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Časopis pro pěstování matematik/, roč. 98 (1973), Praha 

ON POWERS OF NON-NEGATIVE MATRICES 

ANTONIN VRBA, Praha 

(Received July 10, 1972) 

1. INTRODUCTION 

Denote by p(A) the number of positive elements of a matrix A. Let A be square 
non-negative. Then, obviously, the behaviour of the sequence {p(^r)} is fully deter
mined by the combinatorial structure of the positive elements of A. In the paper [1], 
Z. SIDAK has noticed that this sequence is not necessarily non-decreasing even when A 
is primitive. Further, the following theorem was deduced there: 

Let A be an irreducible non-negative matrix containing at most one zero 
element in its main diagonal. Then p(B) _̂  p(AB)for each non-negative matrix B 
of the same size as A and, consequently, the sequence {p(Ar)} is non-decreasing. 

It is the purpose of this note to strengthen the quoted results. 

2. PRELIMINARIES 

Let A = (aik)9 B = (bik) be matrices of the same size. Write A g B if for each pair 
of indices bik = 0 implies aik — 0. Let A be square non-negative. If Ar g Ar+1 for 
each positive integer r then the sequence of matrices {Ar} is said to be non-decreasing, 
the sequence of integers {p(^4r)} De*ng obviously non-decreasing. 

Let A = (atj) be an n x n matrix. For each permutation {pl9 pl9..., pn} of N = 

= {1, 2,..., n} the product f ] aiPi is called a diagonal product of A. The well known 

Frobenius-Konig theorem states that all diagonal products of A are zero if and 
only if A contains an p x q zero submatrix such that p + q > n (v. [2]). 

Given a n n x n matrix A = (a(J)9 denote by G(A) the directed graph consisting of 
vertices {1, 2,..., n} and edges {i, k} for each aik =# 0. This graph is frequently used 
to describe combinatorial properties of A. A sequence {v9 t^}, {vl9 v2},..., {vt-l9 w} 
of edges of G(A) is called a connection from v to w of the length /. Denote ALr = ( a ^ ) . 
Notice that if A is non-negative then there exists a connection from v to w of the 
length / in G(A) if and only if a ^ > 0. 
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Let Abe a non-negative square matrix. If A contains at most one zero element in 
the main diagonal then the sequence {Ar} is non-decreasing. 

Proof. Denote by n the order of A. The case n = 1 being obvious, suppose n > 1. 
Let r be a positive integer. AAr = ArA implies 

a%+1) = flHflfi? + Z a f,a# = a<I>att + Z fltfa* 

for each i, keN. 
Suppose first either i =f= k or aH > 0. Then the above equation yields that a(£ > 0 

implies a£+1) > 0. 
Suppose now aH = 0, a^ > 0. Then there is a connection c from z to i of length r 

in G(A). G(A) does not contain an edge {£, i} and so in c there is a vertex; 4= i. Accord
ing to the assumption, {j, j} is in G(A). Hence, there is a connection from i to i of 
length r -F 1, thus a£+1) > 0 which completes the proof. 

Let Abe a non-negative square matrix. Then p(B) ^ p(AB)for each non-negative 
matrix B of the same size as A if and only if A possesses a non-zero diagonal 
product. 

n 

Proof. Denote by n the order of A. Suppose Y[ aiPl > 0- Then, obviously, the i-th 

row of AB contains at least as many positive elements as the prth row of B does, 
for each i e N. 

Suppose that all the diagonal products of A are zero. According to the Frobenius-
Konig theorem, there exist permutation matrices R, S such that RAS contains a p xq 
zero submatrix in the lower left corner and p 4- q > n. Choose an integer t, 1 ^ 
g t S n and an n x n matrix C the elements of which are positive except the 
(n — q) x t zero submatrix in the lower left corner. Put B = SC. It holds p(B) = 
= P(C) = n2 - (n -*- q)t and p(AB) = p(RAB) ^ n2 - pt^sRAB = RASS~^B = 
= RASC contains the p x t zero submatrix in the left down corner. Accordingly, 
p(B) - p(AB) 7> t(p + q - n) > 0 which completes the proof. 

As an immediate consequence the following corollary is obtained. 

Let A be a square non-negative matrix possessing a non-zero diagonal product. 
Then the sequence {p(Ar)} is non-decreasing. 
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