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ON THE ZEROS OF GENERALIZED JACOBI'S 
ORTHOGONAL POLYNOMIALS 

FRANTISEK PUCHOVSK*, 2ilina 

(Received December 15, 1970) 

1. INTRODUCTION 

1.1. We employ the following notation: 

1. I is the closed interval [—1, 1]. 
2. cf (i -= 1,2, ...) are positive constants independent of n as well as of xel 

or of x in the interval in question. 
3. ct(x) (i = 1, 2, ...) are functions of the variable x such that 

\ct(x)\ < cx . 

The numbering of c( a ct(x) is independent for every section. 

1.2. In this paper the zeros of the orthonormal polynomials 

(1,2a) e,(x) = £a ( 'V-* ) a(
0">>0, n=0, l , . . . 

k = 0 

associated with the function 

(1,2b) Q(x) = (1 - xf (1 + xf eu{x) = J(x) . eu{x) 

on the interval I are investigated. Here a > - ! , / } > - 1 and u(x) is a real function 
satisfying the following conditions: 

1. u "(x) exists in the interval [—1, 1]. 



2. If we put for brevity 

AJ(t) = fS&zM , Vl(t) = Axu'(t) , v2(t) = JL- Axu'(t) , v3(t) = Axu~(t), 
x — t ox ot 

then for i -s 1, 2, 3 

(1,2c) min (a, 0) £ * *> f (* - f2)3'2 \vt(t)\ At -= c,(x) 

and 

(l,2d) min (a, ft) < i => -^(f ) == c2(x) . 

1.3. In my paper "On a class of generalized Jacobi's orthonormal polynomials"1) 
I have established the following differential equation for the above polynomials Qn(x): 

(1,3a) 

G_1W T K 1 " *2) -#*) # * ) + ^ ~ *2) fc»W -#*) + W + <XK C»W = ° • 
dx 

Herein 

(1,3b) A„ = J(n(n + a + fi + 1)) 

(We suppose n to be so large that Xn is real.) 

Further 

(1,3c) an(x) == n c3(x) , 

(1,3d) bn(x)^n^c^(x), 

bn(x) exists in the interval [—1, 1] and 

(1,3c) b'n(x) = n~'c5(x). 

1.4. We denote by JH(x) the orthonormal polynomial associated with the function 
J(x) on the interval [—1,1]. Jn(x) are normalized Jacobi's polynomials. 

1.5. The results of my investigations are contained in the second chapter. The 
theorems on the zeros of the polynomials Jn(x) are a generalization of the known 
results of Szego (See [7] p. 9 and [1] pp. 135 -136). 

*) See Čas. píst. mat. 97 (1972), 361-378. 
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2. THEOREMS ON THE ZEROS OF THE POLYNOMIALS Qn{x) 

2,1. Let {xx>n}n
x>_zl be the increasing sequence of the zeros of Bessel function Iv(x) 

of the first kind and of order v. 
Let {xfc0}^ be the increasing sequence of zeros of the polynomial Qn(x). 
Let k = 1, 2, . . . be independent of n. Then for n -* +oo 

(2,1a) X w = _ l + ^ L [1 + 0 ( 0 ] 
2n 

and 

b) „__>_. = 1 -
2n 

(2,1b) x w . + . _ i _ ï L [ 1 + ítø-i)]. 

(The constants in 0 depend on k.) 
The proof of this theorem is contained in Chapter 5. 

2,2. Let Qn(x) = Jn(x) where Jn(x) is defined in Section 1,4. If we put 

(2,2a) j(a, /J) = j = i(a2 + 3aj3 + 3a + 30 + 2) , A =- j(0, a) , 

then 

(2,2b) ,«•> = - 1 + M l ~ g + /? + 1 - ( a + ^ + 1 ) 2 + A -
V > k 2n2L ' n n2 

_ (« + /8 + l ) [2 / i+ (« + /t + l)2]1 _ ___ L _ _____+_"l o r „ . 6 , 
n3 J 24n4L « J 

and 

(2,2=) 4 ! . . . - 1 - j j - * ["l " - ^ - S - ( ° + / l + , ' ) 2 + J ' " 
2n21_ n n2 

_ (a + /? + 1) [2/ + (« + J6 + l)2] , _ _ _ . [ ! _ ____±_____L)1 + o(n"^ 
n3 24n*L » J 

The proof is in Chapter 6. 

2,3. Theorem on the distance of the consecutive zeros of the function _\.(sin z). 

Notations. 

(2,3a) |a| __ i => at = 0 ; |a| > \ => a. - } V ( 4 a 2 - l ) ; 

(2,3b) | j 8 | _ _ * ^ i = 0 ; |j8|>i=>]81 = - i V ( 4 ^ - l ) . 



a0 > ccl9 f}0 < /?! are arbitrary real numbers independent of n; 

(2,3c) an e (<x0, n) , bne(-n, p0) 

are arbitrary numbers which may depend on n; 

(2,3d) /.-(-=.=-*). < " - H + H > 
(2,3e) Xn = ^(n + a + p + 1)) ; 

(2,30 eW = A2 + i ^ , «?.(*) - A2 + ---pi--; 
4;r 4;r 

(2,3g) zx and z2, z t < z2 are arbitrary two consecutive zeros of the function 

Qw(sin z) . 

Assertion. 

(2,3h) [z1? z2] c Jn =-> z2 - zx = nq^l2 ^ - z ^ + d[n) 

and 

(2,3i) [-i. -2] <= ' i1} -» -2 - -1 = W 2 ( - \ + zt) + w . 

Herein 

(2,3j) K | < c « - > a n - 3 + l ) , 

(2,3k) \S?\ < cn-2(n\bB\-3 + 1), 

where c is a constant independent of n, an, bn, zt and z2, that is, c is the same num
ber for any two consecutive zeros zl9 z2 located in Jn and Jn

l) respectively. 
For the proof see Chapter 7. 

2,4, Let 5 G (0, nj4) be a constant independent of n and 

(2,4a) j,-(-Z + 3,l-8). 

Then in terms of the notation of Section 2,3 

(2,4b) [zl9 z2] c Jd =.> z2 - zt = - + 3M 

vvftere 

(2,4c) N<c«-2, 

c is a constant with the same properties as that in (2,3j) and (2,3k). 
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For the p roof see Chapter 7. 

2,5. For the zeros of the function Jn(sin z) the following inequalities hold if we 
employ the notation introduced in Section 2,3 

(2,5a) \d[n)\<cn-2(na;3 +n^)9 

(2,5b) |*? ) |<ci i - a ( i i | f t . | - 3 + n - 1 ) > 

where 5("\ d^ are defined by (2,3h) and (2,3i) respectively. 

For the p roof see Chapter 7. 

3. A TRANSFORMATION OF THE FUNDAMENTAL DIFFERENTIAL EQUATION 

3.1. We shall employ the following notations 

(3,1a) z = arcsin x , 

Cx 1W> w dy v" d2y 

(3,1b) y = y = 

dz dzz 

(3,1c) co(z) = (1 + a + j?) tg z + (a - j8) sec z , 

(3, Id) J(x) = (1 - x ) a ( l + x / , 
(3,le) g(x) = ^/(cos z J(sin z)) = exp j co(t) At , 

(3,lf) y(z) = i[co'(z) - ia)2(z)] , 

(3,lg) aw(z) = A2 + aM(sin z) + y(z) - i[b^(sin z) + u"(sin z)] cos2 z -

— i[fcn(sin z) + u'(sin z)] {[fen(sin z) + w'(sin z)] cos2 z — 2co(z) cos z — 2 sin z} . 

(Here b'n(x) = - - - - & - , u c» ( s i n z ) = «0J {k = l f 2 ) \ 
\ dx dx2 / 

(3,lh) qn(z) = C„(sin z) q(z) exp J - [b„(sin t) + u'(sin r)] cos t d f l . 

3.2. Jn t/ie abot?e notation the function Qn(sin z) is a solution of the differential 
equation 

(3,2a) y" + {[«'(sin z) + bn(sin z)] cos z - co(z)} y' + [A2 + an(z)] y -= 0 
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and the function qn(z) satisfies the differential equation 

(3,2b) \ ? + *JLz)y-0. 

Proof follows from (1, 3a). 

3.3. Remark. In the following all the assertions are derived for x e [0,1], that is 
for z € [0,7r/2]. The same assertions hold for z e [-7r/2, 0] if we replace a by /?. 

3.4. For C -*0 + 

(3,4a) • q (^ - C) - 2"->" . C*+1/2[l + 0(C2)] , 

(3,4b) c o g _ A « (i + 2a) r 1 - i (a + 3/J + 2) C + 0(C3) , 

(3,4c) y g - A -= i (1 - 4a2) r 2 + j + 0(C2), 

where I is defined by (2,2a). 

Proof. Trivial. 

3.5. For brevity, put 

(3,5a) <C) ^ an(l. ^ x l + ^ 1 . 

Then 

(3,5b) C e To | 1 ===> |a>n(C)| < c,n . 

The proof follows from (3,5a), (1,3c), (1,3d), and (l,3e). 

3.6. Let |a| > \. Denote by a(n) the greatest real zero of the function an(z) defined 
by (3,lg). Then for n -» + oo 

CV-) ^_!-£[1 + oQ]. 
where for brevity 

(3,6b) a . - i V ^ a 2 - ! ) . 

Remark. For almost all values of n there exists one and only one positive zero 
of an(z) (provided |a| > i). 



Proof. According to (3,5a) and (3,5b) it is 

I - «" - ̂  {(4«2 " - ) / [ - + ^ (= " a ( B ) ) ] } 1 / 2 = 7 C1 + °(n _ 1)- * 
3,7. Let |a| > ^ and let a0 > ax be a constant independent of n, wfcere aA is defined 

by (3,6b). T/ien /or z e [0, TC/2 - a0/n] 

(3,7a) 0 < oin\') < Ci"~2 

for almost all values of n. 
I/a S —h then (3,7a) holds for every a0 > 0. 

Proof. Put 
1 - 4 a 2 

/ (*) = 
4x2 

Hence /(ax) = — 1. Since f(x) is an increasing function for x > 0, there exists in 
virtue of (3,5a) and (3,5b) a constant c > 0 independent of n such that for almost all 
values of n 

c 6 ( 7 ' 2) * a " (2 ~ c ) = A " + / ( 0 + ^ > xl + n 2 [ / ( a o ) " / ( a i ) ] + 

+ n2 / (a i) -cn = X\ -n2-cn + 4 ^ T (4<*2 " -) »* > 4 ^ T (4a2 " *) "'• 
4a;jaj 8aiao 

3,8. For brevity, put 

(3,8a) ^(x) = c j B 0 - x ) . 

Then for x ->0+ 

(3,8b) ^(x) = 2<*->/V+1'a &,(1) [1 + 0(x2)] , 

w/iere 

(3,8c) G„(l) > 0 . 

Proof. For brevity, put 

(1) e,(x) = exp I - X- J [fr,,(sra t) + u'(sin t) cos t dti = 

= exp J [&„(cos t) + u'(cos t)] sin t df I = 1 + 0(x2) for x -> 0+ . 



Further 

(2) * Qn{™sx) = Qn(l) + 0(x2). 

Since 

$*(*) = 2»(cos x) 4 (~ ~ x ) e»M' 

(3.8b) follows from (1), (2) and (3,4a). 
By a well known theorem 

Qn(x) * 0 for x = 1 

and in virtue of (1,1a) it is Qn(+ oo) = + oo. This shows that (3,8c) is true. 

4. LEMMAS 

4,1. In the following we employ the Bessel functions Ia(x) of the order a and of the 
first kind as well as the Bessel functions Ya(x) of the order a and the second kind. 

It is well known that 

v=o v!P(a + v + 1) 

and provided a = 0 is an integer, 

«ib) y.w - 2 [c + ,.:],.(*) - 1 j , - j ^ , , . S-W. 

Herein C is the Euler constant and 

a j 
a > 0 =><70 = £ - , a = 0 => a0 = 1 , 

k = l fc 

v < v+a * 

» > o - > a , - i - + i : 7 , 
k-=i fc k = i fc 

..(-v-l^Ø2'"' 
So(x) = 0, a > 0 =* S.(x) = - £ 

n v=o v! 
4,2. Put 

(4,2a) t<x) = V(xK(x) 
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and if a is not an integer, 

(4,2b) w(x) = VWI-«W-
If a is an integer, then 

(4,2c) w(x) = J(x)Ya(x). 

v(x) and w(x) are linearly independent solutions of the differential equation 

(4,2d) / + (1 + Lz_f^ = 0. 

(See [I] pp. 29-30.) 
It is easily seen that for any real number k the functions v(kx) and w(kx) are linearly 

independent solutions of the differential equation 

(4,2e) / + r f c 2 + L^2"L = 0 . 

(See [I] p. 31.) 

4.3. The following theorem will be used: 

Let p(x) and q(x) < 0 be real functions continuous on the interval (a, b) and let 
<p(x) be a solution of the differential equation 

(4,3a) y" + p(*)yr + q(*)y = 0-

Then the function (p(x) . q>'(x) has at most one zero in the closed interval [a, b]. 
Herein a or b are also zeros ofq>(x) (p'(x) if for i = 0,1 

lim (p^(x) = 0 or lim cp(i)(x) = 0 . 
x-*a+ x-*b-

Proof. (See [2] pp. 164-165.) 

4.4. Let {xafn}n=x and {*«,„}£°=i be the increasing sequences of all the positive 
zeros of the functions v(x) and v'(x) respectively. 

Let {C„}n=o and {('n}n=o be the increasing sequences of all the positive zeros of 
the functions il>w(x) and \l/n(x) respectively.2) 

If |a| > i, then 

(4,4a) ^ 1 > < 1 > i V ( ^ 2 ~ l ) = ai-3) 

2) See (3,8a). 
3) See (3,6b). 



and 

(4,4b) 5 l 5 _ C l
X

> a ) , ^ _ C i U o . 

Proof. Since 

t;(0) = i/rn(0) - 0 

and y = v(x) is a solution of the equation (4,2d) our assertion is a consequence of 
theorem in Section 4,3. 

4,5. Let v(x) and w(x) be the functions defined by (4,2a), (4,2b) and (4,2c) respec
tively and let il/n(x) be defined by (3,8b). 

For brevity, put 

(4,5a) W(x, t) = v(x) w(t) - v(t) w(x), 

(4,5b) T 1 = v'(x) w(x) - v(x) w'(x) , 

(4,5c) /„ =V(An
2 + Tn), 

where Xn == y/(n(n + a + /? + 1)) and 

(4,5d) T„ - 0(n) 

is a real number depending on n. 
Further, put 

(-We) * » = ^ + ^ = r ( « + !)&,(!) ' 

(4,5f) X»(x) = 1>»Ux) 

and 

(4,5g) j8n(0 -= o>„(0 - T„ 

w/iere con(t) is defined by (3,5a). 
Then for xe (0,1) 

(4,5h) &(*) - t?(/Bx) - gn(x) 

where 

(4,5i) a,(x) = i/;1 [&(.) w ( u /„.) xn(t) dt. 

Proof. 1. Denote by kt (i = 1,2,...) positive constants independent of x and t 
in the interval [0,1]. (They may depend on n.) 
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In virtue of (3,8b) and (3,5b) we may write for t e (0,1) 

(1) |x-(0i<*i«"+1/2. \Pn(t)\<k2-

By applying (4,1a) and (4,1b) we deduce that for x 6 (0, 1) and t e [0,1) and x > t 

(2) |W(lnx, l„t)\ < k3 S(x, t) = fc3[(xrlf + (x- if)*] V(x() lg™ 

-5 /2 

where m0 = 1 if a = 0, and m0 = 0 if a 4= 0. 
From (1) and (2) it follows for x e (0,1) 

(3) \Qn(x)\ < fc4 p
+ 1 ' 2 8(x, t) dt < k5x*+5 

2. The function x„(x) defined by (4,5f) is a solution of the differential equation 

y" + «nfe-x\y = 0. 

Hence 

(4) m + [t+l-^-]x,(x)=-Pn(x)x,(x)-

By (4) we derive the equation . 

(5) &(x) = Ci v(lnx) + C2 w(lnx) - Qn(x), 

where Ct and C2 are constants. 
Let a be non integer. Making use of (3,8b), (4,1a), (4,5e) and (3) we deduce by (5) 

that for x -• 0 + 

( /*X)g + 1 / 2 + 0(x*+5'2) = C ^ f " x ) g + 1 / 2 + 0(x*+5/2) + C^( f"x)"g + 1 / 2 [i + o(x2)] . 
2°T(a + 1 ) 2°T(a + 1) v 2""ar(l - a) L v / J 

Hence 

(6) ct + 2 ^ ( a + . 1 } /;2«x-2'[i + 0(x2)] c2 = 1 + 0(x2) . 
r(i - a) 

From (6) it is easily seen that 

(7) a > 0 => c2 = 0(x2") => c2 - 0 , c! = 1 

and 

a < 0 => ct = 1 + 0(x~2") => Q = 1, c2 = 0(x2-2") => c2 = 0. 
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If a is an integer, then by (3,8b), (4,1b) and (3) we deduce that for x -+ 0+ 

(ixy+i/2' r a Y\«+i/2 
----V + 0(x'+5'2) = ^ M ! + 0(x*+512) + 

2" T(a +1) v ' 2" T(a + 1) V ' 

+i [y-^rr i)ig *+2a(a"i)! w*112][i+°(x2)] °2 • 
Hence we deduce Cx = 1, C2 = 0 by a similar argument as above. 

4,6. Lef a > 0 be an arbitrary number independent of n and 

(4,6a) Ia = (°'~y 

Further denote by yn(x) a real function defined in the interval I a such that 

(4,6b) * e J,-* |yji(f)| <yn. 

Put 

(4,6c) an(x) = (Xyn(t) W(lnx, lnt) Xn(t) dt, 

where xn(x) is defined by (4,5f). 
Then 

(4,6d) xela=> \an(x)\ < ^n -1?,. . 

From (4,5i) and (4,6d) we deduce that 

(4,6e) xela=> \Q„(X)\ < c2n_1 . 

Proof. 1. For brevity, put 

(0 U*) =- ^ - ' " 1 / 2 *„(*) , S„ = sup |.„(x)| . 
xela 

Making use of (4,6b) and (2) in Section 4,5, we obtain from (4,6c) 

(2) x ela => \an(x)\ < c3ynxSnx*+1'2 < W ' S , . * * ^ 2 . 

2. Put yn(t) = f}n(t), where /?„(*) is defined by (4,5g). In this case we may put yn 

= csn so that we obtain from (4,5i) and (2) 

(3) xela => \Qn(x)\ < c^xnn-xx^ll2Sn < c7n~ V + 1 / 2 S„. 

Since 

(4) x€ltt=>\v(lnx)\<ca(lnxy+1'2 
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and by (4,5h) 

(5) ln(x) = lv(lnx)-Qn(x)]x-"-1'2 

we deduce by (2) and (5) 

S„ < c9n*+1/2 + clon-xSH => Sn < cltn* + l/2 . 

Applying this result we obtain (4,6d) from (2) and (4,6e) from (3). 

4,7. Let v(x) be defined by (4,2a) and let xayk (k = 1, 2, ...) be the zeros of v(x) 
introduced in Section 4,4. Let An > 0 satisfy the condition 

(4,7a) An = 0(1) for n -+ +oo . 

u 
(4,7b) xa>0 = 0, xa>k + nne (xtXfk_1 + cl9 xa>k+1 - ct) and \v(xa,k + nn)\ < An, 

then 

(4,7c) \n\ < c2n~iAn. 

Proof. For brevity, put xak = xk and xk + nn = b. 
Let I„ be the interval (b, xk) if n < 0 or (xk, b) if n > 0. By (4,7a) and (4,7b) we 

deduce 

(1)' xe.In~\v(x)\<An. 

Further 

(2) v(b) = nnv'(xk) + Wn2V(!;), 

where 

(3) { 6 / , -

From the equation (4,2d) we obtain 

(4) •W-p^-l]*í). 
Making use of (4), and (l) we deduce 

(5) \v''({)\<c3\v(Z)\<c4An. 

Since v'(xk) * 0 it follows from (2), (5) and (4;7a) that 

A„ > \v(b)\ > n\n\ \v'(xk)\ - c5\v"(i)\ > nr,\v'(xk)\ - c6An 

for almost all values of n. 
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4,8. Following the notation of Section 4,6 we put 

(4,8a) hn(x) = v(lnx) + tjn(x) , 

where ln is defined by (4,5c) 

(4,8b) xela^\rjn(x)\ <An. 

Here An satisfies (4,7a). 
Let {€„}%= x be the increasing sequence of all the zeros of the function hn(x) 

contained in the interval Ia. Then the following assertions are true: 

a) For every positive integer k there exists an integer r > 0 such that for 
n -> +oo 

(4,8c) ^ = ̂ [ l + o(4,)]. 

b) For every integer m > 0 there exists an integer s such that for n -> +oo 

(4,8d) - , « * ! * [1 + 0(4 , ) ] . 
'n 

Proof. 1. Let {x'at„}n=1 be the increasing sequence of all the positive zeros of the 
function v'(x). 

From (4,8b) and (4,7a) we deduce the following assertion A: For every, integer 
v > 0 there is at least one zero of the function hjx) in the interval (xatyjln, xatV+ijln). 

2. Put 

(i) €»-- i + /;Iяч, 

where xajt is the zero of the function v(lnx) nearest to the number £k. From the above 
proposition 

(2) £4<<p<5^±i6/(,. 

From (2) it is obvious that r g k + 2. 
If a > xatk+2 it follows from (4,8b) that 

(3) k(£*)l < *n • 
By (4,8a) and (1) we deduce that 

(4) 0 - hJl$k) = v(xr + nrj) + rjn(Q . 

Hence we obtain as a consequence of (3) and (4,8b) that 

(5) \v(xr + nrj)\ < An . 
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The proposition of Section 4,7 yields 

M < A„n-1 . 

This inequality shows that (4,8c) is true. 

3. Let 

(6) * * - « . - " I . " 1 * ' , 
In 

where £, is a zero of the function hn(x) nearest to the number xamjln. From the above 
assertion A we see that 

(7) a>x'aim+2=>{,<<f±2ela. 
^n 

Making use of (4,8a) we obtain 

0 = *„(£,) = v(xatm + nrj') + rjn(Q . 

Hence, in virtue of (7) and (4,8b) 

(8) \v(xm + nrj')\ < An 

Hence by the statement of Section 4,7 

(9) \ri'\<n-'An. 

(1) and (9) establish (4,8d). 

5. PROOF OF (2,1a) AND (2,1b) 

5,1. In the notation introduced in Section 4,4, for k = 1, 2, . . . independent of n 
it is 

(5,1a) C* = - ^ [1 + 0(n~1)] for n - + oo . 
n 

Proof. 1. The zeros of the function ij/Jx) coincide with the zeros of the function 
XH(x) defined by (4,5f). Let Ia be defined by (4,6a) and choose a sufficiently large. 

In virtue of (4,5h) and (4,6e) the theorem of Section 4,8 yields for k = 1, 2, . . . 
and m = 1,2,... provided that £* e Ia and xatJn e Jfl, 

(i) k . ^ n + otn-1)] 
n 

and 
(2) Cj = _*_[! + 0(0]. 

n 
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Herein xaJln is the zero of v(lnx) nearest to the number fk and £s *
s *he z e r o °f Xn(

x) 
nearest to the number x.)f];/!„. 

2. Put in (1) k = 1 and in (2) m = 1. Then 

(3) «Ci£*. . i + 0^-') 

and 

(4) n C i = x a t l + O^" 1 ) . 

From (3) and (4) we see that 

(5) ' C l _3- . - [ i + cX».--)]. 
n 

Hereby (5,1a) is established for k = 1. 

3. Let (on(x) be defined by (3,5a) and put 

(6) sn = sup \(on(x)\ . 
.xero,n/2] 

In virtue of (3,5b) we may choose kt > 1 independent of n and <rn such that 

(7 ) fc-w >(TW > 5W . 

Put 

(8) A = VW - O • 

(5) enables us to choose an so that 

(9) X-f > C. • 

Since the functions v(lx) and #*-(*) are solutions of the differential equations 

(10) y + ^ + i ^ j , . , 
and 

(ii) / + rA2 + Lzi?! + ( U B ( x ) l y = = o 

respectively it follows by the well-known Sturm's comparison theorem in virtue 
of (9) that in the interval [0, £fc] there are at most (k — 1) zeros of the function v(Ax). 
Hence we obtain for the number k and r in (1) 

(12) r g k . 
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3. Further, put 

(13) k2n> nn> sn, /x = j(kl + nn) , 

where k2 does not depend on n and sn is defined by (6). Choose jun so that 

(14) Ci > -""i • 

Then there are at least (fc - 1) zeros of v{fix) in the interval [0, &]. Hence by (1) 

(15) C t = = ^ [ l + 0(n->)], 
n 

where 

(16) * = fc . 

From (1) and (15) we deduce that 
0 = xa>r- xa>t + 0(n~*). 

Hence 

(17) xa>T = xa,t => r = f. 

(12), (16) and (17) show that r = fc. 

5.2. The proof of (2,1b). By (5,1a) we deduce 

xn% = sin ^ - C k + 1) = i - 5*j±I [i + 0(n->)] 

for n -» +oo. 

5.3. For the proof of (2,1a) see Remark 3,3. 

6. PROOF OF (2,2b) AND (2,2c) 

6,1. 1. Put Qn(x) = Jn(x). Then by (3,5a) 

(1) <t) = y(t) - i ^ . 

Put in (4,5c) and (4,5g) 

(2) K = (A2 + I)1'2 , 

(3) P&)-«>&)-J . 

where j is defined by (2,1a). 
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Let Ja be defined by (4,6a) and a sufficiently large. It is easly to see from (3,4c) 
and (1) that 

(4) tela=>\pn(t)\<cin-
2. 

Then by (4,5i) and (4,6d) 

(5) x eIa => |ft,(*)| < c2n~* 

for in this case y„ = c$n~2. 

Denote by {£*}** i the increasing sequence of all the zeros of Jn(sin z). 
By the theorem of Section 4,8 and by (5) we deduce that for every k = 1, 2,. . . 

there exists an integer r > 0 such that 

(6) C* = ^ + 0(«- 5 ) . 

By (5,1a) we have 

(7) Ct _ _*_ + 0(„-2Y 
n 

From (6) and (7) it follows that 

0-= xa,r - X-,fc + Ofr'1). 
Hence 

Xa,r = = *a,k => f = K 

so that by (6) 

(8) U = X-f + 0(n-*). 

2. Let Qn(x) = Jn(x). Then 

(9) xW4+. - cos Ck = 1 - | - + | j + 0(n"6) . 

From (2) it is obvious that 

(10) 

w2/:
2_1-_-_---i-4-ri-__±i + n2-(a + /j + 1)3 + o(„^) = 

n • n2 |_ n n2J n3 

- i _ « + .* + - _ (« + /9 + l ) 2 + j _ (« + P + 1) [2j + (a + l + l)2] 
n n2 n3 

+ 0(n"4) . 
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Further 

(ii) »«/;«-1-3« + * + 0 + 0(0-
n 

From (8)-(11) we may deduce (2,2c). 

As for (2,2b), see Remark 3,3. 

7. PROOF OF THE INEQUALITIES IN SECTIONS 2,3; 2,4 AND 2,5 

7.1. In the notations introduced in Section 2,3 

(7,1a) z e Jn=> cxn
2 < ocn(z) < c2n

2 . 

Proof. (7,1a) is a consequence of (3,5a), (3,5b). See also (3,7a). 

7.2. Let Zj and z2 be defined by (2,3g). Then 

(7,2a) (zu z2) c Jn=> z2 - zt < c ^ " 1 . 

Proof. Employing Sturm's comparison theorem we obtain from the differential 
euqation y" -f otn(z) y = 0 

(1) z2 — z1 < n sup a~1/2(z) . 
zeJn 

Now, (7,2a) is a consequence of (1) and (7,1a). 

7.3. In fhc notation of Section 2,3 

(7,3a) [zj, z2] c [z l 5 z2] => \Q (^ - z'A - Q (^ - z2 J 

Here Cj docs noî  depend on zh z\ (i = 1, 2). 

Proof. For brevity, put 

< c^a^ 3 

From (2,3d) it follows 

Now, (7,2a) yields 

Я - J - - Í 0-1.2). 

n 

W«) - fl(fí)| - |«2 - i| {ťl~^{%+ť2) < c2n-*Z'2-
3< C I I V 3 • 

SI • S2 
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7,4 According to the notation introduced in the preceding chapter 

(7,4a) 8, = \i;ll\z[) - <l'\z'2)\ < Cln-2(na;3 + 1) . 

Proof. Making use of (7,3a), (3,5a) and (3,5b), we obtain 

M*i) - *n{z'i)\ = Wi) - <K«D + <&) ~ <?i)\ < c2n(na;3 + 1) . 

Further, it follows from (7,1a) and (7,2a) that 

Sn = W«i) - *J&)\ W«)«.(«i)]"1/2 [>/«.(«) + yMW1 < 
< c3n-2(na~3 + 1). 

7,5. The pro of of(2,3i). 

Put 
s1 = sup a~1/2(z), 52 = inf a~1/2(z). 

z e ( z i , z 2 ) ze(zi,Z2> 

Making use of Sturm's comparison theorem, we deduce by the differential equation 
(3,2b) 

7T52 < Z2 — Zi < 7ZS1 . 

Hence 

(1) Z2 - ZX = 7T52 + 9(st - 52) 

where £ e (0, 1). Put 

(7,5a) Sl = a;1/2(zO + S<">, 52 = a;1/2(zO + 3<">, 5t - 52 = 3<">. 

From (7,4a) it follows for i = 1, 2, 3 

(2) |3</V^~V«~ 3 + 1). 

By (7,5a), (7,1a), (3,5a), (3,5b), (1) and (2) we deduce that 

(7,5b) z2-Zl = Tra;1/2^) + »J> = Tio"*/'- - k±\ + 0(n"2) + S?> 

where 9̂ > satisfies (2) for i = 4. 

7.6 The proof of (2.5a). It follows from (3,5a) for the polynomials Jn(x) that 

Hence 

(2) ^ -CeJ . -MC) |<c , . . 
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From (2) we deduce by a similar argument as in Section 7,4 that in this case 

(3) S.KCin-ifa' + n-1), 

where 8„ is defined by (7,4a). 

By (2) we deduce 

(4) \W\<c3n-la;3 ( i = l , 2 , 3 , 4 ) , 

where 9 ( n ) is defined by equations (7,5a) and (7,5b). (2,5a) is a consequence of (7,5b) 
and (2). 

7,7. The proof of (2,4b). 

(2,4b) is a consequence of (2,3h) and (2,3i) for 

(Zl, 2 2) <= ( - 5 , 1 _ s\=> a; 1 '^ . ) = l- + o(„"2) 

аnd 

<5 = ^ => Ö. = ôn => a ľ 3 = á" 3 n- 3 
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