Časopis pro pěstování matematiky

Jaroslav Barták

The Lyapunov stability of the Timoshenko type equation

Časopis pro pěstování matematiky, Vol. 101 (1976), No. 2, 130--139

Persistent URL: http://dml.cz/dmlcz/117900

Terms of use:

© Institute of Mathematics AS CR, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

THE LYAPUNOV STABILITY OF THE TIMOSHENKO TYPE EQUATION

Jaroslav Barták, Praha
(Received October 25, 1974)

The purpose of this paper is the investigation of the global exponential stability, respectively the stability of the zero solution of the equation

$$
\begin{gather*}
u^{\prime \prime \prime \prime}(t)+a u^{\prime \prime \prime}(t)+\left(b_{1} A^{1 / 2}+b_{2} I\right) u^{\prime \prime}(t)+\left(c_{1} A^{1 / 2}+c_{2} I\right) u^{\prime}(t)+ \tag{1}\\
+\left(d_{1} A+d_{2} A^{1 / 2}+d_{3} I\right) u(t)=0
\end{gather*}
$$

where A is a selfadjoint, strictly positive linear operator in a Hilbert space $H ; I$ is the identity operator in $H ; a, b_{1}, b_{2}, c_{1}, c_{2}, d_{1}, d_{2}, d_{3}$ are real constants.

Under the solution of (1) we understand a function u from the space $\mathscr{U}=$ $=\left\{u:\langle 0, \infty) \rightarrow H \mid u^{(j)} \in C\left(\mathscr{D}(u), \mathscr{D}\left(A^{(4-j) / 4}\right)\right), j=0,1,2,3\right\}$, fulfilling the equation (1) on $\langle 0, \infty$).

Let us define the norm $\|\cdot\|_{\left.\mathscr{(A)} \times \mathscr{(}\left(A^{3 / 4}\right) \times \mathscr{G}\left(A^{1 / 2}\right) \times \mathscr{(} A^{1 / 4}\right)}$ by the relation

$$
\begin{gathered}
\|u(t)\|_{\mathscr{Q}(A) \times \mathscr{G}\left(A^{3 / 4}\right) \times \mathscr{G}\left(A^{1 / 2) \times \mathscr{S}\left(A^{1 / 4}\right)}\right.}= \\
=\left\|\left(u(t), u^{\prime}(t), u^{\prime \prime}(t), u^{\prime \prime \prime}(t)\right)\right\|_{\mathscr{S}(A) \times \mathscr{G}\left(A^{3 / 4}\right) \times \mathscr{O}\left(A^{1 / 2}\right) \times \mathscr{O}\left(A^{1 / 4}\right)}= \\
=\left[\|A u(t)\|^{2}+\left\|A^{3 / 4} u^{\prime}(t)\right\|^{2}+\left\|A^{1 / 2} u^{\prime \prime}(t)\right\|^{2}+\left\|A^{1 / 4} u^{\prime \prime \prime}(t)\right\|^{2}\right]^{1 / 2}
\end{gathered}
$$

for $u \in \mathscr{U}$ and $t \in\langle 0, \infty),(\|\cdot\|$ is the norm in the space $H)$.
Definition 1. We say that the solution $v(t)$ of the equation (1) is stable with respect
 a $\delta(\varepsilon)>0$ so that the following implication holds:
for $t \geqq 0$ and for every solution $u(t)$ of the equation (1).

Definition 2. We say that the solution $v(t)$ of the equation (1) is exponentially
 numbers δ, K, α so that the following implication holds:

$$
\begin{aligned}
& \|u(0)-v(0)\|_{\left.\mathscr{G}(A) \times \mathscr{(} A^{3 / 4}\right) \times \mathscr{G}\left(A^{1 / 2}\right) \times \mathscr{G}\left(A^{1 / 4}\right)} \leqq \delta \Rightarrow \\
& \Rightarrow\|u(t)-v(t)\|_{\mathscr{G}(A) \times \mathscr{S}\left(A^{3 / 4}\right) \times \mathscr{(}\left(A^{1 / 2}\right) \times \mathscr{G}\left(A^{1 / 4}\right)} \leqq K e^{-a t} .
\end{aligned}
$$

for $t \geqq 0$ and for every solution $u(t)$ of the equation (1).
If $\delta=+\infty$ in addition, we speak about the global exponential stability.
Let $u(t)$ be a solution of (1) and let the following initial conditions be fulfilled:

$$
\begin{equation*}
u(0)=\varphi_{0}, \quad u^{\prime}(0)=\varphi_{1}, \quad u^{\prime \prime}(0)=\varphi_{2}, \quad u^{\prime \prime \prime}(0)=\varphi_{3} \tag{2}
\end{equation*}
$$

where $\varphi_{i} \in \mathscr{D}\left(A^{1-i / 4}\right), i=0, \ldots, 3$.
Let us assume that

$$
\begin{equation*}
\text { the solution of }(1) \text { fulfilling (2) is unique. } \tag{3}
\end{equation*}
$$

The problem of the uniqueness is studied in [1], [2].
Let us denote $E(s)$ a spectral resolution of the identity corresponding to the operator $A, \delta=\inf \sigma(A)$. By the assumptions on the operator A, we have

$$
\begin{equation*}
\delta>0 \tag{4}
\end{equation*}
$$

Let us write the solution of (1) fulfilling (2) in the form (we shall show that this is possible)

$$
\begin{equation*}
u(t)=\sum_{i=0}^{3} \int_{\delta}^{\infty} m_{i}(t, s) \mathrm{d} E(s) \varphi_{i} \tag{5}
\end{equation*}
$$

where $m_{i}(t, s),(i=0, \ldots, 3)$ are solutions of

$$
\begin{gather*}
m^{\prime \prime \prime \prime}(t, s)+a m^{\prime \prime \prime}(t, s)+\left(b_{1} s^{1 / 2}+b_{2}\right) m^{\prime \prime}(t, s)+\left(c_{1} s^{1 / 2}+c_{2}\right) m^{\prime}(t, s)+ \tag{6}\\
+\left(d_{1} s+d_{2} s^{1 / 2}+d_{3}\right) m(t, s)=0
\end{gather*}
$$

fulfilling the initial conditions

$$
\begin{equation*}
m_{i}^{(k)}(0, s)=\delta_{i}^{k}, \quad i, k=0, \ldots, 3, \quad s \geqq \delta \tag{7}
\end{equation*}
$$

The symbol of derivative means the derivative with respect to the variable $t ; s \geqq \delta$ is a parameter.

Suppose that $\lambda_{i}=\lambda_{i}(s), i=1, \ldots, 4$ are solutions of

$$
\begin{gather*}
\lambda^{4}(s)+a \lambda^{3}(s)+\left(b_{1} s^{1 / 2}+b_{2}\right) \lambda^{2}(s)+\left(c_{1} s^{1 / 2}+c_{2}\right) \lambda(s)+ \tag{8}\\
+d_{1} s+d_{2} s^{1 / 2}+d_{3}=0
\end{gather*}
$$

For the sake of simplification we shall further use the following notation

$$
\begin{equation*}
b=b_{1} s^{1 / 2}+b_{2}, \quad c=c_{1} s^{1 / 2}+c_{2}, \quad d=d_{1} s+d_{2} s^{1 / 2}+d_{3} . \tag{9}
\end{equation*}
$$

Then

$$
\begin{equation*}
m_{0}(t, s)=\sum_{i=1}^{4} \frac{\lambda_{i}^{3}+a \lambda_{i}^{2}+b \lambda_{i}+c}{\prod_{\substack{j=1 \\ j \neq i}}^{4}\left(\lambda_{i}-\lambda_{j}\right)} e^{\lambda_{i} t} \tag{0}
\end{equation*}
$$

$$
\begin{equation*}
m_{1}(t, s)=\sum_{i=1}^{4} \frac{\lambda_{i}^{2}+a \lambda_{i}+b}{\prod_{\substack{j=1 \\ j \neq i}}^{4}\left(\lambda_{i}-\lambda_{j}\right)} e^{\lambda_{i} t} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
m_{2}(t, s)=\sum_{i=1}^{4} \frac{\lambda_{i}+a}{\prod_{\substack{j=1 \\ j \neq i}}^{4}\left(\lambda_{i}-\lambda_{j}\right)} e^{\lambda_{i} t} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
m_{3}(t, s)=\sum_{i=1}^{4} \frac{1}{\prod_{\substack{j=1 \\ j \neq i}}^{4}\left(\lambda_{i}-\lambda_{j}\right)} e^{\lambda_{i} t} \tag{3}
\end{equation*}
$$

if $\lambda_{i}-\lambda_{j} \neq 0$ for $i \neq j$.
It will be advantageous to express the functions $m_{i}(t, s)$ in the following form:

$$
\begin{align*}
& m_{0}(t, s)=\left(\lambda_{1}^{3}+a \lambda_{1}^{2}+b \lambda_{1}+c\right) \int_{0}^{t} e^{\lambda_{1}(t-\tau)} \int_{0}^{\tau} e^{\lambda_{2}(\tau-\sigma)} \tag{0}\\
& \quad \cdot \int_{0}^{\sigma} e^{\lambda_{3}(\sigma-\varrho)} e^{\lambda_{4} \varrho} \mathrm{~d} \varrho \mathrm{~d} \sigma \mathrm{~d} \tau+\left[\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{1} \lambda_{2}+\right. \\
& \left.+a\left(\lambda_{1}+\lambda_{2}\right)+b\right] \int_{0}^{t} e^{\lambda_{2}(t-\sigma)} \int_{0}^{\sigma} e^{\lambda_{3}(\sigma-\rho)} e^{\lambda_{4} \varrho} \mathrm{~d} \varrho \mathrm{~d} \sigma+ \\
& \quad+\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+a\right) \int_{0}^{t} e^{\lambda_{3}(t-\varrho)} e^{\lambda_{4} \varrho} \mathrm{~d} \varrho+e^{\lambda_{4} t}
\end{align*}
$$

$$
\begin{gather*}
m_{1}(t, s)=\left(\lambda_{1}^{2}+a \lambda_{1}+b\right) \int_{0}^{t} e^{\lambda_{1}(t-\tau)} \int_{0}^{\tau} e^{\lambda_{2}(\tau-\sigma)} \tag{1}\\
\cdot \int_{0}^{\sigma} e^{\lambda_{3}(\sigma-\varrho)} e^{\lambda_{4} \varrho} \mathrm{~d} \varrho \mathrm{~d} \sigma \mathrm{~d} \tau+\left(\lambda_{1}+\lambda_{2}+a\right) \\
\cdot \int_{0}^{t} e^{\lambda_{2}(t-\sigma)} \int_{0}^{\sigma} e^{\lambda_{3}(\sigma-\varrho)} e^{\lambda_{4} \varrho} \mathrm{~d} \varrho \mathrm{~d} \sigma+\int_{0}^{t} e^{\lambda_{3}(t-\Omega)} e^{\lambda_{4} \varrho} \mathrm{~d} \varrho,
\end{gather*}
$$

$$
\begin{gather*}
m_{2}(t, s)=\left(\lambda_{1}+a\right) \int_{0}^{t} e^{\lambda_{1}(t-\tau)} \int_{0}^{\tau} e^{\lambda_{2}(\tau-\sigma)} \tag{2}\\
\cdot \int_{0}^{\sigma} e^{\lambda_{3}(\sigma-\varrho)} e^{\lambda_{4} \varrho} \mathrm{~d} \varrho \mathrm{~d} \sigma \mathrm{~d} \tau+\int_{0}^{t} e^{\lambda_{2}(t-\sigma)} \int_{0}^{\sigma} e^{\lambda_{3}(\sigma-\sigma)} e^{\lambda_{4} \varphi} \mathrm{~d} \varrho \mathrm{~d} \sigma \\
m_{3}(t, s)=\int_{0}^{t} e^{\lambda_{1}(t-\tau)} \int_{0}^{\tau} e^{\lambda_{2}(\tau-\sigma)} \int_{0}^{\sigma} e^{\lambda_{3}(\sigma-\varrho)} e^{\lambda_{4} \varrho \mathrm{~d} \varrho \mathrm{~d} \sigma \mathrm{~d} \tau} \tag{3}
\end{gather*}
$$

Lemma 1. Let the following conditions be fulfilled:

$$
\begin{gather*}
a>0, \tag{12}\\
c_{1} s^{1 / 2}+c_{2}>0 \text { for } s \geqq \delta, \quad c_{1}>0, \tag{13}\\
d_{1} s+d_{2} s^{1 / 2}+d_{3}>0 \text { for } s \geqq \delta, \quad d_{1}^{2}+d_{2}^{2}>0, \tag{14}\\
a\left(b_{1} s^{1 / 2}+b_{2}\right)\left(c_{1} s^{1 / 2}+c_{2}\right)-a^{2}\left(d_{1} s+d_{2} s^{1 / 2}+d_{3}\right)- \tag{15}\\
-\left(c_{1} s^{1 / 2}+c_{2}\right)^{2}>0 \text { for } s \geqq \delta, \\
a b_{1} c_{1}-a^{2} d_{1}-c_{1}^{2}>0 . \tag{16}
\end{gather*}
$$

Then there exists a constant $\omega>0$ such that

$$
\begin{equation*}
\operatorname{Re} \lambda_{i}(s) \leqq-\omega \tag{17}
\end{equation*}
$$

for all solutions $\lambda_{i}(s)$ of the equation (8) and all $s \geqq \delta$.
Proof. We can easily derive by means of the Hurwitz theorem that the necessary and sufficient conditions that the inequality $\operatorname{Re} \lambda_{i}(s) \leqq-\omega($ for $s \geqq \delta$) holds are

$$
\begin{equation*}
-4 \omega+a>0 \tag{1}
\end{equation*}
$$

$\left.(18)_{2}\right)(-4 \omega+a)\left(6 \omega^{2}-3 a \omega+b\right)-\left(-4 \omega^{3}+3 a \omega^{2}-2 b \omega+c\right)>0$,

$$
\begin{gather*}
(-4 \omega+a)\left(6 \omega^{2}-3 a \omega+b\right)\left(-4 \omega^{3}+3 a \omega^{2}-2 b \omega+c\right)- \tag{183}\\
-(-4 \omega+a)^{2}\left(\omega^{4}-a \omega^{3}+b \omega^{2}-c \omega+d\right)- \\
-\left(-4 \omega^{3}+3 a \omega^{2}-2 b \omega+c\right)^{2}>0 \\
-\quad \omega^{4}-a \omega^{3}+b \omega^{2}-c \omega+d>0 \tag{184}
\end{gather*}
$$

the inequalities (18) must be fulfilled for all $s \geqq \delta$. It follows from (12) that the condition $\left(18_{1}\right)$ holds for sufficiently small $\omega>0$. (18_{2}) follows immediately from (13), (14), (183), $\left(18_{4}\right)$. The condition $\left(18_{4}\right)$ is also fulfilled for sufficiently small $\omega>0$ because of (14). Further it follows from (16) that there exists $S_{0} \geqq \delta$ such that $\left(18_{3}\right)$ holds for $s \geqq S_{0}$. Using (15) we can guarantee also $\left(18{ }_{3}\right)$ on the interval [$\left.\delta, S_{0}\right]$, if we consider sufficiently small $\omega>0$ only.

Lemma 1A. Suppose that it holds (12), (13), (14), (15). Then

$$
\begin{equation*}
\operatorname{Re} \lambda_{i}(s) \leqq 0 \tag{19}
\end{equation*}
$$

for all solutions $\lambda_{i}(s)$ of the equation (8) and all $s \geqq \delta$.
Proof. It can be proved that to each $S_{0} \geqq \delta$ there exists $\omega=\omega\left(S_{0}\right)>0$ such that (17) holds for all solutions $\lambda_{i}(s)$ of the equation (8) and all $s \in\left[\delta, S_{0}\right]$ similarly as in the proof of Lemma 1. This proves Lemma 1A.

Lemma 2. There exists a constant $\Lambda_{1}>0$ such that for each solution $\lambda_{i}(s)$ of the equation (8) (which can be written in the form

$$
\begin{equation*}
\lambda^{4}(s)+a \lambda^{3}(s)+b \lambda^{2}(s)+c \lambda(s)+d=0 \tag{20}
\end{equation*}
$$

when we use the notation (9)) it holds

$$
\begin{equation*}
\left|\lambda_{i}(s)\right| \leqq \Lambda_{1} s^{1 / 4} \tag{21}
\end{equation*}
$$

for $s \geqq \delta$.
Proof. If we put

$$
\begin{equation*}
\lambda=y-\frac{a}{4} \tag{22}
\end{equation*}
$$

we can transform the equation (20) to

$$
\begin{equation*}
y^{4}+e y^{2}+f y+g=0 \tag{23}
\end{equation*}
$$

where

$$
e=b-\frac{3}{8} a^{2}, f=\frac{a^{3}}{8}-\frac{a b}{2}+c, g=-\frac{3}{256} a^{4}+\frac{a^{2} b}{16}-\frac{a c}{4}+d
$$

All solutions of the equation (23) are:

$$
\begin{align*}
& y_{1}=\frac{1}{2}\left(z_{1}^{1 / 2}+z_{2}^{1 / 2}+z_{3}^{1 / 2}\right), \tag{1}\\
& y_{2}=\frac{1}{2}\left(z_{1}^{1 / 2}-z_{2}^{1 / 2}-z_{3}^{1 / 2}\right), \tag{2}\\
& y_{3}=\frac{1}{2}\left(-z_{1}^{1 / 2}+z_{2}^{1 / 2}-z_{3}^{1 / 2}\right), \tag{3}\\
& y_{4}=\frac{1}{2}\left(-z_{1}^{1 / 2}-z_{2}^{1 / 2}+z_{3}^{1 / 2}\right),
\end{align*}
$$

where z_{1}, z_{2}, z_{3} are solutions of a cubic equation

$$
\begin{equation*}
z^{3}+2 e z^{2}+\left(e^{2}-4 g\right) z \backsim f^{2}=0 \tag{25}
\end{equation*}
$$

We choose values of the square roots such that $z_{1}^{1 / 2} \cdot z_{2}^{1 / 2} \cdot z_{3}^{1 / 2}=-f$. Let us put

$$
\begin{equation*}
z=x-\frac{2}{3} e \tag{26}
\end{equation*}
$$

Then the equation (25) can be transformed to

$$
\begin{equation*}
x^{3}+3 p x+2 q=0 \tag{27}
\end{equation*}
$$

where

$$
p=-\frac{e^{2}}{9}-\frac{4 g}{3}, \quad q=-\frac{e^{3}}{27}+\frac{4 e g}{3}-\frac{f^{2}}{2} .
$$

Let us denote

$$
\begin{equation*}
u=\sqrt[3]{ }\left(-q+\sqrt{ }\left(q^{2}+p^{3}\right)\right), \quad v=\sqrt[3]{ }\left(-q-\sqrt{ }\left(q^{2}+p^{3}\right)\right) \tag{28}
\end{equation*}
$$

The square roots are chosen such that $u v=-p$.
Further let us put $\varepsilon=\mathrm{e}^{2 \pi i / 3}$. Then solutions of the equation (27) are

$$
\begin{equation*}
x_{1}=u+v, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
x_{2}=\varepsilon u+\varepsilon^{2} v, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
x_{3}=\varepsilon^{2} u+\varepsilon v \tag{3}
\end{equation*}
$$

Substituting for p, q to (28), we get

$$
\begin{equation*}
u=K_{u} s^{1 / 2}+o\left(s^{1 / 2}\right), \quad v=K_{v} s^{1 / 2}+o\left(s^{1 / 2}\right), \tag{30}
\end{equation*}
$$

where K_{u}, K_{v} are constants and $o(f(s))$ means any expression such that

$$
\lim _{s \rightarrow+\infty} \frac{o(f(s))}{f(s)}=0
$$

We get from (22), (24), (26), (29), (30)

$$
\begin{equation*}
\lambda_{i}(s)=K_{i} s^{1 / 4}+o\left(s^{1 / 4}\right), i=1, \ldots 4 \tag{31}
\end{equation*}
$$

K_{i} are constants. We can easily find with help of (4) that
(32) to each $S_{0} \geqq \delta$ there exists a constant $K\left(S_{0}\right)$ such that $\left|\lambda_{i}(s)\right| \leqq K\left(S_{0}\right) \cdot \delta^{1 / 4}$ for $s \in\left[\delta, S_{0}\right], i=1, \ldots, 4$.

The assertion of the lemma follows immediately from (31), (32).
Lemma 3. Suppose that

$$
\begin{align*}
& d_{1} \neq 0 \tag{33}\\
& b_{1}^{2}-4 d_{1} \neq 0 \tag{34}
\end{align*}
$$

Then there exist constants $\Lambda_{2}>0, S_{0} \geqq \delta$ such that

$$
\begin{equation*}
\left|\lambda_{i}(s)-\lambda_{j}(s)\right| \geqq \Lambda_{2} s^{1 / 4} \quad \text { for } \quad s \geqq S_{0}, \quad i \neq j, \quad i, j=1, \ldots, 4 . \tag{35}
\end{equation*}
$$

Proof. We use all notations from the proof of Lemma 2. Then

$$
\begin{array}{ll}
\lambda_{1}-\lambda_{2}=z_{2}^{1 / 2}+z_{3}^{1 / 2}, & \lambda_{2}-\lambda_{3}=z_{1}^{1 / 2}-z_{2}^{1 / 2} \tag{36}\\
\lambda_{1}-\lambda_{3}=z_{1}^{1 / 2}+z_{3}^{1 / 2}, & \lambda_{2}-\lambda_{4}=z_{1}^{1 / 2}-z_{3}^{1 / 2} \\
\lambda_{1}-\lambda_{4}=z_{1}^{1 / 2}+z_{2}^{1 / 2}, & \lambda_{3}-\lambda_{4}=z_{2}^{1 / 2}-z_{3}^{1 / 2}
\end{array}
$$

So if (35) is to be proved it suffices to prove

$$
\begin{align*}
& \left(z_{i}^{1 / 2}+z_{j}^{1 / 2}\right) s^{-1 / 4} \xrightarrow{(s \rightarrow+\infty)}{ }^{1} K_{i j} \neq 0, \text { for } i \neq j, \tag{37}\\
& \left(z_{i}^{1 / 2}-z_{j}^{1 / 2}\right) s^{-1 / 4} \xrightarrow{(s \rightarrow+\infty)}{ }^{2} K_{i j} \neq 0, \text { for } i \neq j ;
\end{align*}
$$

the existence of finite limits is clear, cf. (31).
The conditions (37) will be fulfilled, if

$$
\begin{equation*}
\pm \lim _{s \rightarrow+\infty} z_{i}^{1 / 2} s^{-1 / 4} \neq \lim _{s \rightarrow+\infty} z_{j}^{1 / 2} s^{-1 / 4}, \quad \text { for } i \neq j \tag{38}
\end{equation*}
$$

(the existence of finite limits is clear again).
Using (26) we get the following sufficient condition that (38) is fulfilled

$$
\begin{equation*}
\lim _{s \rightarrow+\infty} x_{i} s^{-1 / 2} \neq \lim _{s \rightarrow+\infty} x_{j} s^{-1 / 2}, \quad \text { for } i \neq j, i, j=1,2,3 . \tag{39}
\end{equation*}
$$

Let us denote

$$
\begin{gathered}
\bar{p}=-\frac{b_{1}^{2}}{9}-\frac{4}{3} d_{1}, \quad \bar{q}=-\frac{b_{1}^{3}}{27}+\frac{4}{3} b_{1} d_{1}, \\
\bar{u}=\sqrt[3]{ }\left(-\bar{q}+\sqrt{ }\left(\bar{q}^{2}+\bar{p}^{3}\right)\right), \quad \bar{v}=\sqrt[3]{ }\left(-\bar{q}-\sqrt{ }\left(\bar{q}^{2}+\bar{p}^{3}\right)\right),
\end{gathered}
$$

then

$$
\begin{align*}
& \lim _{s \rightarrow+\infty} x_{1} s^{-1 / 2}=\bar{u}+\bar{v}, \tag{40}\\
& \lim _{s \rightarrow+\infty} x_{2} s^{-1 / 2}=\varepsilon \bar{u}+\varepsilon^{2} \bar{v}, \\
& \lim _{s \rightarrow+\infty} x_{3} s^{-1 / 2}=\varepsilon^{2} \bar{u}+\varepsilon \bar{v} .
\end{align*}
$$

It follows from (40): the condition (39) is fulfilled if

$$
\begin{equation*}
\bar{q}^{2}+\bar{p}^{3} \neq 0 \tag{41}
\end{equation*}
$$

We can easily find that (41) follows from (33), (34).
This proves the lemma.
Proposition 1. Suppose that (12)-(16), (33), (34) hold. Then there exist constants $L>0, \omega>0$ such that

$$
\begin{equation*}
\left|m_{i}^{(k)}(t, s) s^{(i-k) / 4}\right| \leqq L e^{-\omega t} \tag{42}
\end{equation*}
$$

for $t \geqq 0, s \geqq \delta, i=0, \ldots, 3, k=0, \ldots, 4$.
Proof. It follows from (10), (17), (21), (35) that (42) is fulfilled for $s \geqq S_{0}$. If we take into consideration the boundedness of $\lambda_{i}(s)$ for $s \in\left[\delta, S_{0}\right]$ and use (11), we easily prove that (42) holds on [δ, S_{0}], too.

Proposition 1A. Suppose that (12)-(15), (33), (34) hold. Then there exists a constant $L>0$ such that

$$
\begin{equation*}
\left|m_{i}^{(k)}(t, s) s^{(i-k) / 4}\right| \leqq L \tag{43}
\end{equation*}
$$

for $t \geqq 0, s \geqq \delta, i=0, \ldots, 3, k=0, \ldots, 4$.
Proof. It is similar to the proof of Proposition 1.
It follows immediately from Proposition 1A:
Theorem 1. Let (12)-(15), (33), (34) be fulfilled. Then the function $u(t)$, defined by the relation (5), is the solution of the equation (1) and fulfils the initial conditions (2).

Theorem 2. Let (12)-(16), (33), (34) be fulfilled. Then the zero solution of the equation (1) is globally exponentially stable with respect to the norm

Proof. Using (42) we get from (5)

$$
\begin{gather*}
\|A u(t)\|^{2} \leqq 4\left\{\int_{\delta}^{\infty}\left|m_{0}(t, s)\right|^{2} s^{2} \mathrm{~d}\left\|E(s) \varphi_{0}\right\|^{2}+\int_{\delta}^{\infty}\left|m_{1}(t, s) s^{1 / 4}\right|^{2} .\right. \tag{0}\\
. s^{3 / 2} \mathrm{~d}\left\|E(s) \varphi_{1}\right\|^{2}+\int_{\delta}^{\infty}\left|m_{2}(t, s) s^{1 / 2}\right|^{2} s \mathrm{~d}\left\|E(s) \varphi_{2}\right\|^{2}+ \\
\left.+\int_{\delta}^{\infty}\left|m_{3}(t, s) s^{3 / 4}\right|^{2} s^{1 / 2} \mathrm{~d}\left\|E(s) \varphi_{3}\right\|^{2}\right\} \leqq 4\left[L e^{-\omega t}\right]^{2} . \\
.\left(\left\|A \varphi_{0}\right\|^{2}+\left\|A^{3 / 4} \varphi_{1}\right\|^{2}+\left\|A^{1 / 2} \varphi_{2}\right\|^{2}+\left\|A^{1 / 4} \varphi_{3}\right\|^{2}\right)= \\
=4\left[L e^{-\omega t}\right]^{2}\|u(0)\|_{\mathscr{(A)} \times \mathscr{O}\left(A^{3 / 4}\right) \times \mathscr{(A ^ { 1 / 2 }) \times \mathscr { (A } A ^ { 1 / 4 })} .} .
\end{gather*}
$$

We can prove similarly

$$
\begin{gather*}
\left\|A^{1-k / 4} u^{(k)}(t)\right\|^{2} \leqq 4 L\left[e^{-\omega t}\right]^{2}\|u(0)\|_{\mathscr{(A)} \times \mathscr{(}\left(A^{3 / 4}\right) \times \mathscr{Q}\left(A^{1 / 2}\right) \times \mathscr{G}\left(A^{1 / 4}\right)}^{2}, \tag{k}\\
k=1,2,3 .
\end{gather*}
$$

If we add $\left(44_{0}\right)-\left(44_{3}\right)$, we get the global exponential stability of the zero solution.
Theorem 3. Let (12)-(15), (33), (34) be fulfilled. Then the zero solution of the

The proof is similar to that of Theorem 2.
Remark 1. Suppose that $v(t)$ is any solution of the equation (1). Then under the assumptions of Theorem 2, respectively Theorem 3, $v(t)$ is globally exponentially stable, respectively stable with respect to the norm $\|\cdot\|_{\mathscr{O}(A) \times \mathscr{O}\left(A^{3 / 4}\right) \times \mathscr{O}\left(A^{1 / 2}\right) \times \mathscr{G}\left(A^{1 / 4}\right)}$.

Proof. Let $u(t)$ be a solution of (1). Then the function $w(t)=u(t)-v(t)$ satisfies equation (1), too. Now our assertion immediately follows from Theorem 2, respectively Theorem 3.

Example. The following problem is often investigated:

$$
\begin{gather*}
\varepsilon_{1} \varepsilon_{2} u_{t t t t}(t, x)+a \varepsilon_{1} \varepsilon_{2} u_{t t t}(t, x)-\left(\varepsilon_{1}+\varepsilon_{2}\right) u_{t t x x}(t, x)+ \tag{45}\\
+\left(1+c \varepsilon_{1} \varepsilon_{2}\right) u_{t t}(t, x)-a \varepsilon_{2} u_{t x x}(t, x)+a u_{t}(t, x)+u_{x x x x}(t, x)- \\
-c \varepsilon_{2} u_{x x}(t, x)+c u(t, x)=0, \\
\text { where } \varepsilon_{1}>0, \varepsilon_{2}>0, a>0, c \text { are real constants, } \\
u(t, 0)=u(t, \pi)=u_{x x}(t, 0)=u_{x x}(t, \pi)=0 .
\end{gather*}
$$

Using Theorem 3, we get sufficient conditions for the stability of the zero solution of the problem (45).

Put $H=L_{2}(0, \pi)$ and define the operator A by the relation

$$
\begin{gather*}
A v(x)=v_{x x x x}(x), \text { for } \quad v \in \mathscr{D}(A)=\left\{v \in W_{2}^{4}(0, \pi) \mid v(0)=v(\pi)=\right. \tag{46}\\
= \\
\left.v_{x x}(0)=v_{x x}(\pi)=0\right\}
\end{gather*}
$$

(in the sense of distributions).
We easily find that the operator A is linear, selfadjoint, strictly positive and $\delta=1$.

Now, we can rewrite our problem into the form

$$
\begin{gather*}
u^{\prime \prime \prime \prime}(t)+a u^{\prime \prime \prime}(t)+\left\{\left[\left(\varepsilon_{1}+\varepsilon_{2}\right) A^{1 / 2}+1+c \varepsilon_{1} \varepsilon_{2}\right] / \varepsilon_{1} \varepsilon_{2}\right\} u^{\prime \prime}(t)+ \tag{47}\\
+\left[\left(a \varepsilon_{2} A^{1 / 2}+a\right) / \varepsilon_{1} \varepsilon_{2}\right] u^{\prime}(t)+\left[\left(A+c \varepsilon_{2} A^{1 / 2}+c\right) / \varepsilon_{1} \varepsilon_{2}\right] u(t)=0 .
\end{gather*}
$$

Simple calculations show that the conditions (12)-(15), (33), (34) are fulfilled, if

$$
\begin{equation*}
\varepsilon_{1} \neq \varepsilon_{2}, \quad c>-\left(1+\varepsilon_{2}\right)^{-1} \tag{48}
\end{equation*}
$$

Theorem 4. Let (48) be fulfilled. Then the zero solution of the problem (45) is stable with respect to the norm $\|\cdot\|_{\mathscr{(}(A) \times \mathscr{O}\left(A^{3 / 4}\right) \times \mathscr{O}\left(A^{1 / 2}\right) \times \mathscr{G}_{\left(A^{1 / 4}\right)} \text {, } \text { (the operator } A}$ is defined by (46)).

References

[1] M. Sova: On the Timoshenko type equations, Časopis pro péstování matematiky, 100, 1975, 217-254.
[2] M. Sova: Linear differential equations in Banach spaces, Rozpravy ČSAV, řada matematických a přirodnich věd, $85,6,1975$, Academia Praha.
[3] I. Straškraba, O. Vejvoda: Periodic solutions to abstract differential equations, Czech. Math. J., 23 (98) 1973, 635-669.

Author's address: 11567 Praha 1, Žitná 25 (Matematický ústav ČSAV).

