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časopis pro pěstování matematiky, roč. 99 (1974), Praha 

TOLERANCE RELATION ON LATTICES 

IVAN CHAJDA, Přerov and BOHDAN ZELINKA, Liberec 

(Received September 19, 1973) 

E. C. ZEEMAN [3] has defined the tolerance as a binary relation on a set, which is 
reflexive and symmetric. M. ARBIB [1, 2] has applied this concept to the theory 
of automata. In [4] and [5], tolerances compatible with algebraic structures are 
studied. 

Let A = <A, J r > be an algebraic structure with the element set A and the set 
of operations <F. Let f be a tolerance on A. The tolerance £ is compatible with A, 
if and only if for any n-ary operation fe^, where n is a positive integer, and for 
any In elements xu ..., x„, yu..-,y„ of A such that (xh y,) e £, for i = 1, ..., n 
we have (f(xu ..., xn), f(yu ..., yn)) e f. 

Here we shall study tolerances which are compatible with lattices. Some simple 
results in this topic are in [4]. From the definition of a tolerance compatible with 
an algebraic structure it follows that a tolerance £ is compatible with a lattice L, 
if and only if for any four elements xu x2, yu y2 of Lsuch that (xu yx) e {, (x2, y2) e£ 
we have (x t A X2 , yt A y2) e {, (x{ v x2, yi v y2) e {. 

Theorem 1. Let Lbe a latticer let £ be a tolerance compatible with L. Let (a, b) e £ 
for some a e L, b e L. Then for any x and y from interval <a A b, a v b} we have 
(x, y) e f. 

Proof. From (a, b)e£, (b, b)e$ (£ is reflexive) we obtain (a A b, b A b) = 
= (a A b, b) e £, (a v b, b v b) = (a v b, b) e £. Analogously we obtain 
(a A b,a)e £, (a v b,a) e £. Further from (a A b, a) e £ and (a A b, b) e £ we ob
tain ((a A b) v (a A b), a v b) = (a A b, a v b) e £. Now let x e <a A b, a v by, 
y e <a A b, a v b}. From (a A b, a v b) e £, (x, x) e £ we have ((a A b) v x, 
a v b v x) = (x, a v b)e£ and analogously (y, a v b) e £. Taking meets, from 
(x, a v b) 6 £, (a v b, y) e £ we obtain (x A (a v b), y A (a v b)) == (x, y) e f. 
As x and y were chosen arbitrarily, this holds for any two elements of the interval 
<a A b, a v b}. 
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Corollary. In a lattice L with 0 and J, for any tolerance £ compatible with L 
the following three assertions are equivalent: 

(i) For some a e Lthere exists a complement a' and (a, a') e £. 

(ii)(0,I)el 

(iii) £, is the universal relation on L. 

O and I denote respectively the least and the greatest element of the lattice. 

Theorem 2. Let B be a Boolean algebra, let £ be a tolerance compatible with the 
operations of join and meet in B. Then £ is a congruence on B. 

Remark . Here we do not suppose a priori that £ is compatible with the comple
mentation, but this follows from the assertion. 

Proof. Let B0 be the set of all elements xe B such that (x, 0) e £. If x e B0, y e B, 
then x A y e B0, because (x, O) e £, (y, y)e ^ implies (x A y, 0) e £. Therefore B0 

is an ideal of B. Any ideal of a Boolean algebra determines uniquely a congruence 
on it. Let x be the congruence determined on B by B0. We shall prove x c £. If a e B0, 
b e B0, then (a, 0) e £, (O, b) e £ and this implies (a, b) e f. If c, d are elements of the 
same congruence class of x, then c = a v z, d = b v z, where a e B09 b e B09 

zeB. From (a, b) e f, (z, z) e £ we obtain (a v z, b v z) = (c, d) e £. Therefore 
x c £. Now let (w, v) e £, let v be the complement of v. From (u, v) e £, (v, v) e £ 
we obtain (u A v, v A v) = (u A v, 0) e £ and u A V e B0. This means that the 
class of x containing u is the complement of the class of x containing v in the Boolean 
factor-algebra Bjx. But obviously also the class of x containing v is the complement 
of the class of x containing v. As B\x is also a Boolean algebra, this complement 
is unique and u and v belong to the same congruence class of x. We have proved 
£ cz x and therefore £ = x. 

Theorem 3. Let C be a chain with at least three elements. Then there exist a toler
ance £ compatible with C which is not a congruence. 

Proof. Choose three elements a, b, c of L so that a -< b -< c. Now let £ consist 
of all pairs (x, y), where either both x and y belong to <a, b>, or both x and y belong 
to <b, c>, or x = y. This is evidently a tolerance on C. Now let (xl9 yt) e £, (x2, y2) e 
e f. If all elements xl9 yl9 x2, y2 belong to <a, b>, then also xx A X2 , xt v x2, 
yi A y2> yi v y2 belong to <a, b>, because the interval <a, b> is a sublattice of C: 
then (x t A x2, yt A y2) e f, (x2 v x2, yt v y2) e £. We proceed analogously if all 
elements xl9 yl9 x2, y2 belong to <b, c>. If xl9 yt belong to <a, b> and x2, y2 belong 
to <b, c>, then xx A x2 = xl9 xx v x2 = x2, yx A y2 = y l 9 yx v y2 = y2, there
fore xx A x2, y1 A y2 belong to <a, b>, x t v x2, yt v y2 belong to <b, c> and 
again (xt A x2, yx A y2) e £9 (xt v x2, yt v y2) e {. If xx belongs neither to <a, b>, 
nor to <b, c}9 then necessarily x t = yt. If it is less than a and x2, y2 belong both 
to <a, b> or both to <b, c>, we have xt A X2 = xl9 yt A y2 = y l5 x t v x2 = x2) 
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yi v y2 _ y2 and again (x t A X2 , yx A y2) £ £, (xx v x2, yx v y2) G £. The same 
follows analogously if Xj = yx > c and x2> y2 belong either both to <a, b >, or both 
to <b, c>. Finally, if xt = yl9 x2 = y2, the proof is easy. We have obtained that £ 
is a tolerance*compatible with C. We have (a, b) e £, (b, c) e £, but (a, c) $ £ and £ 
is not a congruence. 

Theorem 4. There exists a non-complete distributive lattice L such that any 
tolerance compatible with Lis a congruence. 

Proof. Let M be a set of cardinality K0, let Lbe the lattice of all finite subsets 
of M ordered by set inclusion. The elements of L will be denoted by capital letters 
as sets. Let £, be a tolerance compatible with L, let A, B, C be three elements of L 
such that (A, B) e <*, (B, C) e £. Let M0 = A u B u C; it is a finite set. Let L0 be 
the lattice of all subsets of M 0 ; it is a Boolean algebra and a sublattice of L. Let £0 be 
the restriction of £ onto L0. Then £0 is a tolerance compatible with L0; as L0 is a Boo
lean algebra, £0 is a congruence on L0 and (A, C) e £0. But as £0 - {, we have 
also (A, C) G <J. As A, #, C and £ were chosen quite arbitrarily, any tolerance com
patible with L is transitive, therefore it is a congruence. The lattice L is evidently 
distributive and non-complete. 

Theorem 5. There exists a non-complete distributive lattice in which a tolerance £ 
exists which is not a congruence and is compatible with L. 

Proof. We shall construct L. The vertices of L are ordered pairs of integers and 
[xi> yi] 1_ [x2» y2] if and only if simultaneously xx :_ x2, yx ^ y2. Evidently 

[*i> yi] A [*2> y2] = [min (xl9 x2), min (yl9 y2)] , 

[*i> yi] v [*2> y2] = [max (xl9 x2), max (yl9 y2)] . 

We define £ so that ([xl9 yt]9 [x2, j 2 ] ) G <!;, if and only if simultaneously |x t — x2 | :_ 
_ 1> |y i — yi\ _ 1. It is evidently a tolerance. Now let ([x l s yx], [x2, y2]) G £9 

([ul9 vt]9 [u2, v2]) e £. We shall prove that then also ([xl9 yt] A [UU vj, [x2, y2] A 
A [M2, t>2]) G <!;, this means I m i n ^ , t^) - min(x2 , u2)\ ^ 1 and |min(y1,i;1) -
— min (y29 v2)\ _ 1. If Xj g u l9 x2 ^ u2, then min (x1? ux) = x l s min (x2, u2) = x2, 
and we have \xx - x2 | ^ 1, because ([x l5 yx], [x2, y2]) e £. If x1 ;_ ul9 x2 ^ u2, 
then min(x 1 ,u 1) = ul9 min(x2 , u2) _ u2 and the situation is similar. Now let 
Xi _ ul9 x2 _ u2. Then xx — x2 _ xx — u2 _ ux — u2. But |xj — x2 | ^ 1, |u t — 
— u2 | ^ 1, therefore xt — x2 j _ — 1, ut — u2 ^ 1 and thus — 1 ?_ x t — u2 ^ 1, 
which means |xx -- u2 | _ 1. Analogously we proceed in the case xx _ ul9 x2 _ u2. 
We have proved that |min (xl9 ut) — min (x2, u2)| _ 1. The proof of the inequality 
|min(y l 5 vt) - min(y2 , t;2)| ^ 1 is quite analogous. Thus ([x l5 yx] A [ul9 vx], 
[x2 , y2] A [u2, v2]) e Z. Dually we can prove also ([x1? yt] v [ul9 vt]9 [x2, y2] v 
v [u2, t;2]) € <!; and therefore £ is a tolerance compatible with L. We have ([0, 0], 
[1,1]) e {, ([1,1] , [2, 2]) G {, but ([0, 0], [2, 2]) £ { and hence £ is not transitive. 
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Theorem 6. For each cardinal number n = 5 there exists a modular non-distribut
ive lattice L, \L\ = n, such that any tolerance £ compatible with it is either the 
identity (i.e., (x, y) e £ if and only ifx = y), or the universal relation (i.e., (x, y) e £ 
for each x and v). 

Proof. Let K be a set of cardinality n — 2, if n is finite, and of the cardinality n, 
if n is infinite. The set of elements of L consists of the elements ak (k e K) and of the 
elements 0,1. We define O <ak<I for all keK and ak || at for keK, leK, 
k 4= /. Let £ be a tolerance compatible with Land suppose that there exist x e L, y e L 
such that x 4= y, (x, y) e £,. As £ is symmetric, we may suppose without loss of general
ity that either x :_ y, or x || y. According to Theorem 1 it suffices to prove that then 
(O,I) e £. If x — O, y = I, this is immediate. If x = ak, y = at for keK, I eK, 
k 4= / then according to Corollary, £ is the universal relation, because at is a com
plement of ak. If x = O, y = afc for some keK, then take some ax for / e K, / =}= k; 
as \L\ _ 5, such at exists. From (O, afc) e <!;, (a,, aj) e £ we obtain (O v ah ak v aj) = 
= (ah I) e £, If we take some m e K, m 4= k, m 4= /, we can prove in the same way 
that (am, I) e f. From (az, I) e £, (am, I) e £ we obtain (az A am, I A I) = (O, I) e £. 
In the case x = afe, y = I we proceed dually. 

Remark. Forn = 5 this lattice is actually the "forbidden sublattice" for distributive 
lattices. 

Theorem 7. There exists a non-modular lattice on which a tolerance compatible 
with it exists which is not a congruence. 

o 
Proof. The Hasse diagram of such a lattice is in Fig. 1. The tolerance £ is given 

so that (x, y) e £, if and only if x and y lie simultaneously either in <O, b>, or in <a, d}, 
or in <c,f>, or in <e, J>. The reader may verify himself that £ is compatible with L. 
The tolerance f is not a congruence. 

397 



Theorem 8. Let Lbe a lattice, L0 its sublattice, let there exist a homomorphism cp 
which maps Lonto a lattice Lx and such that (p(x) = <p(y), if and only if xe L0, 
y e L0. On L0 let there exist a tolerance £0 compatible with L0 which is not a con
gruence. Then there exists a tolerance £ compatible with Lwhich is not a congruence. 

Proof. Let £ consist of all pairs of elements which are in £0 and of all pairs of equal 
elements of L. We shall prove that f is compatible with L. Let (x1? yx) e <J, (x2, y2) e £. 
If all elements xl9 yx,xl9y2 belong to L0, then (xl9yx)e£09 (x2, y2) e £0. The 
elements xx A X2 , XX V X2 , yx A yl9 yx v y2 belong to L0 and (xx A X2, yx A 2) e 
e £0 c £, (xx v x2, yx v y2) e £0 C {. Now let x t e L0, x2 6 L0, x2 = y2 6 L0. If 
*2 .= *i> ^ e n </>(x2) ĝ  (p(xx) = ^ i ) and therefore y2 = x2 ^ y^ We have (x1 A 
A x2, yx A y2) = (x2, y2) e £, (x t v x2, j?- v y2) = (xl9 yx) e £. In the case x2 ^ 
^ Xj .we proceed dually. If xx || x2, we have (p(xx) || cp(x2)9 because evidently 
<p(xx) + <p(x2). But ^ ( x ^ = <p(yx)9 therefore cp(x2) || cp(yx) in L t and x2 || yx in L. 
In Lx we have <p(x2) A cp(xx) = <p(x2) A <D(yt) -# <p(xi), therefore x2 A yx £L 0 , 
x2 A ^ £L 0 . But as <p(x2 A XX) = <p(x2) A <p(xt) = <p(x2) A <p(yx) = <p(x2 A yx)9 

the elements x2 A XX, X2 A yx must be equal (they are not in L0 and their images 
in <p are equal). Thus (xx A X2, y1 A y2) e <!;. For joins we proceed dually. Finally, 
if xx = y l 5 x2 = yl9 the proof is easy. We have proved that £ is a tolerance compat
ible with L. Now if £0 is not transitive, also £ is not transitive, because £ contains 
no pair of elements of L0 which are not in t;0. 

In the end we shall prove a theorem concerning tolerance relations on arbitrary 
algebraic structures. 

Theorem 9. Let A = <A, #"> be an algebraic structure. The tolerances compatible 
with A form a lattice LT(A) with respect to the set inclusion. In general, this lattice 
is not a sublattice (in the algebraic sense) of the lattice of all tolerances on A. 

Proof. As shown in [5], the intersection of two tolerances compatible with A is 
a tolerance compatible with A. Thus in LT(A) we put ^ A £2 = £)1 n £2 for any 
two tolerances £l5 £2 which are compatible with A. Now consider the set of all 
tolerances which are compatible with A and which contain ^ u £2. This set is non
empty, because it contains the universal relation on A. It is closed under intersection, 
the intersection of all tolerances of this set being a tolerance compatible with A and 
containing £i u £2. This tolerance will be denoted by £x v £2 and it will be the join 
of c^ and £2 in LT(A)9 because it is contained in all tolerances compatible with A 
which contain f j u £2. 

In general ^ v £2 need not be equal to ^ u £2. For example, let A be the lattice 
whose elements are a, b, O,I and in which 0 < a <I, 0 < b <I, a \\ b. Let 
*i - {(<>, O), (O, a), (a, O), (a, a), (b, b), (b91), (I, b), (I, I)}, £2 = {(O, 0), (O, b), 
(a, a), (a, I), (b, O), (b, b), (I, a), ( / , / )} . These tolerances are compatible with A; 
the proof is left to the reader. The tolerance £x v £2 is the universal relation, because 
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(O, /) e ^ v Zji we obtain this from (O, a) e £t cz { t v £2, (O, b) e <̂ 2 c ^ v £2 

taking joins. But the set union £x u £2 does not contain (0,1). Therefore LT(A) 
is not a sublattice in the algebraic sense of the lattice of all tolerances on A. 
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