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THE NONEXISTENCE OF FREE COMPLETE VECTOR LATTICES

MARIA JAkUBIKOVA, KoSice

(Received November 6, 1972)

Free vector lattices were investigated in [1], [3], [9], [11] (cf. also [2], Chap. XV,
§ 5). Since the class of all vector lattices is an equational one, for each cardinal m
there exists a free vector lattice X, with a set A of free generators such that card 4 =
= m. HALEs [4] proved that there does not exist a free complete Boolean algebra
with an infinite set of free complete generators (this solved the problem proposed by
RIEGER [8]). Using the result of Hales we show that there does not exist a free com-
plete vector lattice with an infinite set of free complete generators. An analogous
result concerning complete I-groups was proved in [5]. Further, we examine the
existence of free (o, oo)-distributive vector lattices where o is an infinite regular
cardinal.

For the terminology, cf. [2], Chap. XV. Lattice unions and intersections are de-
noted by v and A, respectively. Set unions, set intersections and the inclusion are
denoted by U, n and <, respectively. A sublattice L, of a lattice L is said to be a
closed sublattice of L, if, whenever {x;} (i € I) is a subset of L, such that Vx; exists
in L, then Vx; € L,, and if the dual condition also holds. A mapping ¢ of a lattice L
into a lattice L is said to be a complete homomorphism if it fulfils the following con-
dition (c,) and also the condition (c,) that is dual to (c,): If {x;} = L and if Vx;
exists in L, then

Vo(x;) exists in L and ¢(Vx;) = Vo(x)).

Let us recall the definition of a vector lattice (cf. [2]).

A real linear space L with elements f, g, ..., is called a vector lattice if L is lattice
ordered in such a manner that the partial ordering is compatible with the algebraic
structure of L, i.e.,

(i) f< gimpliesf + h < g + hforevery f, g, heL,

(i) f 2 0 implies af > 0 for every f € L and every real number o 2 0.
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Thus (L; +, A, V) is an Abelian lattice ordered group; hence (L; A, v)isa dis-
tributive lattice and

fr+l@viy=(F+av(f+h),
fr@ab)=(F+agA(f+h
is valid for every f, g, h € L.

Let A be a subset of a complete Boolean algebra B. We say that A completely
generates B if B; = B for each closed subalgebra B; of B with A = B,. The set 4
is said to be a set of free generators of B, if it satisfies the following conditions:
(a) A completely generates B; (b) if B’ is a complete Boolean algebra and if f is a map-
ping of the set 4 into B’ such that the set f(4) completely generates B', then there
exists a complete homomorphism Y of B onto B’ such that y(a) = f(a) for each
ae A.(Cf.[4])

Now we introduce analogous notions for complete vector lattices. For any vector
lattice X the corresponding lattice will be denoted by X. A vector sublattice X, of
a vector lattice X is said to be a closed vector sublattice of X, if X, is a closed sublat-
tice of X. Let 4 be a subset of a complete vector lattice X. We say that A completely
generates X if X, = X for each closed vector sublattice X; of X with 4 < X,.
A homomorphism ¢ of a complete vector lattice X into a complete vector lattice X’
is called a complete homomorphism if ¢ is a complete homomorphism of the lattice
X into the lattice X’. Let A be a subset of a complete vector lattice X. Then 4 is said
to be a set of free complete generators of X if it fulfils the following conditions: (a)
A completely generates X, and (b) for each complete vector lattice X’ and each map-
ping f : A > X’ such that f(A4) completely generates X’ there is a complete homo-
morphism ¥ of X onto X’ such that y(a) = f(a) for each a € A. If A is a set of free
complete generators of a complete vector lattice X and card 4 = 7, then X is called
a free complete vector lattice on y free complete generators.

Let X be a complete vector lattice, 0 < e € X. The element e is called a weak unit
of X if e A x > 0 for each 0 < x € X. The element e is a strong unit of X if for each
0 < x € X there is a positive integer n(x) such that x < n(x) e. Each strong unit of X
is a weak unit of X. Let e be a weak unit of X and let B(e) be the set of all elements
e;€ X such that e; > O and e; A (e — ¢,) = 0. The set B(e) is said to be a basis of X.

We need the following results:

Theorem A. (Cf. [6], p. 92.) Let e be a weak unit of a complete vector lattice X.
Then the basis B(e) is a closed sublattice of X and B(e) is a Boolean algebra.

Theorem B. (Cf. [6], p. 131, Thm. 1.53.) Let B be a complete Boolean algebra.
Then there is a complete vector lattice X and a weak unit e of X such that the basis
B(e) is isomorphic to B.
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Theorem C. (Cf. [4], § 4, Thm. 3.) Let m be an infinite cardinal. There exists a
complete Boolean algebra B, and a subset A < By, such that A completely genera-
tes By, card A = ¥, and card B,, = m.

Theorem 1. Let « be an infinite cardinal. There does not exist a free complete
vector lattice on o free complete generators.

Proof. Suppose that a set A4, is the set of free complete generators of a complete
lattice X, card A, = a. Let m be a cardinal, m > card X,. Let B = B,;, be a Boolean
algebra fulfilling the assertion of Thm. C. Further let X be a complete vector lattice
satisfying the assertion of Thm. B. Since the Boolean algebras B,, and B(e) are iso-
morphic we may put B(e) = B,. Choose ay, a; € A, and A; < A, \ {ao, a,},
card A; = N,. Let f; : 4; - A be a bijection and let f be a mapping of the set 4,
into X such that f(a,) = 0, f(a,) = e,f(a) = fy(a) for each a€ 4, and f(a) = 0 for
each ae Ay \ (4, U {ap, a,}). Let Y be the intersection of all closed vector sub-
lattices Y; of X with f(A4,) = Y. Then Yis a closed vector sublattice of X, hence Y
is a complete lattice and Y is completely generated by the set f(A4,).

According to the definition of a free complete vector lattice, there is a complete
homomorphism y of X, onto Y such that y(a) = f(a) for each a € 4,. Since e is
a weak unit of X, e is a weak unit of Y. By Thm. A, B(e) = B is a closed sublattice of
X and hence the set BN Y = B, is a closed sublattice of Y. Thus, since 0, e € B,
the set B, is a complete lattice. Obviously B, is distributive. Let b, € B,. Then
b, € B(e), hence b, A (e — by) = 0. This implies e — b, € B(e) and so e — b, € B,
Further we have b, v (e — by) = by + (e — by) = e, hence e — b, is the comple-
ment of b, in the Boolean algebra B. This implies that B, is a closed subalgebra of B.
Since 4 = B, we obtain (because B is completely generated by A4) that B, = B.
Therefore m = card B < card Y = card ¥(X,). This implies card X, = m, which is
a contradiction.

Let a, B be cardinals. Let us consider the following condition on a lattice L (cf. [4]):
(d;) L satisfies the identity

Ases Vtesz,t = V%Ts Asesxs,w(s)

whenever card S < «, card T < B and all joins and meets do exist in L.

If L satisfies (d,) and the condition dual to (d,) then L is called (a, B)-distributive.
If L is (¢, p)-distributive for each cardinal B, then it is said to be («, oo)-distributive.
It is easy to verify that a vector lattice is (a, B)-distributive if it fulfils the condition (d,).

A complete (a, co)-distributive Boolean algebra B is said to be a free complete
(o, oo)-distributive Boolean algebra on y free complete generators if there is a subset
A < Bwithcard A = y such that A4 is a set of free complete generators of B and every
‘mapping f of 4 onto a subset A’ of a complete («, oo0)-distributive Boolean algebra B’
which completely generates B’ can be extended to a complete homomorphism of B
onto B'.
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Replacing “Boolean algebra’ by ‘“vector lattice’ everywhere in the above definition,
we obtain the definition of a free complete (, oo)-distributive vector lattice on y
complete generators.

Theorem C'. (Cf.[4], p. 62.) Let y be an infinite regular cardinal. Let m be a car-
dinal, m = y. There exists a complete (y, co)-distributive Boolean algebra B and
a subset A = BY, such that A completely generates B, card A = y, and card B}, =
=m.

Theorem D. (Cf. [7].) Let B be a Boolean algebra and let M be the Stone space
of B. Then the lattice C(M) fo all real continuous functions on M is (o, p)-dis-
tributive if and only if B is (a, B)-distributive.

Theorem E. (Cf. [10], Thm. v. 3.1.) Let e be a strong unit of a complete vector
lattice Y. Let M be the Stone space of the Boolean algebra B(e) = B. Then Y is
isomorphic with the vector lattice B(M) consisting of all bounded continuous func-
tions on M.

A subset P of a vector lattice Q is said to be convex if p;, p, e P,qe Q,p; < g = p»
implies g € P. '

Lemma. Let P be a vector sublattice of a vector lattice Q. Assume that P is a con-
vex subset of Q and that for each 0 < q € Q there exists0 < pe P with p A q > 0.
Then P is («, B)-distributive.

Proof. If {f;} is a subset of P and if f € P is the least upper bound of {f;} in P,
then f is also the least upper bound of the set {f;} in Q (since P is convex in Q).
A similar assertion holds for greatest lower bounds of subsets of P. Thus if P is not
(«, B)-distributive, then Q fails to be (a, B)-distributive. Assume that Q is not («, f)-
distributive. Then there exists a system {X,,} = Q with card S < a, card T < f such
that all joins and meets standing in (d,) do exist in Q and

v = Ases Vier¥s,e > Voers Ases¥s o = U -
There exists 0 < f; € P with f; A (v — u) > 0. Denote

(‘xs,t A v) vVus= fa,t ’

(fs,, —u) Af1 =y,
Then we have

0< f1 A (U - u) = Ases VfETys,t + VWTS ASESys,qa(s) =0;

hence P is not (& B)-distributive.
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Theorem 2. Let y be an infinite regular cardinal. Then there does not exist a free
complete (y, o)-distributive vector lattice on y complete generators.

Proof. Suppose that X, is a complete (y, oo)-distributive vector lattice with a set
A, of free complete generators, card A, = y. Let m be a cardinal, m > card X,.
Let BY, = B be as in Thm. C'. Now we use a similar method asin the proof of Thm. 1.
Let X be as in Thm. B. We may put B = B(e). Choose two distinct elements aq, a, €
€ Ao and denote A; = 4, \ {ao, a,}. Then there exists a mapping f, of 4, onto 4
and let f be a mapping of 4, into X such that f(a,) = 0, f(a,) = e and f(a) = f,(a)
for each a € A,.

Let Y be the closed vector sublattice of X generated by the set A U {0, e}. Then
Y is a complete vector lattice that is completely generated by the set A U {e} and e is
a weak unit of Y. Let Y, be the set of all y € Y satisfying -n(y)esy = n(y) e for
a positive integer n(y). The set Y, is a complete vector lattice and it is a convex vector
sublattice of Y; the element e is a strong unit of Yj,.

Let M be the Stone space of the Boolean algebra B. According to Thm. D, C(M)
is (y, oo)-distributive and hence by the Lemma the vector lattice B(M) is (y, 00)-dis-
tributive. From Thm. E it follows that Y, is isomorphic with B(M) and therefore Y,
is (y, oo)-distributive. Since e is a weak unit of Y and since e belongs to Y,, according
to the Lemma we obtain that Y is (y, o0)-distributive. Thus there is a complete homo-
morphism y of X, onto Y. By the same reasoning as in the proof of Thm. 1 we get
that B(e) < Y. Therefore m < card Y < card X,, which is a contradiction.
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