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Časopis pro pěstováпí matematíky, roč. 98 (1973), Praha 

A BAIRE FUNCTION NOT COUNTABLY DECOMPOSABLE 
INTO CONTINUOUS FUNCTIONS 

ROY O. DAVIES, Leicester 

(Received July 28, 1972) 

In connection with a problem of KARTAK [1], VRKO£ recently constructed [2] 
a measurable real function / on I = [0, 1] such that I cannot be partitioned into 
countably many sets An with each restriction / 1 An continuous. He asked whether 
for every Baire function there does exist such a partition of J into Borel sets. Here 
it will be shown that, on the contrary, there exists a function of Baire class 1 for 
which there exists no such partition whatever, even into non-Borel sets. 

Theorem 1. / / / : A -» J is continuous, where A is a subset of I, then given e > 0 
there exists a closed set F £ I x I such that F n Gr (/) = 0 and m(Fx) ^ 1 — e 
for all x el. 

Proof. For each element ueA, let Ju = {(u, y) : \y — f(u)\ < ie] and Ku = 
= ({u} x I) \ Ju. Denote by E the closure of the set D = u{KM :ue A}. First, 
we observe that E n Gr (/) = 0. Indeed, given any point (u,f(u)) e Gr (/), we can 
choose 5 > 0 so small that 

veA&\v-u\<5*> \f(v) - f(u)\ < e/4 ; 

then the open rectangle with centre at (u,/(u)), width 25, and height \e contains 
no point of D. 

Next, we prove that for every xe A, the set I \ Ex is an interval of length at most e, 
open relative to I. Since Ex is closed, it is enough to show that if yl9 y2el \ Ex 

and yt < y < y2 then (i) y2 - y1 < e and (ii) y el \ Ex. Consider any u e A with 
|u - x\ < S, where 5 is the smaller of the distances of (x, yt) and (x, y2) from E; 
then (u, yi)eJu and (u, y2)eJu, and (i) follows. Moreover \y — f(u)\< %e-
— min (y2 — y, y — yi); hence the open rectangle with centre (u, y), width 2d, 
and height 2 min (y2 — y9 y — yx) contains no point of D, and this establishes (ii). 

To construct F we adjoin to £ a large part of each strip S == (c, d) x J, where 
(c, d) is an interval of J \ A; namely, the whole of S except for an open "corridor" 
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(with rectilinear edges) joining the open vertical intervals G = {c} x (I \ Ec) and 
H = {d} x (I \ Ed). (If G = H = 0 we include the whole of 5 in F; while if, for 
example, H = 0 but G =t= 0 then we include the whole of S except for the open 
triangle joining G to the point (d, z), where (c, z) is the mid-point of G.) It is easy 
to verify that the resulting set F is closed, and it clearly has the other required pro
perties. 

00 

Theorem 2. Let f: I ~> I be such that there is a partition I = \J An with each 
n = i 

restriction f \ An continuous. Then given e > 0 there exists a closed set F _= / x / 
such that F n Gr (f) = 0 and m(Fx) ^ 1 — e for all xel. 

Proof. Let Yfin >̂e a convergent series of positive terms with sum less than e. 
By Theorem 1 there exists for each n a closed set F„ <= I x I such that 
Fn n Gr(f | An) = 0 and m[(Fn)x] ^ 1 - ert for all xel. The set F = nFn has the 
required properties. 

Theorem 3. There exists a function f :I x I of Baire class 1 such that I cannot 
be partitioned into countably many sets An with each restriction f \ An continuous. 

Proof. In view of Theorem 2, it is sufficient for f to have the property that 
F n Gr (f) 4= 0 for every closed set F £ / x I which satisfies Fx + 0 for all xeL 
It is known [3] that there exists a function with G5 graph having the stated property; 
this is not quite enough, but the example constructed explicitly in [4] is lower semi-
continuous and therefore in the first Baire class. 

it-
Note added 13 January 1973. In a paper by L. KELDYSH (Sur les fonctions premieres 

mesurables B, Dokl. Akd. Nauk SSSR (N.S.) 5 (1934), 192-197) it was shown 
that for every a there exists a function f: / -> I of Baire class a, such that / cannot 
be partitioned into countably many sets An with each restriction f/A„ of class less 
than a, thereby answering a question of P. S. NOVIKOV, who had already proved the 
result stated above as Theorem 3. 
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