Časopis pro pěstování matematiky

Ladislav Nebeský

On the line graph of the square and the square of the line graph of a connected graph

Časopis pro pěstování matematiky, Vol. 98 (1973), No. 3, 285--287
Persistent URL: http://dml.cz/dmlcz/117794

Terms of use:

© Institute of Mathematics AS CR, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ON THE LINE GRAPH OF THE SQUARE AND THE SQUARE OF THE LINE GRAPH OF A CONNECTED GRAPH

Ladislav Nebeský, Praha

(Received April 4, 1972)

Let $G=(V, X)$ be a nontrivial connected graph with p points and q lines. The square of G is the graph $\left(V, X^{\prime}\right)$ where $u v \in X^{\prime}$ if and only if the distance between u and v in G is either 1 or 2 . The line graph of G is the graph (X, Z) where $x y \in Z$ if and only if x and y are adjacent lines in G. The square of G and the line graph of G will be denoted by G^{2} and $L(G)$, respectively. Consequently, the line graph of the square of G and the square of the line graph of G will be denoted by $L\left(G^{2}\right)$ and $(L(G))^{2}$, respectively. In the present paper we shall prove that if $p \geqq 3$, then $L\left(G^{2}\right)$ is hamiltonian, and that if $q \geqq 3$, then $(L(G))^{2}$ is hamiltonian. (For the terminology of graph theory, see Harary [1]; for some results relative to the present paper, see [1], [2], and [3].)

Lemma 1. Let G be a connected graph with $p \geqq 3$ points and such that it contains a point u of degree 1 and a point w of degree $p-1$. If v is a point of G such that $u \neq v \neq w$, then there exists a spanning path in $L(G)$ joining the points $u w$ and $v w$ of $L(G)$.

Proof. The case when $p=3$ is obvious. Assume that $p=n \geqq 4$ and that for $p=n-1$ the lemma is proved. The case when G is a star is simple. Assume that G is not a star. Then there is a point t of G such that t has degree at least 2 and $v \neq t \neq$ $\neq w$. By v_{1}, \ldots, v_{k} we denote the points of G different from w and adjacent to t. Obviously, there is a spanning path S in $L(G-t)$ joining the points $u w$ and $v w$. There is a point $r s$ of $L(G-t)$ such that $(r s)\left(v_{1} w\right)$ is a line in S. It is evident that either $v_{1} \in\{r, s\}$ or $w \in\{r, s\}$. If $v_{1} \in\{r, s\}$, then by P we denote the path $(r s)\left(t v_{1}\right) \ldots$ $\ldots\left(t v_{k}\right)(t w)\left(v_{1} w\right)$. If $w \in\{r, s\}$, then by P we denote the path $(r s)(t w)\left(t v_{k}\right) \ldots$ $\ldots\left(t v_{1}\right)\left(v_{1} w\right)$. If in S we replace the line $(r s)\left(v_{1} w\right)$ by the path P, we obtain a spanning path in $L(G)$ joining the points $u w$ and $v w$.

Theorem 1. Let G be a connected graph with $p \geqq 3$ points. Then $L\left(G^{2}\right)$ is hamiltonian.

Proof. The case when $p=3$ is obvious. Assume that $p=n \geqq 4$ and that for $p=$ $=n-1$ the theorem is proved. The case when $G=K_{p}$ is simple. Assume that $G \neq K_{p}$. Then there is a point w of G with degree not exceeding $p-2$ and such that $G-w$ is connécted. By d and d^{\prime} we denote the distance in G and in $G-w$, respectively. By F we denote the graph with the points t of G such that $d(t, w) \leqq 2$, and with the lines $\tilde{\tilde{t}}$ such that either $w \in\{\tilde{t}, \tilde{t}\}$ and $1 \leqq d(\bar{t}, \tilde{t}) \leqq 2$, or $\bar{t} \neq w \neq \tilde{t}$ and $d(\bar{t}, \tilde{t})=$ $=2<d^{\prime}(t, t)$. Notice that the graphs $(G-w)^{2}$ and F are line-disjoint and that x is a line in G^{2} if and only if it is a line either in $(G-w)^{2}$ or in F. There are points u and v of G such that v is adjacent to w in G, u is adjacent to v in G and $d(u, w)=2$. Obviously, u and v are points both in $(G-w)^{2}$ and in F, and u has degree 1 in F. By Lemma 1, there is a spanning path S_{0} in $L(F)$ joining $u w$ with $v w$. Similarly, there is a spanning path S_{1} in $L(F)$ joining $v w$ with $u w$. By the induction hypothesis, there exists a hamiltonian cycle H in $L\left((G-w)^{2}\right)$. Consider a point $r s$ of $L\left((G-w)^{2}\right)$ such that $(r s)(u v)$ is a line in H. If $u \in\{r, s\}$, then by P we denote the path $(r s) S_{0}(u v)$; if $v \in\{r, s\}$, then by P we denote the path $(r s) S_{1}(u v)$. It is easy to see that if in H we replace the line $(r s)(u v)$ by P we obtain a hamiltonian cycle in $L\left(G^{2}\right)$.

Lemma 2. Let T be any tree with $q \geqq 3$ lines. Then $(L(T))^{2}$ is hamiltonian.
Proof. The case when $q=3$ is obvious. Let $q=n \geqq 4$ and assume that for any q, $3 \leqq q<n$, the lemma is proved. The case when T is a path is simple. We shall assume that T is not a path. Then T contains distinct points v_{0}, \ldots, v_{k} such that $1 \leqq k \leqq$ $\leqq q-2, v_{0}$ adj v_{1}, \ldots, v_{k-1} adj v_{k}, v_{0} has degree at least 3 , v_{k} has degree 1 , and if $0<j<k$, then v_{j} has degree 2. By T_{0} we denote the tree which we obtain from T by deleting the points v_{1}, \ldots, v_{k}. By u_{1}, \ldots, u_{i} we denote the points which are adjacent to v_{0} in T_{0}; obviously, $i \geqq 2$. There is a hamiltonian cycle H in $\left(L\left(T_{0}\right)\right)^{2}$. It is easy to verify that H contains such a line $x y$ of $\left(L\left(T_{0}\right)\right)^{2}$ that x is incident with one of the points u_{1}, \ldots, u_{i}, and y is incident with v_{0}. By P we denote the path in $(L(T))^{2}$ such that if $k=1$, then $P=x\left(v_{0} v_{1}\right) y$, and if $k \geqq 2$, then $P=x\left(v_{0} v_{1}\right)\left(v_{2} v_{3}\right) \ldots\left(v_{g-3} v_{g-2}\right)$. . $\left(v_{g-1} v_{g}\right)\left(v_{h} v_{h-1}\right) \ldots\left(v_{2} v_{1}\right) y$, where g is the greatest odd integer not exceeding k and h is the greatest even integer not exceeding k. If in H we replace $x y$ by P, we obtain a hamiltonian cycle in $(L(T))^{2}$.

Theorem 2. Let G be a connected graph with $q \geqq 3$ lines. Then $(L(G))^{2}$ is hamiltonian.

Proof. Consider a spanning tree T_{1} of G. Color the lines of T_{1} in blue. Subdivide each uncolored line of G (if any) into two new lines and color one of them in blue and the other of them in yellow (the choice is arbitrary). By T_{2} we denote the graph consisting of the blue lines. Obviously T_{2} is a tree with at least 3 lines. It is easy to see that $L\left(T_{2}\right)$ is isomorphic to a spanning subgraph of $L(G)$. This implies that $\left(L\left(T_{2}\right)\right)^{2}$ is isomorphic to a spanning subgraph of $(L(G))^{2}$. By Lemma $2,\left(L\left(T_{2}\right)\right)^{2}$ is hamiltonian. Hence the theorem follows.

References

[1] F. Harary: Graph Theory. Addison-Wesley, Reading, Mass., 1969.
[2] W. S. Petroelje and C. E. Wall: Graph-valued functions and hamiltonian graphs. Recent Trends in Graph Theory (M. Capobianco, J. B. Frechen, and M. Krolik, eds.), Lecture Notes in Mathematics 186. Springer-Verlag, Berlin 1971, pp. 211-213.
[3] M. Sekanina: On an ordering of the set of vertices of a connected graph. Spisy Prírod. fak. Univ. Brno, 1960/4, no. 412, pp. 137-141.

Author's address: 11638 Praha 1, nám. Krasnoarmějců 2 (Filosofická fakulta Karlovy university).

