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Časopfs pro pëstování matematiky, roč. 98 (1973). Praha 

ON THE DEGREES OF GRAPHS WITH a(G) ^ 2 

JAROSLAV MORAVEK, Praha 

(Received July 31, 1972) 

Certain results are proved concerning the degrees of finite undirected graphs with 
the stability-number at most 2 (theorems 1, 2, 3). By applying theorems 1 and 2 we 
obtain the solution of an extremal combinatorial problem proposed by the author 
in [1] (theorem 4 of this paper). The obtained results generalize respectively modify 
a special case of a theorem of Turan (see e.g. [2], p. 269). The reader who is interested 
also in other generalizations or modifications of the Turan's theorem may consult 
e.g. [3], [4], [5] and [6]. 

Let n be a given integer, n — 2, and put Kn for a complete undirected graph without 
loops and multiple edges (cf. [2] pp. 5 — 7) with n vertices ul9 u2,..., un. Let us as
sociate with each partial graph (see [2] p. 7) G of Kn its stability-number a(G) (cf. [2], 
p. 260), and put dj(G) (j = 1, 2,..., n) for the degree of the vertex Uj in G (cf. [2], p. 6). 
Further, let us denote by &n the family of all partial graphs G of Kn such that a(G) ^ 2. 

Theorem 1. Let G e ©n. Then a partition1) 

{Wl)>-;-> «!<-)}- Ka + 1)- ' U K«)}} 

of the vertex-set {ulf u2,..., un} exists such that 

0) l s « s [ = ] ! > . 
00 min (d/(1)(G),..., di(a)(G)} ^ a - 1, 

(iii) min {di(a+l)(G),..., di(n)(G)} % n - a - l . 

Proof. Let Ge ©n. The subgraph (cf. [2], p. 7) of G generated by a nonempty 
set V cz {ul9 u 2,..., un} will be denoted by G(V). We shall distinguish the following 

*) The term "partition" will denote a disjoint decomposition. 
2 ) The symbol [f ] will denote the integer part of a real number (. 
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two cases: 

(«) min{di(G),d2(G),...,dn(G)}>r±-l 

(P) m i n ^ G ) , ^ ) , . . . , ^ ) } ^ ^ ! . 

In the (a) case the assertion of the theorem is obviously fulfilled for a = [in] and for 
an arbitrary partition having the form {{ui(1),..., uf([n/2])}, {uiiln/21+1},..., ui(n)}}. 

Thus, let us consider the ((J) case. Choose for ui(1) any vertex such that 

di(1)(G) = min{d/G)|; = l , 2 , . . . , n } , 

and denote by u i(2),..., ui(a) all the vertices adjacent to ui(1). Further, let u i ( a+1) , . . . 
..., ui(rt) denote all remaining vertices. We shall show that the partition 

{{"i(l)5...?«i(a)}5 K . + 1). -..,«!(»)}} 

constructed in this way, has properties (i) — (iii). 

Properties (i) and (ii) follow immediately from our construction and from (p); it 
remains to verify (iii). Indeed, the subgraph G({ui(a+1),..., ui(n)}) must be complete. 
Since assuming, on the contrary, that non-adjacent vertices ui(y) and ui(a) exist such 
that a < y < f3 ̂  n we obtain a stable set (cf. [2], p. 260) {ui(i), ui(y), ui(d)}, which 
contradicts a(G) = 2. 

From the completeness*ofG({ui(a+1),..., ui(w)}) (iii) immediately follows. • 
The following theorem shows that lowerbounds (ii) and (iii) established in theorem 

1 are best possible, and it describes all graphs G e ©n for which in (ii) and (iii) equality 

holds. 

Theorem 2. Let a e {1, 2,.. . , [in]}, and let 

{{Ui(l)> •••> Ui(a)}> {Ui(a+1)> •••> Ui(n)}} 

be a partition of the vertex-set of Kn. Then 6e®„ exists such that 

(1) dy(G) = a - l for j = i(l),i(2),...,i(a) 

and 

(2) dj(G) = n - a - 1 for j = i(a + 1),..., i(n). 

This graph is unique if a < \n, and it consists of two complete subgraphs as 
connectivity-components; the first connectivity-component is generated by {ui(i),... 
•••> ui(a)}> the second by {ui(a+i),..., um}.. 
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In the case ofa = \n all the graphs G e ©„ satisfying d/G) = \n — 1 (j = 1, 2, . . • 
..., n) are just the graphs which consist of two complete connectivity-components 
having an equal number of vertices. 

Proof. Let G0 be a graph of ©„ as follows: Vertices u and v are adjacent in G0 iff 

({u, v} cz {ul(1),..., u/(fl)} or {u, v} c {ui(fl+1),..., ui{n)}) . 

The graph G0 satisfies conditions (1) and (2), which proves the first part of the 
theorem. 

Conversely, let G be an arbitrary graph satisfying (1) and (2), and let us choose 
a vertex uj(1) such that 

d,(1)(G) = min{d,(G)|j = l , 2 , . . . , n } . 

Then dKl)(G) = a — 1. Further, let uy(2),..., uJ(a) be all the vertices adjacent to uy(1), 
and denote by uJ{a+1},..., uJ(n) the remaining vertices. Analogously as in the proof of 
theorem 1 we obtain 

(3) min{d;(1)(G),...,d,(a)(G)} = a - l , 

(4) min {dJ(a+ t)(G),..., dm(G)} = n - a - 1, 

and 

(5) 6({U7(a+l). •••>";(»)}) 

is complete. 
By combining (1), (2), (3) and (4) we obtain further 

(6) dj(1)(G) = ... = dy(fl)(G) = a - l , 

(7) dKa+1)(G) = ... = dm(G) = n - a - 1, 

and moreover if a < $n: 

(8) {;(l),j(2),...,j(a)} = {»(!), i(2),...,/(«)} 

{j(a + 1), ...,j(n)} = {i(a + 1),..., i(n)}. 

Now, it follows from (5), (6) and (7) that no vertex of {uJ(l),..., uj(a)} is adjacent to 
a vertex of {uJ(a+i),..., uJ(n)} and hence G({uK1),..., uJia)}) must be also complete. 

Thus G consists of two complete subgraphs • 

6 ( K i ) > •••>-;«.)}) a n d G({u;(«+i).---'uJ(n)}) 

as connectivity-components, and moreover (8) holds if a < \n. D 
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Let us denote by An the family of all n-dimensional vectors (<5l5 <52,..., Sn) such that 
Sj = dj(G) (j = 1, 2,. . . , n) holds for some 6 G S „ . Let ^ denote the partial-order 
relation on An as follows: 

(5l9...,8n)%(5'l9...98n) iff « ^ « J (; = l , . . . , n ) . 

Vector (5*,..., 3„) e An will be called a minimal element of An iff for any (o\,..., 8n)e 

(^....^^(^....^^(a!,...,*.) = («;,...,*:) • 
By using theorems 1 and 2 we obtain easily the following characterization of mini

mal elements of An. 

Corollary. Vector (Sl9 <52,..., 8n) e An is a minimal element of An iff there exists 
a partition 

{{.(1),..., i(a)}, {i(a + 1),..., i(n)}} of {1, 2,.. . , n} 

such that 1 ^ a ^ \n9 

Sj = a - 1 for j = i(l),..., i(a) , 

Sj = n - a - 1 for j = i(a + 1),..., i(n). • 

In the next theorem, another extremal property of the degrees of 6 e ©„ is investi
gated. 

Theorem 3. Let G e ©„. Then 

Further, the equality 
v2 „3 

ÄÍ^-^т-O-ìi 
hoWs ijff either G = Kn or G consists of two complete subgraphs as connectivity-
components. 

Remark 1. The first part of this theorem follows also from [1], 

Remark 2. The assertion may be formulated in a geometrical fashion as follows: 
The vector (dx(G), d2(G),..., dn(G)) is contained for any Ge ©n in the ball defined 
by (9). Moreover, the theorem describes all graphs G e ©„ the vector of degrees of 
those belongs to the boundary of the ball (9). 
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Proof of the theorem 3. Let us put E for the set of all edges of G. We shall say 
that e e E is incident to a triplet (ui9 uj9 uk) where 1 ^ i < j < k <; n if e links 
some pair of vertices ui9 uj9 uk. Let us denote by T(e) the set of all such triplets which 
are incident to e, and put 

(10) T = U T(e) . 
eeE 

It follows from <x(G) ̂  2 that T contains all triplets, and hence 

(11) card(T) = n ( " - 1 ) ^ - 2 ) . 

On the other hand, it follows from (10) that 
card(E) 

(12) card(T)= £ ( -1) ' " - £ ( r ) card(T(ei) n ... n T(er))
 3) 

r = l 

where £ ( r ) card(T(ex) n ... n T(er)) denotes the sum of card (T(ex) n ... n T(er)) 
over the family of all r-element subsets {e l9..., er} of E. From (12) it follows im
mediately 

(13) card (T) = £ ( - l)r~1 £('> card (T(ej) n...n T(er)) 
r = l 

since the remaining summands on the right-hand side of (12) are zero. (This follows 
from the fact that at most three distinct edges can be incident to a common triplet.) 

Now we shall express the first and the second summand on the right-hand side of 
(13) by using dj(G), and estimate the third: 

(14) I<»card(Tfo)) = (n - 2)card(E) - " Z - ? £d,(G) 
2 j = i 

(since each edge is incident to exactly n — 2 triplets), 

(15) I<2> card (T(et) n T(e2)) = } £ d,(G) (d,(6) - 1) , 

(since any two distinct edges are incident to a common triplet iff they have one com
mon vertex), and 

(16) . E (3 ) card (T(ex) n T(e2) n T(e3)) g 

^ i £(2> card (T(ei) n T(e2)) = * £ d/G) (d,(G) - 1) , 

(since to each three edges incident to a common triplet three pairs of edges correspond 
occuring in £ ( 2 ) card (T(ex) n T(e2)). 

3) According to the so called "principle of inclusion and exclusion". 
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By combining (11), (13), (14), (15) and (16) we obtain the inequality 

n-2 І d{G) - i І d .(G) (rf/G) _ i) Ł <n ~ \ (" ~ 2) 
2 j = i j - i 

which yields 

n(n - 1) (n - 2) 

„('Л--7-7-5 

2 
and 

proving the first part of the theorem. 

Now, let for 6 e ® „ the equality in (9) hold. Then 

3 £<3> card (T(ei) n T(e2) n T(e3)) = I<2) card (T(ei) n T(e2)) , 

and hence for any vertices u, v and w of G if u is adjacent both to v and to w then 
also v and w are adjacent, i.e. the subgraph G({u, v, w}) is complete. We conclude im
mediately from this fact that each connectivity-component of G is a complete sub
graph. Further a(G) ̂  2 yields that G has no more than two connectivity-components, 
and hence our assertion. 

In order to complete the proof we must show that the equality holds in (9) if 
G = Kn or G consists of two complete connectivity-components. Indeed, it follows 
from our assumption that an integer ae {0, 1,..., [in]} and a partition {{i(l)9 ... 
..., i(a)}9 {i(a + 1),..., i(n)}} of {1, 2,.. . , rc} exist such that 

jf&^W-1 f o r J = *(!),.-.,»tfl)> 
A ' j n - a - 1 for ; = i(a + 1),..., i(») . 

(If a = 0 then d,(G) = n — 1; this case corresponds to G = K„.) Then 

..(....^^^(.-....a^.i. 

which completes the proof. D 

Theorems 1 and 2 will be now applied for the solution of an open problem from [1]. 
Let be given nonnegative numbers cu c2> • • •> cn assigned respectively to ul9 u2,..., u„. 
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(The numbers ci9 c2,..., cn will be considered as weights of vertices.) Put 

n 

T»(CI, ..., cn) = min { X Cjdj(G) \ G e ©„} . 
1=1 

The problem of determing xn(cu ..., cn) was proposed in [l]4). The following theorem 
solves this problem, and moreover, in the case of Cj > 0(j = 1, 2,.. . , n) it describes 
all extremal graphs G e ©„. 

Theorem 4. a) It holds that 
a n 

T„(C1? . . . , cn) = min ((a - 1) £ c,a) + (n - a - 1) X cia)) 
;=-i j-=fl+i 

where the minimum is taken over the family of all partitions {{H^D, ..., ui(a)}> 
{tfi<.+D- •••. ««.)}} o/ {u l5..., u„} swch that 1 = a ^ in. 

b) Let min {cj | j = 1, 2,.. . , n} > 0, and 

n 

ZCjdj(G) = Tn(Cl> C2, . . . , Cn). 

Then 6 is a graph consisting of two complete subgraphs as connectivity-com
ponents. 

Proof. The a) part follows by combining theorem 1 and the fact that the function 
"(<51?..., dn) -+ cl51 + ... + cndn" is isotonic on z1n. 

If min {cj | j = 1, 2,.. . , n} > 0 then the considered function is even strictly iso
tonic. Thus it follows from 

£cjdj(G) = rn(cl9...9cn) that (dl(G)9...,dn(G)) 
1=i 

is a minimal element in An, and hence 6 is a graph described in the theorem 2, which 
completes the proof. • 

Remark. It follows from this theorem that for determining all solutions of the 
considered problem if c^ > 0 (j = 1,..., n) it is necessary and sufficient to determine 
all partitions {{ul(1),..., um}9 {wf(fl+1),..., wl(ft)}} such that 1 <; a = in and 

a n 

(a - 1) £ CK1) + (n - a - 1) £ c/0) = min = rn(cl9..., c„) . 
,/-=! i=-a+l 

*) This problem was proposed by the author also at the "Conference on Graph Theory and 
Combinatorial Analysis" held at Sttfin (May 1972). 
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If we put cx = c2 = .. • = cn = i in the previous theorem and observe that 
n 

£ CJ dj(G) equals the number of edges of G (i.e. card (E) according to the notation 
i = i 
used in the proof of theorem 3) in this case we obtain easily the following assertion 
that coincides with a special case of the Turan theorem. 

Corollary l.IfGe ©B then the number of all edges of G is at least [i(n — l)2]. 
Moreover, card (E) -= [£(n — l)2] iff G consists of two complete connectivity-
components. • 

In order to simplify the computation of rn(cu ..., c„) the following simple fact may 
be useful. 

Corollary 2. If c1 ^ c2 ^ ... ^ cn ^ 0 5) then xn(cl9..., cn) = min {(a - 1) . 

.£<., + ( „ _ , , _ 1) £ c , | a = l ,2 , . . . , [ in]}. 
j=l j=a+l 

Proof. In view of theorem 4, it is sufficient to prove that 

a n 

( « - ! ) ! c . o > + (n~a-l) £ clw ^ 
J = l J = 0 + 1 

Z(a-l)tcj + (n-a-l) £ c, 
j = l J=a+1 

holds for any partition {{i(l),..., i(a)}, {i(a + 1),..., i(n)}} of {1, 2,..., n} such 
that 1 ^ a ^ \n. Indeed 

a n 

(a - 1) £ c,0) + (n - a - 1) £ ci(;) = 
j-=l j = a + l 

= ( « - ! ) ! ««(/> + (» - 2«) £ *w = (a - 1) t Cj + (n~ 2a) £ c i0, ^ 
i = l i = a + l 1=1 j=a+l 

*(a-l)tcj + (n-2a) t Cj = (a - 1) £ c, + (n - a - 1) £ c,, 
j = l i = a + l j = l j=a+l 

which completes the proof. • 
The results of this paper can be also formulated in a different form. Let ©n denote 

the family of all partial graphs G of Kn that do not contain "triangles", i.e. complete 
subgraphs with three vertices. Let us consider the bijection # :©„<-• ©* such that 
<P(G) is the complementary graph of G e ©n. By using the mapping 0 we can state 
theorem 1 in the following equivalent fashion: 

) This can be guaranteed by an appropriate numbering of vertices. 
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"Let G e ©*. Then a partition 

J{0*Cl> •*!€->}* {uK-+i> ufO.>» 0 f {uu—>u*} 

exists such that 

0) is.s[f] 
(jj) max {dl(1)(G),..., df(fl)(G)} ^ n - a 

(jjj) max {di(fl+1}(G),..., dm(G)} ^ a ." 

Also the remaining assertions of this paper may be formulated in a "complementary" 
fashion. 

In the conclusion we present the following problem: Theorems 1 and 3 are certain 
necessary conditions for n given nonnegative integers to be representable as degrees 
of a certain graph G e ©w. We find it interesting to look for some necessary and 
sufficient conditions. 
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