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WEAK-CONTINUITY AND CLOSED GRAPHS 

TAKASHI NOIRI, Yatsushiro 

(Received October 9, 1975) 

I. INTRODUCTION 

The concept of weak-continuity was first introduced by N. LEVINE [4]. In 1968, 
M. K. SINGAL and A. R. SINGAL [7] defined almost-continuous functions and showed 
that every continuous function is almost-continuous and every almost-continuous 
function is weakly-continuous, but the converses are not necessarily true in general. 
Recently, P. E. LONG and L. L. HERRI^GTON [6] have obtained several properties 
concerning almost-continuous functions and have given two sufficient conditions for 
almost-continuous functions to be continuous. The purpose of the present note is to 
give some sufficient conditions for weakly-continuous functions to be continuous. 

II. DEFINITIONS 

Let S be a subset of a topological space X. The closure of S and the interior of S 
are denoted by Cl*(S) and Intx(S), respectively. Throughout this note, X and Y 
denote topological spaces, and by / : X -* Y we represent a function / of a space X 
into a space Y. 

Definition 1. A function / : X -> Y is said to be almost-continuous [7] (resp. 
weakly-continuous [4]) if for each point xeX and each open set V c Ycontaining 
/(x), there exists an open set U c X containing x such that f(U) a IntF(Cly(V)) 
(resp. f(U) c Cly(V)). 

Definition 2. A subset S of a space X is said to be N-closed relative to X (briefly 
N-closed) [ l] if for each cover {Ua | a e si) of S by open sets of X9 there exists 
a finite subfamily «*/0 c s/ such that 

S c U { C l ^ « ) | a 6 ^ 0 } . 

Definition 3. A space X is said to be rim-compact [8, p. 276] if each point of X 
has a base of neighborhoods with compact frontiers. 
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III. WEAK-CONTINШTY AND CLOSED GRAPHS 

It is well known that if / : X -+ У is continuous and У is HausdorfF, then the graph 
G(f) is closed in the product spące X x У. P. E. Long and L. L. Herrington showed 
that "continupus" in this result can be replaced by "almost-continuous" [6, Theorem 
9]. Moreover, we shall show that "almost-continuous" can be replaced by "weakly-
continuous". 

Theorem 1. If f :X -+ Y is weakly-continuous and Y is Hausdorjf, then f has 
thefollowing property: 

(P) For each (x, y) ф G(f), there exist open sets U c X and V c Y containing x 
and y, respectively, such that f(U) n Intľ(Clľ(V)) = 0. 

Proof. Let (x, y) ф G(f)9 then y Ф /(x). Since Уis Hausdorff, there exist disjoint 
open sets Vand JVcontaining y and/(x), respectively. Thus, we have Int^Clj^V)) n 
n Clľ(pf) = 0. Since / is weakly-continuous, there exists an open set U c X con-
taining x such that f(U) c Clľ(Fľ). Therefore, we obtain f(U) n Int^CЦV)) = 0. 

R e m a r k l . Itis obvious that if a function has the property (P), thenthe^raph is 
closed. The converse is not necessarily true, however, as the following example due 
to P. KOSTYRKO [3] shows. 

Example 1. Let X and У be the sets of positive integers. Let X have the discrete 
topology, У have the cofinite topology and / : X -» У be the identity mapping. 
Then, although G(f) is closed, / does not hold the property (P). 

Corollary 1. If f :X -* Y is weakly-continuous and Y is Hausdorjf, then G(f) 
is closed. 

R. V. FULLER showed that if / : X ~> У has the closed graph, then the inverse 
image/~1(K) of each compact set K of У is closed in X [2, Theorem 3.6]. We shall 
obtain an analogous result to this theorem. 

Theorem 2. îf f :X -+ Y has the property (P), then the inverse image / - 1(K) 
of each N-closed set K of Yis closed in X. 

Proof. Assume that there exists a N-closed set K c У such that/^ҶK) is not 
closed in X. Then, there exists a point x є Cìx(f~ ҚK)) - fг(K). Since f(x) ф K, for 
each yєKwe have (x, y) ф G(f). Therefore, there exist open sets Uy(x) c X and 
V(y) c Уcontaining x and y> respectively, such that/(l7y(x)) n Intľ(Clľ(V(y))) = 0. 
The family {V(y) | y є K} is a cover of K by open sets of У. Since K is N-closed, there 

n 

exist a fìnite number of points yu y2,.... y„ in K such that K c Џ Intľ(Clľ(V(yj))). 
n j = ì 

Now, put U = П UУJ(x). Then we obtain f(U) n K = 0. On the other hand, since 

xєOx^fҚK)), we have f(U)nK ф 0 because 17 is an open set containing x. 
This is a contradiction. 
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Remark 2. The converse to Theorem 2 is not always true, as Example 1 shows. 

Corollary 2. Let Y be a Hausdorff space such that every closed set is N-closed. 
If f :X -+ Yis weakly-continuous, then it is continuous. 

Proof. This is an immediate consequence of Theorem 1 and Theorem 2. 
In [6, Theorem 7], it is shown that if Y is a rim-compact space and f :X -* Y 

is an almost-continuous function with the closed graph, then / is continuous. We 
shall show that "almost-continuous" in this theorem can be replaced by "weakly-
continuous". 

Theorem 3. If Y is a rim-compact space and f: X -+ Y is a weakly-continuous 
function with the closed graph, thenf is continuous. 

Proof. Let xeX and Vbe any open set of 7containing/(x). Since Yis rim-
compact, there exists an open set W c Y such that f(x) eWaV and the frontier 
Fr(W) is compact. It is obvious that/(x) $ Fr(W). Thus, for each y e Fr(W), we have 
(x, y) £ G(f). Since G(f) is closed, there exist open sets Uy(x) c X and V(y) cz Y 
containing x and y, respectively, such that/(Uy(x)) n V(y) = 0. The family {V(y) | y e 
G Fr(JV)} is a cover of Fr(W) by open sets of Y. Since Fr(JV) is compact, there exist 

n 

a finite number of points yl9 y2, . . . J - in Fr(W) such that U V(j>y) z> Fr(W). Now, 
i = i 

since/is weakly-continuous, there exists an open set U0 c X containing x such that 
n 

f(U0) a ClY(W). Put U = U0 n [ f) Uy(x)~\9 then U is an open set containing x 
1=i 

such that 

f(U) n(Y-W) = f(U) n Fr(W) cz \Jf(U) n V(yj) cz \Jf(Uyj(x)) n V(y3) - 0. 
i = i ; = i 

This shows that /(U) c Vand hence/is continuous. 

Theorem 4. Every rim-compact Hausdorff space is regular. 

Proof. This proof is similar to that of Theorem 3. 
Corollary 3. / / Y is rim-compact Hausdorff and f: X -* Y is weakly-continuous, 

then f is continuous. 

Proof. This follows immediately from [4, Theorem 2]. 
In [6, Theorem 8], it is shown that if/ is an almost-continuous function of a first 

countable space into a countably compact Hausdorff space, then / is continuous. 
The following theorem shows that "almost-continuous" in this result can be replaced 
by "weakly-continuous". 

Theorem 5. Let X be a first countable space and Y a countably compact Hausdorff 
space. If f \X -* Yis weakly-continuous, then f is continuous. 

Proof. This is an immediate consequence of Corollary 1 and [5, Theorem 2]. 
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