
Časopis pro pěstování matematiky

Donald W. Vanderjagt
Sufficient conditions for locally connected graphs

Časopis pro pěstování matematiky, Vol. 99 (1974), No. 4, 400--404

Persistent URL: http://dml.cz/dmlcz/117861

Terms of use:
© Institute of Mathematics AS CR, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/117861
http://project.dml.cz


časopis pro pěstování matematiky, roč. 99 (1974), Praha 

SUFFICIENT CONDITIONS FOR LOCALLY CONNECTED GRAPHS 

DONALD W. VANDERJAGT, Allendale*) 

(Received September 21, 1973) 

Let G be a graph without isolated vertices, and let v be a vertex of G. The neighbor
hood of v, denoted by <N(v)>, is the subgraph of G induced by the set N(v) of vertices 
of G adjacent with v. The graph G is called locally connected if the neighborhood 
of every vertex of G is connected. 

In [ l ] CHARTRAND and PIPPERT showed that if the minimum degree 3(G) of a graph 
G of order p exceeds \(p — 1), then G is locally connected. More generally, it was 
proved in [ l ] that if G is a graph of order p such that for every pair w, v of vertices, 
deg u + deg v > f(P — 1), then G is locally connected. Hence, it is possible for some 
vertex of a graph G to have degree at most §(p — 1) (with the degrees of all other 
vertices exceeding f (p — l)) and still be assured that G is locally connected. 

It is the object of this article to determine the number of vertices of specified degrees 
not exceeding %(p — l) which insures that a given graph be locally connected. 

The results we present are reminiscent of work on hamiltonian graphs. DIRAC [2] 
proved that for a graph G of order jp *_ 3, if S(G) g p/2, then G is hamiltonian. 
ORE [4] extended this result by showing that if deg u + deg v ^ p ^ 3 for every 
pair u, v of nonadjacent vertices, then G is hamiltonian. POSA [5] then proceeded 
to provide a sufficient condition for hamiltonian graphs which allows even more 
vertices of degree less than p/2, including some of quite small degree. 

First we show that no vertex of a graph G of order p can have degree much less 
than i(p — 1) to assure local connectedness. In this respect, it is convenient to employ 
the join Gx + G2 of two disjoint graphs Gl and G2, defined as that graph whose 
vertex set is V(GX + G2) == V(GX) u V(G2) and whose edge set is 

E(GX + G2) = E(Gt) u E(G2) u {vtv2 \ vt e V(G%) , v2 e V(G2)} . 

The union of graphs Gx and G2, denoted Gx u G2, is the graph for which 

V(GX u G2) = V(GX) u V(G2) , and E(G, u G2) = E(GX) u E(G2). 

*) This work was supported in part by an NSF Science Faculty Fellowship. 
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The union of n graphs, each of which is isomorphic to G, is denoted by nG; if G is 
connected, the graph nG has n components, each of which is isomorphic to G. 

As usual, { } denotes the least integer function in what follows. All definitions and 
notation not given here may be found in [3]. 

Proposition. Let G be a graph of order p _ 5. If G has one vertex of degree 
2{j(p — 1)} — 2 and all others have degree exceeding §(p — 1), then G need 
not be locally connected. 

Proof. Let k = {|(p - 1)} and consider the graph G = 2Kk_x + ({v} u 
uK i > + 1_2 f c). Then degv = 2{|(p — 1)} — 2, and all other vertices have degree 
exceeding | (p — 1). Since <N(v)> is disconnected, G is not locally connected. 

Thus, by the preceding proposition, we may not allow even a single vertex to have 
degree as small as 2{^(p — 1)} — 2 (with all other degrees exceeding | (p — l)) 
and be assured that the graph is locally connected. In the case of vertices of degree 
2{i(p — 1)} — 1, we have the following result. 

Theorem 1. Let G be a graph of order p which has up to 2{%(p — 1)} — p — 1 
vertices of degree 2{%(p — 1)} — 1 and all others of degree greater than f(p — 1). 
Then G is locally connected. 

Proof. If p = 2 (mod 3), then 2{i(p - 1)} - 1 > f(p - 1), so 3(G) > f(p - l). 
Thus, G is locally connected. 

For p == 0 (mod 3) or p == 1 (mod 3), suppose G is not locally connected. Let v be 
a vertex of G such that <N(v)> is not connected. 

Case 1. Suppose deg v = 2{(^p — 1)} — 1. 

Let Gx be a component of <N(v)y of minimum order, say |V(GX)| = r. Then 
r = i(2{i(j> - 1)} - 1), so r g {|(p - 1)} - 1. If ti e V(GX), then deg u = 

= r + p - 2{i(p - 1)} = p - 1 - {$(p - 1)} = | ( p - 1). Thus each vertex of G, 
has degree at most §(p — 1), so the degree of each vertex of Gx must be 2{^(p — 1)} — 
- 1. Therefore, r g 2{§(p - 1)} - p - 2 since there are at most 2{f(p - l)} — p—1 
vertices of degree 2{^(p — 1)} — 1, one of which is v. Hence deg u ^ r + p — 

- 2{i(p - 1)} ^ 2 ({ i0 - 1)} - {40-1)}) - 2 = 2{}(p " 1)} - 2, since p * 
=|= 2 (mod 3). By hypothesis this is impossible so Case 1 cannot happen. 

Case 2. Suppose deg v = k > | ( p - 1). 

Select Gt as in Case 1 so that r = fc/2. If u e V(GX), then degw = r + p - l - / c < 
< i(p - 1). Thus r = 2{§(p - 1)} - p - 1, so deg u = r + p - 1 - k < 2{§(p -
~ 1)} ~~ K.P ~~ 1) ~~ 2 < 2{i(p — 1)} - 1. But, by hypothesis, this is impossible, 
so Case 2 cannot happen. 

The following example shows that the result in Theorem 1 is sharp. 
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Example 1. Let G = (K2k-P-i u K
P~k) + ({v} u Kp_fe), where P = 7 and k = 

= {i(p ~ !)}• T h e n G h a s 2B0> ~ 0 } " P vertices of degree {$(p - 1)} - 1 and 
all other vertices have degrees exceeding %(p — 1). Since (N(v)} is disconnected, 
G is not locally connected. 

As we noted at the beginning of the proof of Theorem 1, when p = 2 (mod 3), 
then d(G) > i(p - 1). However, if p = 2 (mod 3), then 2{J(p - 1)} - 2 < %(p - \) 
< 2{$(p — 1)} — 1. Thus, by the Proposition, when p = 2 (mod 3), if G has as few 
as one vertex of degree not exceeding %(p — 1), then G need not be locally connected. 

If p == 0 (mod 3), then by Theorem 1, G may have as many as 2{§(p — l)} — p - 1 
vertices of degree 2{\(p — 1)} — 1 and all others of degree greater than | ( p — 1), 
and necessarily G is locally connected. Now when p = 0 (mod 3), we have 2{\(p — 1)} 
- 1 = {i(p — 1)} ~ 1> s o Theorem 1 is best possible. 

The remaining case to consider is p s 1 (mod 3). In this case, Theorem 1 states 
that if G has a certain number of vertices of degree 2{%(p — 1)} — 1 = §(p — 1) — 1 
and all others have degree exceeding §(p — 1), then G must be locally connected. We 
next determine what combination of vertices of degrees | (p — 1) — 1 and f (p — 1), 
with all other vertices having degree exceeding §(p — 1), insures that G is locally 
connected. 

Theorem 2. Let p = 1 (mod 3) and let k be such that 0 < k < %(p — 1) — 1. 
If a graph G has k vertices of degree f(p — 1) and %(p — 1) — 1 — k vertices 
of degree f(p — 1) — 1, with all other vertices of degree exceeding f(p — 1), 
then G is locally connected. 

Proof. Assume G is not locally connected and let v be a vertex of G for which 
<N(v)> is not connected. We consider three cases determined by the degree of v. 

Case 1. Suppose deg v — §(p — 1) — 1. 

Let Gx be a component of (N(v)} of smallest order, say |V(Gi)| -= r. Thus, r = 

^ i(P — 1) — 1, since r is an integer and p = 1 (mod 3). Let u e V(G1). Then 
deg u g r + p — i(p — 1) _ i(p — 1). Thus each vertex in Gt has degree | (p — 
- 1) - 1 or i(p - 1), and since there are i(p - 1) - 1 such vertices, one of which 
is v, necessarily r ^ %(p - 1) - 2. Thus deg u ^ $(p - 1) — 1. But G contains 
i (p - 1) - 1 - k vertices of degree %(p - 1) - 1, one of which is v, so r g £(p - 1) 
- 2 - fc. Therefore, deg u ^ $(p - 1) - 1 - fc. But k > 0, so deg u = $(p - 1) -
- 2, which by hypothesis is impossible. Thus Case 1 cannot happen. 

Case 2. Suppose degv = £(p ~ !)• 

Let Gx and r be as in Case 1. Then r SS(P ~ *)• If " e V(GX), then deg w = 

g r + £(p _ i) g | ( p _ i). But G has i(p - !) s u c h vertices, one of which is v, 
so r g j ( p - l ) . 2. Hence deg u _ f(j> ~ *) ~ 2 ' w h i c h b y h y P o t h e s i s i s i m P o s " 
sible. Thus Case 2 cannot occur. 
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Case 3. Suppose deg v = t > %(p — 1). 

Let Gx and r be as in Case 1, so r = tj2. For u e V(Gi), degw = r + P - l - t < 
< i(P ~ *)• s i n c e G has | (p - 1) - 1 - fc such vertices, we must have r = £(p -
- 1) - 1 - k. But then deg u = ^(p - l) - 1 - k + (p - l) - f < $(p - 1) -
- 1 — fc. Since k > 0, necessarily deg u < § (p - l) - 2, which is impossible. 
Thus Case 3 is also impossible, so the assumed graph G cannot exist; that is, the 
theorem is valid. 

An example will illustrate the sharpness of Theorem 2. 

Example 2. Let p = 1 (mod 3), and let k satisfy 0 < k < i(p - 1) - 1. Then 
let G' = (G\ u G2) + ({v} u G3), where Gi, G2, and G3 are complete graphs of or
ders i(p — 1) — 1, l(p — 1), and ^(p — 1) + 1, respectively. A graph G is now 
defined. Select \(p — 1) — 1 — k vertices from G'u and for each such vertex, we de
crease its degree by one by deleting an incident edge which is also incident with a ver
tex in G3. These deletions are performed so that no vertex in G3 has degree decreased 
by more than one. This is possible since |V(G3)| > |V(Gi)|. Then G is the graph 
obtained from Gf by removing the edges so described. Let Gt (i = 1, 2, 3) denote 
the subgraph of G corresponding to G-. The subgraph Gx has k vertices of degree 
f(p — 1) and ^(p — 1) — 1 — k vertices of degree f(p — 1) — 1. All other vertices 
of G have degree at least §(p — 1) + 1, except that deg v = | ( p — 1) — 1. Since 
<N(v)> is disconnected, G is not locally connected. 

The only situation which has not been considered is when p = 1 (mod 3) and the 
only vertices whose degrees do not exceed §(p — l) have degree §(p — 1). 

Theorem 3. Let p = 1 (mod 3). If a graph G has no more than §(p — l) vertices 
of degree | (p — 1), and all other vertices have degree greater than §(P — 1), 
then G is locally connected. 

Proof. Suppose there is a graph G satisfying the hypothesis which is not locally 
connected. Then there is a vertex v of G such that <N(u)> 1s not connected. 

Case 1. Suppose deg v = f(p — 1). 

Let <N(v)> = Gx u G2 where Gl is a component of <N(v)> of minimum order, 
say \V(GX)\ = r. Then r = %(p - 1). If u e V(Gt), then deg u = r + i(p - 1) = 

= i(p — !)• Thus each vertex of Gl has degree | (p — l) since no vertex of G has 
smaller degree. But then r = %(p — l) and consequently |V(G2)| = %(p - 1). Thus 
if y e V(G2), then deg y = f(p — 1), so deg y = $(p - l). Therefore, all vertices 
of G2have degree f(p - 1). Also, deg v = | (p - 1), so G contains at least }(p - 1) + 
+ 1 vertices of degree %(p — 1), which by hypothesis is impossible. 

Case 2. Suppose deg v = t > %(p - 1). 

Let Gx and r be as in Case 1, so r = tj2. If u e V(GX), then deg tt^r + p - l — f 
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< $(p — 1). But no vertex of G has degree less than f(p — 1), so Case 2 cannot 
happen. 

Theorem 3, too, is best possible. 

Example 3. Let G = 2Kr + ({v} u Kr), where r -= (p - l)/3. Then G has %(p -
— 1) -f- 1 vertices of degree \(p — 1), and all other vertices have degree exceeding 
%(p — 1). Since <N(v)> is disconnected, G is not locally connected. 
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