Časopis pro pěstování matematiky

Ivan Chajda; Bohdan Zelinka
Tolerance relation on lattices

Časopis pro pěstování matematiky, Vol. 99 (1974), No. 4, 394--399
Persistent URL: http://dml.cz/dmlcz/117860

Terms of use:

© Institute of Mathematics AS CR, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

TOLERANCE RELATION ON LATTICES

Ivan Chajda, Přerov and Bohdan Zelinka, Liberec

(Received September 19, 1973)
E. C. Zeeman [3] has defined the tolerance as a binary relation on a set, which is reflexive and symmetric. M. Arbib [1,2] has applied this concept to the theory of automata. In [4] and [5], tolerances compatible with algebraic structures are studied.

Let $\boldsymbol{A}=\langle A, \mathscr{F}\rangle$ be an algebraic structure with the element set A and the set of operations \mathscr{F}. Let ξ be a tolerance on A. The tolerance ξ is compatible with \mathbf{A}, if and only if for any n-ary operation $f \in \mathscr{F}$, where n is a positive integer, and for any $2 n$ elements $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ of A such that $\left(x_{i}, y_{i}\right) \in \xi$ for $i=1, \ldots, n$ we have $\left(f\left(x_{1}, \ldots, x_{n}\right), f\left(y_{1}, \ldots, y_{n}\right)\right) \in \xi$.

Here we shall study tolerances which are compatible with lattices. Some simple results in this topic are in [4]. From the definition of a tolerance compatible with an algebraic structure it follows that a tolerance ξ is compatible with a lattice L, if and only if for any four elements $x_{1}, x_{2}, y_{1}, y_{2}$ of L such that $\left(x_{1}, y_{1}\right) \in \xi,\left(x_{2}, y_{2}\right) \in \xi$ we have $\left(x_{1} \wedge x_{2}, y_{1} \wedge y_{2}\right) \in \xi,\left(x_{1} \vee x_{2}, y_{1} \vee y_{2}\right) \in \xi$.

Theorem 1. Let Lbe a lattice, let ξ be a tolerance compatible with L. Let $(a, b) \in \xi$ for some $a \in L, b \in L$. Then for any x and y from interval $\langle a \wedge b, a \vee b\rangle$ we have $(x, y) \in \xi$.

Proof. From $(a, b) \in \xi,(b, b) \in \xi$ (ξ is reflexive) we obtain $(a \wedge b, b \wedge b)=$ $=(a \wedge b, b) \in \xi, \quad(a \vee b, b \vee b)=(a \vee b, b) \in \xi$. Analogously we obtain $(a \wedge b, a) \in \xi,(a \vee b, a) \in \xi$. Further from $(a \wedge b, a) \in \xi$ and $(a \wedge b, b) \in \xi$ we ob$\operatorname{tain}((a \wedge b) \vee(a \wedge \dot{b}), a \vee b)=(a \wedge b, a \vee b) \in \xi$. Now let $x \in\langle a \wedge b, a \vee b\rangle$, $y \in\langle a \wedge b, a \vee b\rangle$. From $(a \wedge b, a \vee b) \in \xi,(x, x) \in \xi$ we have $((a \wedge b) \vee x$, $a \vee b \vee x)=(x, a \vee b) \in \xi$ and analogously $(y, a \vee b) \in \xi$. Taking meets, from $(x, a \vee b) \in \xi,(a \vee b, y) \in \xi$ we obtain $(x \wedge(a \vee b), y \wedge(a \vee b))=(x, y) \in \xi$. As x and y were chosen arbitrarily, this holds for any two elements of the interval $\langle a \wedge b, a \vee b\rangle$.

Corollary. In a lattice L with O and I, for any tolerance ξ compatible with L the following three assertions are equivalent:
(i) For some $a \in L$ there exists a complement a^{\prime} and $\left(a, a^{\prime}\right) \in \xi$.
(ii) $(O, I) \in \xi$.
(iii) ξ is the universal relation on L.
O and I denote respectively the least and the greatest element of the lattice.
Theorem 2. Let B be a Boolean algebra, let ξ be a tolerance compatible with the operations of join and meet in B. Then ξ is a congruence on B.

Remark. Here we do not suppose a priori that ξ is compatible with the complementation, but this follows from the assertion.

Proof. Let B_{0} be the set of all elements $x \in B$ such that $(x, O) \in \xi$. If $x \in B_{0}, y \in B$, then $x \wedge y \in B_{0}$, because $(x, O) \in \xi,(y, y) \in \xi$ implies $(x \wedge y, O) \in \xi$. Therefore B_{0} is an ideal of B. Any ideal of a Boolean algebra determines uniquely a congruence on it. Let x be the congruence determined on B by B_{0}. We shall prove $\varkappa \subset \xi$. If $a \in B_{0}$, $b \in B_{0}$, then $(a, O) \in \xi,(O, b) \in \xi$ and this implies $(a, b) \in \xi$. If c, d are elements of the same congruence class of χ, then $c=a \vee z, d=b \vee z$, where $a \in B_{0}, b \in B_{0}$, $z \in B$. From $(a, b) \in \xi,(z, z) \in \xi$ we obtain $(a \vee z, b \vee z)=(c, d) \in \xi$. Therefore $x \subset \xi$. Now let $(u, v) \in \xi$, let \bar{v} be the complement of v. From $(u, v) \in \xi,(\bar{v}, \bar{v}) \in \xi$ we obtain $(u \wedge \bar{v}, v \wedge \bar{v})=(u \wedge \bar{v}, O) \in \xi$ and $u \wedge \bar{v} \in B_{0}$. This means that the class of x containing u is the complement of the class of x containing \bar{v} in the Boolean factor-algebra B / x. But obviously also the class of x containing v is the complement of the class of x containing \bar{v}. As B / \varkappa is also a Boolean algebra, this complement is unique and u and v belong to the same congruence class of x. We have proved $\xi \subset x$ and therefore $\xi=x$.

Theorem 3. Let C be a chain with at least three elements. Then there exist a tolerance ξ compatible with C which is not a congruence.

Proof. Choose three elements a, b, c of L so that $a \prec b \prec c$. Now let ξ consist of all pairs (x, y), where either both x and y belong to $\langle a, b\rangle$, or both x and y belong to $\langle b, c\rangle$, or $x=y$. This is evidently a tolerance on C. Now let $\left(x_{1}, y_{1}\right) \in \xi,\left(x_{2}, y_{2}\right) \in$ $\epsilon \xi$. If all elements $x_{1}, y_{1}, x_{2}, y_{2}$ belong to $\langle a, b\rangle$, then also $x_{1} \wedge x_{2}, x_{1} \vee x_{2}$, $y_{1} \wedge y_{2}, y_{1} \vee y_{2}$ belong to $\langle a, b\rangle$, because the interval $\langle a, b\rangle$ is a sublattice of C; then $\left(x_{1} \wedge x_{2}, y_{1} \wedge y_{2}\right) \in \xi,\left(x_{1} \vee x_{2}, y_{1} \vee y_{2}\right) \in \xi$. We proceed analogously if all elements $x_{1}, y_{1}, x_{2}, y_{2}$ belong to $\langle b, c\rangle$. If x_{1}, y_{1} belong to $\langle a, b\rangle$ and x_{2}, y_{2} belong to $\langle b, c\rangle$, then $x_{1} \wedge x_{2}=x_{1}, x_{1} \vee x_{2}=x_{2}, y_{1} \wedge y_{2}=y_{1}, y_{1} \vee y_{2}=y_{2}$, therefore $x_{1} \wedge x_{2}, y_{1} \wedge y_{2}$ belong to $\langle a, b\rangle, x_{1} \vee x_{2}, y_{1} \vee y_{2}$ belong to $\langle b, c\rangle$ and again $\left(x_{1} \wedge x_{2}, y_{1} \wedge y_{2}\right) \in \xi,\left(x_{1} \vee x_{2}, y_{1} \vee y_{2}\right) \in \xi$. If x_{1} belongs neither to $\langle a, b\rangle$, nor to $\langle b, c\rangle$, then necessarily $x_{1}=y_{1}$. If it is less than a and x_{2}, y_{2} belong both to $\langle a, b\rangle$ or both to $\langle b, c\rangle$, we have $x_{1} \wedge x_{2}=x_{1}, y_{1} \wedge y_{2}=y_{1}, x_{1} \vee x_{2}=x_{2}$,
$y_{1} \vee y_{2}=y_{2}$ and again $\left(x_{1} \wedge x_{2}, y_{1} \wedge y_{2}\right) \in \xi,\left(x_{1} \vee x_{2}, y_{1} \vee y_{2}\right) \in \xi$. The same follows analogously if $x_{1}=y_{1} \succ c$ and x_{2}, y_{2} belong either both to $\langle a, b\rangle$, or both to $\langle b, c\rangle$. Finally, if $x_{1}=y_{1}, x_{2}=y_{2}$, the proof is easy. We have obtained that ξ is a tolerance compatible with C. We have $(a, b) \in \xi,(b, c) \in \xi$, but $(a, c) \notin \xi$ and ξ is not a congruence.

Theorem 4. There exists a non-complete distributive lattice L such that any tolerance compatible with Lis a congruence.

Proof. Let M be a set of cardinality \aleph_{0}, let L be the lattice of all finite subsets of M ordered by set inclusion. The elements of L will be denoted by capital letters as sets. Let ξ be a tolerance compatible with L, let A, B, C be three elements of L such that $(A, B) \in \xi,(B, C) \in \xi$. Let $M_{0}=A \cup B \cup C$; it is a finite set. Let L_{0} be the lattice of all subsets of M_{0}; it is a Boolean algebra and a sublattice of L. Let ξ_{0} be the restriction of ξ onto L_{0}. Then ξ_{0} is a tolerance compatible with L_{0}; as L_{0} is a Boolean algebra, ξ_{0} is a congruence on L_{0} and $(A, C) \in \xi_{0}$. But as $\xi_{0} \subset \xi$, we have also $(A, C) \in \xi$. As A, B, C and ξ were chosen quite arbitrarily, any tolerance compatible with L is transitive, therefore it is a congruence. The lattice L is evidently distributive and non-complete.

Theorem 5. There exists a non-complete distributive lattice in which a tolerance ξ exists which is not a congruence and is compatible with L.

Proof. We shall construct L. The vertices of L are ordered pairs of integers and $\left[x_{1}, y_{1}\right] \leqq\left[x_{2}, y_{2}\right]$ if and only if simultaneously $x_{1} \leqq x_{2}, y_{1} \leqq y_{2}$. Evidently

$$
\begin{aligned}
& {\left[x_{1}, y_{1}\right] \wedge\left[x_{2}, y_{2}\right]=\left[\min \left(x_{1}, x_{2}\right), \min \left(y_{1}, y_{2}\right)\right]} \\
& {\left[x_{1}, y_{1}\right] \vee\left[x_{2}, y_{2}\right]=\left[\max \left(x_{1}, x_{2}\right), \max \left(y_{1}, y_{2}\right)\right]}
\end{aligned}
$$

We define ξ so that $\left(\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right]\right) \in \xi$, if and only if simultaneously $\left|x_{1}-x_{2}\right| \leqq$ $\leqq 1,\left|y_{1}-y_{2}\right| \leqq 1$. It is evidently a tolerance. Now let $\left(\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right]\right) \in \xi$, $\left(\left[u_{1}, v_{1}\right],\left[u_{2}, v_{2}\right]\right) \in \xi$. We shall prove that then also $\left(\left[x_{1}, y_{1}\right] \wedge\left[u_{1}, v_{1}\right],\left[x_{2}, y_{2}\right] \wedge\right.$ $\left.\wedge\left[u_{2}, v_{2}\right]\right) \in \xi$, this means $\left|\min \left(x_{1}, u_{1}\right)-\min \left(x_{2}, u_{2}\right)\right| \leqq 1$ and $\mid \min \left(y_{1}, v_{1}\right)-$ $-\min \left(y_{2}, v_{2}\right) \mid \leqq 1$. If $x_{1} \leqq u_{1}, x_{2} \leqq u_{2}$, then $\min \left(x_{1}, u_{1}\right)=x_{1}, \min \left(x_{2}, u_{2}\right)=x_{2}$, and we have $\left|x_{1}-x_{2}\right| \leqq 1$, because $\left(\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right]\right) \in \xi$. If $x_{1} \geqq u_{1}, x_{2} \geqq u_{2}$, then $\min \left(x_{1}, u_{1}\right)=u_{1}, \min \left(x_{2}, u_{2}\right)=u_{2}$ and the situation is similar. Now let $x_{1} \leqq u_{1}, x_{2} \geqq u_{2}$. Then $x_{1}-x_{2} \leqq x_{1}-u_{2} \leqq u_{1}-u_{2}$. But $\left|x_{1}-x_{2}\right| \leqq 1, \mid u_{1}-$ $-u_{2} \mid \leqq 1$, therefore $x_{1}-x_{2} \geqq-1, u_{1}-u_{2} \leqq 1$ and thus $-1 \leqq x_{1}-u_{2} \leqq 1$, which means $\left|x_{1}-u_{2}\right| \leqq 1$. Analogously we proceed in the case $x_{1} \geqq u_{1}, x_{2} \leqq u_{2}$. We have proved that $\left|\min \left(x_{1}, u_{1}\right)-\min \left(x_{2}, u_{2}\right)\right| \leqq 1$. The proof of the inequality $\left|\min \left(y_{1}, v_{1}\right)-\min \left(y_{2}, v_{2}\right)\right| \leqq 1$ is quite analogous. Thus $\left(\left[x_{1}, y_{1}\right] \wedge\left[u_{1}, v_{1}\right]\right.$, $\left.\left[x_{2}, y_{2}\right] \wedge\left[u_{2}, v_{2}\right]\right) \in \xi$. Dually we can prove also $\left(\left[x_{1}, y_{1}\right] \vee\left[u_{1}, v_{1}\right],\left[x_{2}, y_{2}\right] \vee\right.$ $\left.\vee\left[u_{2}, v_{2}\right]\right) \in \xi$ and therefore ξ is a tolerance compatible with L. We have $([0,0]$, $[1,1]) \in \xi,([1,1],[2,2]) \in \xi$, but $([0,0],[2,2]) \notin \xi$ and hence ξ is not transitive.

Theorem 6. For each cardinal number $n \geqq 5$ there exists a modular non-distributive lattice $L,|L|=n$, such that any tolerance ξ compatible with it is either the identity (i.e., $(x, y) \in \xi$ if and only if $x=y$), or the universal relation (i.e., $(x, y) \in \xi$ for each x and y).

Proof. Let K be a set of cardinality $\boldsymbol{n}-2$, if \boldsymbol{n} is finite, and of the cardinality \boldsymbol{n}, if \boldsymbol{n} is infinite. The set of elements of L consists of the elements $a_{k}(k \in K)$ and of the elements O, I. We define $O \prec a_{k} \prec I$ for all $k \in K$ and $a_{k} \| a_{l}$ for $k \in K, l \in K$, $k \neq l$. Let ξ be a tolerance compatible with L and suppose that there exist $x \in L, y \in L$ such that $x \neq y,(x, y) \in \xi$. As ξ is symmetric, we may suppose without loss of generality that either $x \leqq y$, or $x \| y$. According to Theorem 1 it suffices to prove that then $(O, I) \in \xi$. If $x=O, y=I$, this is immediate. If $x=a_{k}, y=a_{l}$ for $k \in K, l \in K$, $k \neq l$ then according to Corollary, ξ is the universal relation, because a_{l} is a complement of a_{k}. If $x=O, y=a_{k}$ for some $k \in K$, then take some a_{l} for $l \in K, l \neq k$; as $|L| \geqq 5$, such a_{l} exists. From $\left(O, a_{k}\right) \in \xi,\left(a_{l}, a_{l}\right) \in \xi$ we obtain $\left(O \vee a_{l}, a_{k} \vee a_{l}\right)=$ $=\left(a_{l}, I\right) \in \xi$. If we take some $m \in K, m \neq k, m \neq l$, we can prove in the same way that $\left(a_{m}, I\right) \in \xi$. From $\left(a_{l}, I\right) \in \xi,\left(a_{m}, I\right) \in \xi$ we obtain $\left(a_{l} \wedge a_{m}, I \wedge I\right)=(O, I) \in \xi$. In the case $x=a_{k}, y=I$ we proceed dually.

Remark. For $\boldsymbol{n}=5$ this lattice is actually the "forbidden sublattice" for distributive lattices.

Theorem 7. There exists a non-modular lattice on which a tolerance compatible with it exists which is not a congruence.

Proof. The Hasse diagram of such a lattice is in Fig. 1. The tolerance ξ is given so that $(x, y) \in \xi$, if and only if x and y lie simultaneously either in $\langle O, b\rangle$, or in $\langle a, d\rangle$, or in $\langle c, f\rangle$, or in $\langle e, I\rangle$. The reader may verify himself that ξ is compatible with L. The tolerance ξ is not a congruence.

Theorem 8. Let L be a lattice, L_{0} its sublattice, let there exist a homomorphism φ which maps L onto a lattice L_{1} and such that $\varphi(x)=\varphi(y)$, if and only if $x \in L_{0}$, $y \in L_{0}$. On L_{0} let there exist a tolerance ξ_{0} compatible with L_{0} which is not a congruence. Then there exists a tolerance ξ compatible with L which is not a congruence.

Proof. Let ξ consist of all pairs of elements which are in ξ_{0} and of all pairs of equal elements of L. We shall prove that ξ is compatible with L. Let $\left(x_{1}, y_{1}\right) \in \xi,\left(x_{2}, y_{2}\right) \in \xi$. If all elements $x_{1}, y_{1}, x_{2}, y_{2}$ belong to L_{0}, then $\left(x_{1}, y_{1}\right) \in \xi_{0},\left(x_{2}, y_{2}\right) \in \xi_{0}$. The elements $x_{1} \wedge x_{2}, x_{1} \vee x_{2}, y_{1} \wedge y_{2}, y_{1} \vee y_{2}$ belong to L_{0} and $\left(x_{1} \wedge x_{2}, y_{1} \wedge 2\right) \in$ $\in \xi_{0} \subset \xi,\left(x_{1} \vee x_{2}, y_{1} \vee y_{2}\right) \in \xi_{0} \subset \xi$. Now let $x_{1} \in L_{0}, x_{2} \in L_{0}, x_{2}=y_{2} \notin L_{0}$. If $x_{2} \leqq x_{1}$, then $\varphi\left(x_{2}\right) \leqq \varphi\left(x_{1}\right)=\varphi\left(y_{1}\right)$ and therefore $y_{2}=x_{2} \leqq y_{1}$. We have $\left(x_{1} \wedge\right.$ $\left.\wedge x_{2}, y_{1} \wedge y_{2}\right)=\left(x_{2}, y_{2}\right) \in \xi,\left(x_{1} \vee x_{2}, y_{1} \vee y_{2}\right)=\left(x_{1}, y_{1}\right) \in \xi$. In the case $x_{2} \geqq$ $\geqq x_{1}$.we proceed dually. If $x_{1} \| x_{2}$, we have $\varphi\left(x_{1}\right) \| \varphi\left(x_{2}\right)$, because evidently $\varphi\left(x_{1}\right) \neq \varphi\left(x_{2}\right)$. But $\varphi\left(x_{1}\right)=\varphi\left(y_{1}\right)$, therefore $\varphi\left(x_{2}\right) \| \varphi\left(y_{1}\right)$ in L_{1} and $x_{2} \| y_{1}$ in L. In L_{1} we have $\varphi\left(x_{2}\right) \wedge \varphi\left(x_{1}\right)=\varphi\left(x_{2}\right) \wedge \varphi\left(y_{1}\right) \neq \varphi\left(x_{1}\right)$, therefore $x_{2} \wedge y_{1} \notin L_{0}$, $x_{2} \wedge y_{1} \notin L_{0}$. But as $\varphi\left(x_{2} \wedge x_{1}\right)=\varphi\left(x_{2}\right) \wedge \varphi\left(x_{1}\right)=\varphi\left(x_{2}\right) \wedge \varphi\left(y_{1}\right)=\varphi\left(x_{2} \wedge y_{1}\right)$, the elements $x_{2} \wedge x_{1}, x_{2} \wedge y_{1}$ must be equal (they are not in L_{0} and their images in φ are equal). Thus $\left(x_{1} \wedge x_{2}, y_{1} \wedge y_{2}\right) \in \xi$. For joins we proceed dually. Finally, if $x_{1}=y_{1}, x_{2}=y_{2}$, the proof is easy. We have proved that ξ is a tolerance compatible with L. Now if ξ_{0} is not transitive, also ξ is not transitive, because ξ contains no pair of elements of L_{0} which are not in ξ_{0}.

In the end we shall prove a theorem concerning tolerance relations on arbitrary algebraic structures.

Theorem 9. Let $\boldsymbol{A}=\langle A, \mathscr{F}\rangle$ be an algebraic structure. The tolerances compatible with \boldsymbol{A} form a lattice $L T(A)$ with respect to the set inclusion. In general, this lattice is not a sublattice (in the algebraic sense) of the lattice of all tolerances on A.

Proof. As shown in [5], the intersection of two tolerances compatible with A is a tolerance compatible with \boldsymbol{A}. Thus in $L T(\boldsymbol{A})$ we put $\xi_{1} \wedge \xi_{2}=\xi_{1} \cap \xi_{2}$ for any two tolerances ξ_{1}, ξ_{2} which are compatible with A. Now consider the set of all tolerances which are compatible with \boldsymbol{A} and which contain $\xi_{1} \cup \xi_{2}$. This set is non--empty, because it contains the universal relation on A. It is closed under intersection, the intersection of all tolerances of this set being a tolerance compatible with \boldsymbol{A} and containing $\xi_{1} \cup \xi_{2}$. This tolerance will be denoted by $\xi_{1} \vee \xi_{2}$ and it will be the join of ξ_{1} and ξ_{2} in $L T(A)$, because it is contained in all tolerances compatible with A which contain $\xi_{1} \cup \xi_{2}$.

In general $\xi_{1} \vee \xi_{2}$ need not be equal to $\xi_{1} \cup \xi_{2}$. For example, let \boldsymbol{A} be the lattice whose elements are a, b, O, I and in which $O \prec a<I, O \prec b \prec I, a \| b$. Let $\xi_{1}=\{(O, O),(O, a),(a, O),(a, a),(b, b),(b, I),(I, b),(I, I)\}, \xi_{2}=\{(O, O),(O, b)$, $(a, a),(a, I),(b, O),(b, b),(I, a),(I, I)\}$. These tolerances are compatible with A; the proof is left to the reader. The tolerance $\xi_{1} \vee \xi_{2}$ is the universal relation, because
$(O, I) \in \xi_{1} \vee \xi_{j}$; we obtain this from $(O, a) \in \xi_{1} \subset \xi_{1} \vee \xi_{2},(O, b) \in \xi_{2} \subset \xi_{1} \vee \xi_{2}$ taking joins. But the set union $\xi_{1} \cup \xi_{2}$ does not contain (O, I). Therefore $L T(A)$ is not a sublattice in the algebraic sense of the lattice of all tolerances on A.

References

[1] M. A. Arbib: Automata Theory and Control Theory - A Rapprochement. Automatica 3 (1966), 161-189.
[2] M. A. Arbib: Tolerance Automata. Kybernetika 3 (1967), 223-233.
[3] E. C. Zeeman: The Topology of the Brain and Visual Perception. In: The Topology of 3-Manifolds, Ed. by M. K. Fort, pp. 240-256.
[4] B. Zelinka: Tolerance in Algebraic Structures. Czech. Math. J. 20, (1970), 179-183.
[5] B. Zelinka: Tolerance in Algebraic Structures II. Czech, Math. J. (to appear).
Authors' addresses: Ivan Chajda, 95000 Přerov, tř. Lidových milicí 290. Bohdan Zelinka, 46117 Liberec 1, Komenskéko 2 (katedra matematiky VŠST).

