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1. Definitions, basic theorems. In the whole paper, meromorphic functions are 
understood to be meromorphic in C. 

Let / be a meromorphic function, n(r, f) let denote the number of poles of the 
function / that lie in the disc |z| ^ r and n(r, a) let denote the number of roots of 
the equation f(z) = a in the disc \z\ <i r, each point counted with regard to its 
multiplicity. Usually it has been put n(r,f) = n(r, oo). 

Let us set 

Jo t 

*r/ \ fr n(t, a) — n(0, a) t /r< x , 
N(r, a) = v ; ^ - ^ At + n(0, a) In r , 

Jo ' t 

m 

1 C2n 1 
m(r, a) = — ln + —-—— d(p . 

K } 2*J0 \f(rJ*)-a\ * 
The function T(r,f) = m(r,f) + N(r,f) is called Nevanlinna characteristic 

function off. Further, let us denote by n(r,f) (n(r, a), ae C) the number of different 
poles (different roots of the equation f(z) = a, respectively) that lie in the disc 
l2l = r-

Analogously we define 

Jo t 

N(r, a) - 1" " ( t " fl) -" ( ° ' f l ) d t + n(0, a) In r . 
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1.1 Theorem. (First Main Theorem of the value distribution theory.) For any 
meromorphic function f, the equation 

m(r, a) + N(r, a) -= T(r,f) + e(r, a) 

holds for each ae C, where e(r, a) = O(l) for r -> oo. 

1.2 Theorem. (Second Main Theorem of the value distribution theory.) Let f be 
a nonconstant meromorphic function. If al9 a2, ...,aq,q}z 1, are mutually distinct 
finite or infinite complex numbers, then 

4 

I 
v = l 

X m(r, av) g 2 T(r,f) - Nl(r) + S(r,f) ., 

where Nt(r) = N(r, 1/f') + 2N(r,f) - N(r,f) and the remainder S(r,f) satisfies 
the following conditions: S(r,f) = o{T(r,f)} with at most the exception of a set E 
of values (r) of finite Lebesgue measure. If f is of finite order, then S(r,f) = 
= o{T(r,f)} without exceptional intervals. 

1.3 Definition. Letf be a meromorphic function, a e C u {oo}. Let us set 

5(a) = S(a,f) = ]im ^ = 1 - I f f i M , 
— T(r,/) -ooT(r,/) 

0(a) = ©(a,/) = 1 - 1 1 5 ^ 4 , 
-ooT(r, /) 

9(a) =9 (a , / ) = l i m **'*) ~ N(r>a). 
W V'J)

 r-7Z T(r,f) 

Recall that 0(a) ^ 5(a) + 3(a). The quantity <5(a) is called the deficiency of the 
value a, S(a) is called the ramification index of the point a. The value a is called 
deficient value (or Nevanlinna exceptional value) if 5(a) > 0. 

If the equation f(z) = a, a e C, has only a finite number of roots, then the value a 
is called Picard exceptional value. The function f must be transcendental. It is clear 
that every Picard exceptional value is Nevanlinna exceptional value, but the 
contrary is not true. 

In the following we shal need the following theorems (S(r,f) has the same meaning 
as in Theorem 1.2): 

1.4 Theorem. (Milloux, see [5] or [2].) Let f be a meromorphic function, ke N 
arbitrary. Then 

(1) T(r, / « ) S (k + 1) T(r, f) + 5(r, / ) . 

1.5 Theorem. (See [5].) Let f be a entire function, keN arbitrary. Then 

(2) T(r,/«)^T(r,/) + S(r,/). 
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1.6 Theorem. (See [8] or [4].) Let f be a meromorphic function for which 
S(r,f) = o{T(r,f)}. Then 

(3) -±- Z S(a,f)SS(0,fn 
n + 1 a*co 

for arbitrary n e N. 

1.7 Note. The relation S(r,f) = o{T(r,f)} is valid for every function of finite 
order, but it need not be fulfilled for functions of infinite order. 

1.8 Theorem. (Hayman, see [2].) Let f be a transcendental meromorphic function, 
ke N arbitrary. Then 

(4) T M i (2 + !)»(,,!) + (2 + f)n(r.j^i) + S(r,f). 

Corollary. Either the function f assumes every finite value infinitely many times, 
or f(fc) (ke N) assumes every nonzero finite value infinitely many times. 

1.9 Theorem. (Milloux, see [3], p. 132.) Let f be a transcendental meromorphic 
function, k e N, a e C, b 4= 0. Then 

(5) T(r,f) ^ N(r,f) + 

+ N (r, -l—\ + N (r, ^ - N (r, f-^-?\ + S(r,f) . 
\ f - a ) \ f w - b ) \ ' /<*+1) ) K,J) 

1.10 Theorem. (See [1], [2].) Let f be a meromorphic function. Then the quantity 
0(a) vanishes for all except at most a countable set of values a. Furthermore, 

(6) £ H a ) + % ) } ^ y ; 0 ( a ) = ~-
a a 

1.11 Note. In the proof of Theorem 2.2 we shall need the following inequality 
which was obtained when proving Theorem 1.2 (see [1], [4], [8]): 

(7) N (r, 1 ) + im(r, av) + S(r,f) g T(r,f) H N(r,f) + m(r,f) + S(r,f) . 

Here al9 a2,..., aq are arbitrary finite complex numbers. 

2. Some generalizations of Polya-Saxer theorem. The following theorem was 
proved by Polya and Saxer (1923). 

2.1 Theorem. (See [6].) If an entire transcendental function has finite Picard 
exceptional value, then every its derivative assumes all finite nonzero values 
infinitely many times. 
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The Nevanlinna theory is a tool for finer investigation in this direction, and with 
its help it is possible to prove theorems that generalize, in different ways, the Polya-
Saxer theorem. 

The following generalization of the Polya-Saxer theorem is a consequence of the 
inequality (3).* 

2.2 Theorem. Let f be a meromorphic function for which S(r,f) = 0{T(r,/)} 
and S(co9f) = 1. If the function f has finite Nevanlinna exceptional value a (that 
means d(a) > 0), then every derivative of f assumes all finite nonzero values 
infinitely many times. 

Proof. First we shall prove (under our suppositions) that the relation 8(co9f) == 1 
implies the relation 8(oo9f

ik)) = 1, for arbitrary keN. From the evident relation 

N(r,f) ^N(r9f) + N(r,f) T(r9f) 
T(r9f) T(r9f) * T(r9f) 

we get 

(8) 1 - O(oo,/') = n H ^ Z ] <; [! _ a(o0f/) + 1 _ *(«>,/)] Bm £&±. 
r-oo T(rJ) r-oo T(r , / ' ) 

The inequality (7) yields a lower estimate for lim T(r9f')JT(r9f) (and thereby also 
r-*oo 

an upper estimate for lim T(r9f)JT(r9f')). From the inequality (7) we obtain easily 

T(r f>) N (V' j ) + t W(r' ̂  
l im-^-L i =- lim V J J + 
r-.oo T(r,f) ^Z T(r,f) 

S(rf) N(r'j) « 

r-oo T ( r , / ) r-oo T(r9f) v = l 

According to the suppositions of our theorem it is 8(a) > 0. If we choose av = a 
for any v, then lim T(r9f')\T(r9f) ^ 8(a) > 0. Hence also 

r-*oo 

Rm -f -^L = — - < + oo . 

r-co T(- , / ) 

If<5(oo,/) = 1, then 6>(oo,/) = 1, and from the inequality (8) we get 8(00, f) = 1. 
The validity of the relation <5(oo,/W) = 1, for arbitrary k e N is obtained by simple 
induction. 

328 



The relation (6) from. Theorem 1.10 applied to f(k) gives, with respect to 
S(ooJ^) = 1, 

£ «5(6,/«>) + <5(0,/<*>) = 1 . 
b*0,oo 

From (3) we get 

X %/<*>) = i - -J- £%/). 
b*0,oo k + 1 fl*oo 

According to the suppositions, there exist a e C that <5(a, / ) > 0. Then 
£ S(b,fik)) < 1. Thus S(b,fik)) < 1 for every finite nonzero complex value b. 

b*0,oo 

This implies that the function / assumes the value b infinitely many times, for the 
function / is transcendental. 

The corollary of Theorem 1.8 yields a further generalization of the Polya-Saxer 
theorem. 

2.3 Theorem. Let f be a transcendental meromorphic function. If the function f 
has finite Picard exceptional value, then every derivative off assumes all finite 
nonzero values infinitely many times. 

3. In this section some further generalizations of the Polya-Saxer theorem will 
be proved. 

3.1 Theorem. Let f be a transcendental meromorphic function for which N(r,f) — 
= o{T(r,f)} (that means 0(co,f) = 1). If the function f has finite Nevanlinna 
exceptional value, then every derivative of f assumes all finite nonzero value 
infinitely many times. 

3.2 Theorem. Let f be a transcendental meromorphic function for which S(r,f) = 
= o{T(r,f)} and O(oo,f) = 1. If S(a,f) > 0, a e C, then for every finite nonzero 
complex number b and arbitrary ke N, the inequality 

(9) d(b,fk)) = 0(b,f(k)) = 1 - fe^-
k + 1 

holds. 

3.3 Theorem. Let f be an entire transcendental function for which S(r,f) = 
= o{T(r,f)}. If S(a,f) > 0, a e C, then for every finite nonzero complex number b 
and arbitrary ke N, the inequality 

(10) % / w ) ^ &(b,fw) = 1 - S(a,f) 

holds. 
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Proof of Theorem 3.L We use the inequality (5), choosing the notation so 
that S(a,f) > 0. Let us suppose that the equation f(fc)(Z) = b has only a finite 
number of roots. 

Then 

N(r'J^ri) = o{T{rJ)]-
Let us divide the inequality (5) by T(r, f). We obtain the inequality 

on ^ % . / ) , W ( r ' 7 ^ ) , N(r-f^i) N ( r / 7 ^ r ) s(rj) 
-T(rJ) T(rJ) T(rJ) T(rJ) T(rJ) 

In (11)* we let r -• oo, r <£ £, where the set £ has finite Lebesgue measure. The set £ 
is "the exceptional set" from the Nevanlinna Second Main Theorem. Recall that 
5(r,f) = o{T(r,f)}forr-,oo, r$E. 

Since 

S(a,f)>0, 

it is 

(I2)
 E - 1 K O -A<U 

According to our notation S(a,f) = 1 — A. From (11), (12) we obtain the inequality 

1 = 155- ^ /-aUm~±J^l=A. 
r->* T(r,f) ^oo T(r,f) 

This contradicts the inequality A < 1. Therefore the supposition that there is 
only a finite number of roots of the equation j(k)(z) = b is not correct, hence the 
function fw assumes the value b infinitely many times, QED. 

Proof of Theorem 3.2. Again we use the inequality (5). Now we consider func
tions for which S(r,f) = o{T(r,f)}\ From (11) we obtain the inequality 

N(r.-J-) 
V fm-b) (13) m \ J ' * \ - A . 

T(r,f) 
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The definition of the deficiency and the inequality (1) imply the following inequalities: 

N (r, -J~\ N (r, 1 

. fW _ h \ f(fc) - h 

1 - A < Ш —--__ __ = (fc + i ) ü й _ - - _- < 
- , - . 0 0 T(r,f) ^oo (fc + 1) T(r,f) + S(r,f) ~ 

N(r, * 

ѓ(k + l)Ш ч ^ b 

' , — Г(r,/<*>) ' 

Kr'/^Ь) 
(fc + 1) - (fc + l)hm Ч / ' < „ + fc = 1 - <5(a,/) + k, 

r-ю> 1(Г,JK') 

N 
1 E5 \f{k)-b)^k + l-8(a,f)_l d(a,f) 

r-oo T(r,/(fc)) fc + 1 fc + 1 ' 

The last inequality may be rewritten in the form 

8(b,f^) ^ G(b,fk)) = 1 - &£ QED . 
fc + 1 

Proof of Theorem 3.3. The proof of the inequality (10) is analogous to that of 
the inequality (9), we only use the stricter inequality (2) instead of (l). 

From the inequalities (13) and (2) we get 

N (r' 7^=i} N (r' J^=i) N (r? 7^ ) 
T(r,f) r-oo T(r,f) + S(r,f) r-oo T(r,/(k>) 

Then 
S(b,f(k))^A = l~S(a,f), 

which together with the well-known inequality 5(a) ~ G(a) yields (10), QED. 

4. Remarks. 

4.1. The supposition in Theorem 3.1 about the existence of finite Nevanlinna 
exceptional value is essential. It will be seen in the following 

Assertion. Let f(z) = ez + z. Then 8(a,f) = 0 is valid for every aeC, that 
means, f has not finite Nevanlinna exceptional value. 
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The function f is entire, hence the second supposition of Theorem 3.1 is evidently 
fulfilled. Its derivative f'(z) = ez + 1 never assumes the nonzero value 1. 

Proof of the asser t ion . We use the theorem which supplies in the terms of 
covering sufficient conditions for the validity of $(a,f) = 0. First let us recall some 
concepts. Let w = f(z) be an entire function. Let us denote by fF the Riemann sur
face of the analytic function f " 1 . Its ramification points lie just over the points 
wk e C, wk = f(zk\ for which f'(zk) = 0. Further let us denote by n the natural 
projection «f on C (n(3) = w> where 3 1s the algebraic element of the analytic 
functionf"1, with the centre at w). 

Now, the following theorem (see [3], p. 431) is valid: 

Theorem. Let w =f(Z) be an entire function, 3F the Riemann surface of f " 1 , 
a e C arbitrary. Let A > 0 and an ^-neighbourhood U(a, ri) exist with the following 
properties'. If 2F v c SF is an arbitrary domain over U(a, r\) (n(tFv) = U(a, rj)), 
then over every point w e U(a, r\) there lie just Xv points and 1 :g kv ^ A (every 
ramification point of the order m is counted (m — l)-times). Then S(a,f) = 0. 

Now let us construct the Rieman surface & of the analytic function f - 1 , 
where f(Z) = ez + Z. It is f'(z) = ez + 1 = 0 for zk = (2k + 1) ni, k = 0, + 1 , 
+ 2 , . . . . The ramification points lie over wk = eZk + zk = — 1 + (2k + 1) 7ri. 
These ramification points are of the first order, for f"(z) = ez + 0. The function 
ez + z maps conformally the strip (see [7], p. 481, example 7) 

ilk = {z e C, (2k - 1) n < Im z < (2k + 1) TT} 

onto C \ (p(!k) u p(
2*

}), where 

p{P = {z e C, z = x + (2k + 1) ni, x e (- oo, -1>} , 

p(
2
k) = {z 6 C, z = x + (2k - 1) ni, x e ( - oo, -1>} . 

Let 3F be constructed so that the k-st sheet 0>k of the plane C, which is cut along 
the rays p(/° a ^2

k), is connected in the usual way with the (k + l)-st sheet ^k+i 

along p2
fc) and with the (k - l)-st sheet &k_x along p[k), k = 0, + 1 , + 2 , . . . . We 

obtain infinitely-many-sheeted surface. All domains lying over an arbitrary disc D 
with the centre at a point w + wk, which contains none of the points wk, are discs. 
All domains over an arbitrary disc Dk with the centre at wk are discs except a single 
one which is a two-sheeted disc. In this domain, exactly two points lie over each 
point w e Dk. We can choose A = 2 or A = 1, hence the function w = ez + z has 
no Nevanlinna exceptional value. 

4.2. Let us compare the suppositions of Theorems 2.2 and 3.1. 

a. Theorem 2.2 applies only to functions with S(r,f) = 0{T(r,f)}, while in 
Theorem 3.1 this condition does not appear. 
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b. The supposition <9(oo,f) = 1 in Theorem 3.1 is weaker than the supposition 
<K°°>/) = 1 in Theorem 2.2, for there exist functions (see [3], p. 517, Theorem 6.4) 
for which <9(oo,f) = 1 and 6(co,f) < 1. 

4.3. Theorem 3.1 is a consequence of the inequalities (9), (10) for functions with 
S(r,f) = o{T(r,f)}. The inequalities (9), (10) say: The number of points at which 
the function f assumes the value a e C, is inversely proportional to the multiplicity 
with which an arbitrary derivative off assumes every nonzero finite value b. 

4.4 Corollary of Theorem 3.3. Let f be a transcendental entire function for which 
S(r,f) = o{T(r,f)}. If there exists aeC so that 8(a,f) = 1, then 

(14) I <9(b,f<*>) = 0 
fc*0,oo 

for arbitrary ke N. 
For a comparison we introduce a result due to Ullrich (see [4] or [8]). It is known 

that for entire functions the inequality 

(30 I S(a, f) = 8(0, fk)) , keN arbitrary 
a * oo 

holds, which is sharper then the inequality (3). 
From (30, analogously to the proof of Theorem 2.2 we obtain 

b#=0,oo 0*00 

Now, if £<5(a>Z) = 1, then 

Z % j w ) = 0 
fc*0,oo 

for arbitrary keN. 
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