hn > 0 such that 

|<(«. «*»,). <P}> ~ <(«. *.). 9J> | < - for j = 1,.... n 
n 

lll(«.«*..)lk«- l(«>«»)I»vl<--
n 

To this h„ there exists according to (75) such kn ^ 0 that 

\<Uhnk„ <Pj> - <(«, «*,.<), <^>| < - for f = 1, . . . , „ , 
n 

WKdws ~ ||(«, *w)8rM-| < - • 
n 

Hence we deduce RHMJI--.. ->• |(«, a.)|k" 
n-+oo 

<"*„*„. <PJ> -* <(". «<). ^ > f o r j = 1, 2 , . . . 

Thus, we obtain uhnkn -> (w, a,) in W*(£T). The theorem is proved. 
* - » 0 0 

§. 2. SPACE W* 

9. Definition and fundamental properties of W* 

Let us denote em -= (0, . . . , 0 ,1 ,0 , . . . , 0) the N-dimensional vector with the unit in 
the m-th place. Let x be the number of multiindices i with |i| = k. 

Definition5. W*(ST) is the space of all (x + l)-tuples (n, aj),i,=jk such that us 
eW\-l(Q), a, eLM(S) and 

(78) (D'M, « , + . , , . . . , « , + J e 1^(0) for all |i| = k - 1 . 

The norm is defined by 

ll(w> «i)!rM*w = Mwi*-*m + I KLcD) -
1*1=* 

The w*-convergence in the space W£ is defined as the w*-convergence in the space 
WX"1 for the first component and as the w*-convergence in Ljffl for the other com
ponents. The space W*(Q) can be canonically imbedded into the space Wjftfl) by the 
rule (in the sense of our agreement) 

u e wfta) -> (ii, D'H),,,.* e wftfl). 

The space WRH) is defined in the following way: (u, at) e W^(S)iS u e W\~l(Q) and 
for all \i\ == k - 1 the function from (78) belongs to the space W^(S). 
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Suppose (u, a,) e W^(Q). The same decomposition as in Theorem 8 can be realized. 
For |i| = fclet us set 

(79) aj -= a, on dQ , a- = 0 on Q , a, = a, - a | o n B . 

Regarding Theorem 8 we find that (u, a,), (0, a;) e W*(H). 

Definition 6. The measure av e Lj^dQ) defined by 
N 

(80) a v = J] v,....vifca *,+...+«, on 5Q 
»i i k = l 

is called the side of the function (u, a,) e W*(Q). 
The formula for av corresponds to the formula for the fc-th derivative with respect 

to the normal v for the functions from W*. An analogical theorem to Theorem 9 is 
valid. 

Theorem 15. If (u, a,) e W*(U), then 

a, = vl1 ... vjf av, i = (il9..., iN) on dQ 

forall\i\ = k. 

Proof. Let us rewrite the assertion of the theorem into a more suitable form 

<*.it + ...+*ik = v, t... vfcav, h, . . . , ik = l,...,N. 

For k -= 1, the assertion is proved in Theorem 9. With respect to the Definition 5 we 
have 

.«!„+ ... + «!. (Z)e-+"+e-«(aeji+...+íí(t)f1 = 16W;(í2). 

The side of this function is equal to £ v4lae. +...+e • 
i! = i n '" ik 

From Theorem 9 we obtain 
N 

(81) «.,.+...+.,„ = v«i Z vJ-Si+«-a
+»-+%' h = *' ••*,iV-

11 = 1 

The same assertion is valid for the index i2 

N 

(82) % + ...+*,, = Vh Z VI2 *#,1+#ya+.l3+...+*,fc' '2 = 1 , . . . -V , 

If we substitute (82) into (81), then 

iV 

% + ... + .,„ = V « i V ^ i Z a i
V 1 1 V 1 2 S l

 + 'I2 + ^-3 + -» + ^ -
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After k steps we obtain 
N 

% + ... + «lk = vh ••• vik I ^ — v A % + - . .+^ = v<- — vfcav • 

Analogous theorems on imbedding are valid for W*(l$) as in the case of w£. 

The imbedding W£(Q) r+ W\~l(Q), \\q = 1 - l/N is continuous and the imbed
ding W^(H) -+• W*~l(Q),''q* < q is compact. This imbeddings are defined by the rule 
(M, ccr) -> M. 

Proof. The morms flD^!^, |I| = k — 1 can be estimated from Theorem 5 and the 
norms ||Dfw||L , |/| _% k — 2 can be estimated by means of the imbedding W\~l -> 
- w\~2. ' 

Compactness can be proved similarly. 

Theorems on imbedding of WftD) into W$(Q), Ce,a(S), e <L k - 2, are valid in the 
same form as for the space W^(Q). This is a consequence of the transitivity of imbed-
dings, which makes it possible to obtain them from the imbedding W* -> JVJ"1. 
Y, ||ai||LM(i5) -s a n equivalent norm in the space W*(Q). 

\i\=k 

Proof. Using Theorem 7 we can estimate the norms ||Z>,w||L.1, |i| = k — 1 and then 
we apply the theorem on equivalent norms in the space W\'x. 

If (M, a£) e W%(n), then (uliln a^,) e W£(i3'), where Qf c Q. This assertion follows 
immediately from Theorem 11 and from the definition of the space W*. 

Let us denote [LM(-G)]K/ = {{aj; |z| = k, a, e LM(i3)}. The space W^(H) can be 
canonically imbedded into [LM(-3)]K by: the rule (M, at) -» {aJiii^k- where a, are the 
same for |i| = k and af = Dlu (in sense of our agreement) for jz| = k — 1. The next 
theorem is valuable in applications. 

Theorem 16. The space W*(H) is closed with respect to the w*-topology as a sub-

space of [Lfl(n)~*'. 

The ball in the space W^(ST) is compact with respect to the w*-topology. 

The same assertion is true for W^(H). 

Proof. Let (M„, an.) -* {adm^u (w*-convergence) in [Lu(£i)~* . By the same method 
as in the proof of Theorem 6 we find from the theorems on imbedding that u = 
= a 0 e W\~X(Q) and that a^GL^O), |i| g fc — 1 (in the sense of our agreement). 
Analogously as in the proof of Theorem 1 we can prove that a, = D*u, \i\ 5* k — 1 
in the sense of distributions. It remains to prove that (JD'M, a i+J*-.-! e W* for |i| = 
= k — 1. However, this is a consequence of the Theorem 6 and of the fact that 

( I > ^ ^ i + J C . 1 - ( l ) ^ i « l + j ; . 1 in Wftfi). 

The rest of the proof is the same as that of Theorem 6. 
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Now we prove that W^ is closed in [LM(&)]K' with respect to the w*-convergence. 
Suppose (u„, a,,,) -* {<Xj}|i|£* and (uB, aBl) e W\. The first part of the proof implies 
Wl-ls* = (a-'ai) e "* i*1 ̂ e s e n s e °f canonical imbedding. Owing to the theorem 
on imbedding, there exists a subsequence {unk} converging to u in the norm of the 
space W\~l and hence u e W^1. For \i\ = k — 1 we have 

( ^ « M + e J - ( ^ M i + J in H?. 

From the fact (£>'MM, aB i+em)e tfj? and from Theorem 2 we conclude (D'w, af+e ) e 

The rest of the proof is the same as that of Theorem 6. 

10. Regularisation of functions from W* 

We use the same method as that in Section 8. In order to prove the existence of the 
extension similar to the extension (i**, af) from Theorem 13, we prove first of all 
two lemmas. We shall assume that the boundary dQ is sufficiently smooth, so that 
we were able to transform suitably pieces of the boundary in the proofs of lemmas 3 
and 4. It suffices to assume that dQ is of the class C*+1. 

Lemma 3. Suppose(u, â ) e Wftp). If<xi{dn = 0, \i\ = k then there exists a domain 
Q* 3 ii and a function (ti*, af) e Wf(Q*) such that 

u* = u on Q, af = at on Si. 

Proof. First we prove the assertion in the case of the cube. Let us denote 

K = {x; 0 < xt < b, i = 1, ...,1V - 1, -fc < xN < 0} , 

Kt = {x; 0 < x( < b, i = 1, ...,N - 1, 0 < xN < b}, 

L = {x; 0 < xt < b9 i = 1,..., N - 1, x„ = 0} . 

Let us assume that the support of (w, a,) e Wfcfi) is a subset of K u L. We extend the 
function (u, 0Lt) by zero on {x; xN £ 0}. We use the method of Nikolsky - see [2]. 
Let Xx ... kk be real numbers such that 

(83) Z ^ - m y - 1 for ; = 0, ...,1V - 1 . 
m-el 

Let us define the function u e W^1^^ by the rule 

k 

(84) ,̂%) = l W - - % ) . 
m--l 
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Then for . = (i, .- **) I'l ^ * - - w e o b t a i n 

* 
(85) D'u(x', xN) = I Am( - m)'v D'u(x', - mxw) . 

U 1 — 1 

Let us define the measures S, 6 L„(£.) |i| = fc by formula 

(86) f_ <?(*', x„) d&(x', xN) = t*Ji ~ m)''K ^ J _* (*'. - ^ ) da<(*'. **) ' 

Fig.2 

If | j | = k - 1 then there exists un e W?(K) such that 

ii.-fD'ii « , 4 . , in %'(£) 

Now, let us define un e W}(Kt) by formula 

(87) ..„(x', xN) = £ An( - »»)'* "»(*', ~ mxN) , (x\ XN) є Kt . 
m = l 

By direct computation we find that 

um^(D%S^ml in WftRJ. 

From (84) we deduce that u e Wx~l(K,) and hence (u, a,) e W*(Ki). According to 
(83) M„(X', 0) = MB(X', 0) is valid on Lin the sense of traces. Owing to Theorem 2 the 
functions (Dlu, <*i+ej) and (Dlu, &i+ej) possess the same trace on L. Thus Theorem 12 
enables us to fasten these functions together. Let us set M* = u on K, M* = u on Kt, 
af = at on K, af = a, on Kl9 af = af + af on L, |i| = K. 

We obtain u* eW\~%(Ku Lv Kt) from (83). Thus we conclude (M*, af )e 

e Ŵ J(K u Kj). From formula (86) it can be seen easily that a, = 0 on L and hence 
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a* = 0 on L, |i| = K. The support of the function (w*, af) is in K u L u Kx and thus 
(w*, af) can be extended by zero on any larger domain. It can be seen from the proof 
that the following estimate is true: 

«n lkM*(it--€,) = 4(u> a»)lk^(j-) • 

Now, let us assume (u, a,) e W£(D) with af = 0 on dQ, \i\ = k. Let the cubes Kr 

cover dQ similarly as in Section 2 and let yre Ck+1(Q), r = 0,..., R be the cor
responding decomposition of the unit. We extend smoothly each function yr, r = 
= 1,..., JR on EN so that its support is in Kr and yr = CQ+1(EN). Let us denote 
ur = u . yr on Q, ari = Dlur in Q, \i\ = k in the sense of distributions and ari = 0 
on 3D. Owing to Theorem 3 and 8 we find easily that (wr, ari) e Wk(Q). Then we carry 
out a .corresponding linear orthogonal transformation of coordinates, after which 
there will be Kr = {x; 0 < xf < b} and dQ n Kr will be described by formula 
xN = a(x') where a possesses the corresponding smoothness. At last we use the 
transformation of coordinates 

A : (*', xN) K(V ^ H 

A transforms the domain Q r\Kr onto Kr. We extend the function (ur, ari) on (u*, a*) 
as at the beginning of the proof, then we pass to the original coordinates and finally 
we put together the functions (ur, a*). 

V , 

Fig. з 

Lemma 4. If u' e L^dQ), then there exists a function u e W*(i2) satisfying 

H k * ( o ) ^ C|«'1L,(«J) 

and 

= eu = = a*-2« 
" ~ av *" ðv*-2 = o, гř-Һ 

ðv*"1 
= м' on ôQ, 

w/î re 3/3v is the derivative with respect to the exterior normal on dQ. 

Proof. The proof is completely analogous to that of Theorem in [3]. First we 
prove the theorem in the case of the cube. 
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For 0 g t S b let us denote 

Qt = {(*',*); 0 < xt < b, i = I,..., TV- 1} 

There exist functions u'n e Co°(Qo) satisfying 

(88) I |u; + 1 -u; |dx'^c | |u ' | | L l ( 0 o ) (see[3]) 
B = 1 J Q O 

Suppose that f., f2,... is a decreasing sequence of positive numbers, t„ -* 0. Let us 
denote 

P„ = {(x\ xN); 0 < xf < b, i= 1, ...,N - 1, t„+i < xN < t„} . 

Let us define the function u in the following way: 

u = u'„ on Q,n, i.e. u(x', t„) = u'„(x'), 

(89) u(x\ xN) = ' - " * " u(x\ r„) + ___J»_i 0 ( X ' , ,B+ .) for (x\ xN) e P„ 
t, - '„+ '„ - tя+i 

and u(x\ xN) -= 0 for xN ^ ^. 

Let us estimate dujdxN in LX(K). For (x', Xjy) e Pn we obtain 

_____ ( x ' ? x \ __ " » + - ( * ' ) - < ( * ' ) 

<^XN U ~~ *n+l 

and hence 

f 1^- dx'dx, = f dx' P li-L dxN = f |«;+1(x') - u;(x')|dx' 
JP»\SXN\ JQO Jtn + x\°XN JQo 

With respect to (88) we obtain the estimate 

(90) Г I — 
Jк \8XN 

dxN < c|ju'||£l(eo) 

This estimate is independent of the sequence tt, t2, •. •• Now, let us estimate 
jK \D'u\ dx, \i\ < k, where D' is the tangent derivative (i.e. iN = 0). Owing to (89) 
we obtain 

|D _(x\ xN)\ dx < |D'M;(x')| + |D't.;+1(x')|, 

for (x\ xN) e P„. Let us denote 

an = I £'«;!_,(„) + |Dfu;+1||„(fl0)-
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Then 
/• 00 00 

\D*u\ dx _ * £ ( * , - tn+1) an^Y. '»+-(*» + «»+i) + M i • 

The sequence {*„} can be chosen so that the following inequality be valid 

(91) jjD'u\dx = \\u'\\LtiQo) for | i | -Sfc , .„ = 0 . 

Let us set 

W f c - l = и . 

^

*iV 

«*-i(*'> £)<!£• 

W*-2(*', £)<-£, 

M 1 V X \ f ) d f . 

We shall estimate J^ \D*u\ dx for |j| <i fc. If i = (0,..., 0, fc), then D'M = dujdxN 

and thus (90) implies the required estimate. If i = (il9..., iN), iN ^ k — 1 then 
Dxu = /><l-»-'|w--»°)tt|w. Thus, it suffices to estimate the tangent derivative for the 
functions M0, ..., uk-2 * n L^K). Let Dl denote the tangent derivative. Then, with 
respect to (91), we obtain 

/• Cb C CXN 

\Diuk.2\ dx _ dxw dx' |D'il(x', {)| d£ g 
JJC JO J CO J O 

^ f dx„ f |D'«(x', 0 | d$ dx' Z b\\u'\\Ll(Qo}. 

Similar estimates for the functions M0, ..., uk_ 3 can be deduced recurrently. Altogether 
we obtain the estimate 

Hk*<*) ś Ф'|u,«ы • 
We find easily that 

du a*~2M A dk~lu _ 
M = = . . . = — - = 0 , r-— = M = M 

3xw dxlT2 dx",,'1 

in the sense of traces on Q0. 

The assertion follows in the usual way, by means of the decomposition of the unit 
and by a transformation of the boundary. 
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Lemma 5. Let (u, af) e W*(SS) be such a function that its side av is absolutely 
continuous with respect to the measure dS on dQ. Then there exists a bounded 
domain Q* 3 D and a function (u*, af ) 6 W*(H*) with compact support in Q* 
which satisfies 

u* = u on Q, af = a,- on Q, af = 2af on dQ, 

Proof. Let us decompose the measure a, = a, + aj as in (79). There exists a func
tion u' e Lx(dQ), u' = av in the sense of the agreement. We choose such Q* that it con
tains the cubes Kr from the decompositions of the unit used in the proofs of Lemmas 3 
and 4. Owing to Theorem 15 it holds a-^ = vj1... vjJV (see the agreement), i = 
= (h> •••» **)• According to Lemma 4, there exists a function u[ e W?(Q* — D) 
satisfying 

(92) 

« i = — i = . . . = —7 = 0 , T T ^ f - 1 ) M o n dQ> V = ~v 

3v' dv'*~2 dv'*-1 V ' 

and moreover u[ = 0 on the boundary dQ*. Let us set 

ui = u'i on Q* — D, ut = 0 on £ 
a u = D'wi on Q* - S , a u = aj on S , |i| = fc . 

We prove that (ul9 au) € W£(-3*). It is easily to find that ui e W^^Q*). Let us 
consider \i\ = fc — 1. We prove that the function (Dlux, ai,,-+*m)m--i can be obtained 
by the fastening together the functions (/>'«;, D<+-Wiii) e W^lt* - Q) and (0, aJ+ eJ € 
eW*(D). Hence it belongs to W*(fi*). The function (0, aj+€m) possesses the trace 
(Theorem 9) 

N N 

I vma'i+em = 2 
m -=l m - 1 

We can see from (92) that for |i( = fc - 1 

D% = v[h ... v ^ ( - l ) ^ 1 u' = vj1 ... v&V, 

holds on dQ in the sense of traces. From Theorem 12 we conclude (plui9 ai,i+em)e 

eW*(Q*) and (ul9(xti)eWk(D*). According to Lemma 3 there exists a function 
(M2» a 2i) e W£(£i*) such that u2 = u on Q, a2, = OL{ on C, |i| = fc. It suffices to set 
(u*9 af) = 2(tilf au) + (u29 a2i). 

Now it is possible to prove theorems analogous to Theorem 13 and 14. 

Theorem 17. Let us consider a function (u, a,) e W*(S$) with the side av absolutely 
continuous with respect to dS on dQ. Suppose that (u*9 af) e W£(8*) is the function 
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from Lemma 5, i.e. u* = u on Q, ct* = a, on Q, ct* = 2af on dQ. For small h > 0 
let us set 

(93) uh(x) = f Kh(x - j;) M*(J) dy, xeQ. 
J.Q* 

Then f/iere fco/ds 

"A -* ("> «<) i» Wf(G) , \\uk\Wl*ia) ~* ||(w> ai)||*vc(fl) • 

Proof. For small h > 0 and |i| = fc — 1 we obtain 

Dluh(i) = j X*(x - y) Dlu*(y) dy , xeQ. 
Jfl* 

Since (Dlu*, <x*+em) e Wftfi*) we deduce 

D'+^x) = f Kh(x -y)dox*+em(y)9 xeQ, m = 1,..., N , 
Jfl* 

where |i| = fc — 1. 
Thus we obtain 

(94) D*uh(x) = f K*(x - y) d<x*(y) , xeQ, 

for |i| = fc. Evidently 

M* -+ u in W?"1^) , HKJ-^I---^) -» Iwllip.i.-idj) • 

Following step by step the proof of Theorem 13 we prove Dluh -* a, in LM(S), |i| = k 
and 

l^||i,(fl)-*iailL(5)- 1*1 = fc-

Theorem 18. For each function (u, a,) e W*(&) there exists un e W\(Q) such that 

w„ - ("> «i) i» W£(0)> K l k * w -> ||(«. *i)||frM*(5) • 

Proof. Let us decompose the function (M, af) = (M, a,) + (0, a-) as in formula 
(79). As a consequence of Theorem 15 it is ct\\dn = vfav, where av is the side of the 
function (M, a,) as well as the side of the function (0, a',), v' = v\l ... v%. Similarly 
as in Lemma 1 let us set 

«iW=f Rh(x-y)d<Xy(y). 
Jen 

Let us define the measures cthi e Ljfi) by the rule ahi = \luh on dQ, cthi = 0 on Q. 
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It is easy to see that (0, a^) e W*(Q) and the function (0, <x'hi) possesses the side u'h. 
Because of Lemma 1 and Theorem 15 we obtain 

cp d<x'hi = I <pvluh dS -> I cpv1 dav -= I q> daj 
Jn Jen Jen J« 

for all <p G C(Q) and hence (0, a^) -* (0, a •) in W*(Q). By the same argument as in the 
proof of Theorem 14 we deduce 

||aHfl«llM5fl) -* ||ai|a«||LM(5n) 

and hence ||a;,||LM(5) -> ||ai||Mfl). Let us set (w, <xhl) = (u, a* + a^) e W*(U). It can 
be seen easily that 

|(", «w)||irM* = ll("> 5|)lk* + ||(0, *tn)\\wj< - ' : 

At the same time the side of the function (w, ahi) is absolutely continuous. 
The rest of the proof is the same as that of Theorem 14. The duality is defined for 

(p = {<Pi}\i\^k, <Pi e C(Q) and for (u, a,) e W*(Q) by the formula 

<(w, af), <p> = X Diu(pi dx + £ 9, da,. 
I'lsi*-i Jn 1*1=* Jo 

The same theorem on equivalent norms is valid in the space W*(U) as in the space 
W}(Q). 

Theorem 19. The formula ||tt||m.o) + £ ||a»|LH(.o) is an equivalent norm in the 
l»l=* 

space W^H). 

Proof. Let us suppose that the functions une W* are those from Theorem 18. 
un -* (w, a,) in W* implies 

||Dftt|Lt ^ l i m lD,'w»IUi f o r I'l = fe - 1 and 

||al||Ivt^Iim||Dliill||Ll for |i| = fc. 

The convergence ||ttn||^.,c -• ||(w> a»)lkM* implies 

(95) i - O ^ L ^ I I - O ' w k , |«| ^ fc — 1 

| | I > ^ | | L I - H | L M , | i | - f c . 

However the expression ||n|L + E llD,'uIUiis a n equivalent norm in the space Wf. 
11 m=* 
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Using (95) we conclude 

(»,a , ) | |^ = lim \\u4Wl* š .clim[||«. | | t l + Y \\D%\\Ll] = 

- fl-l* + Z hlU • 
| i |=* 

/tef<?reлcw 
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