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SVAZEK 102 * PRAHA 16.5. 1977 * ČÍSLO 2 

EXTENSION OF A HOMEOMORPHISM OF A TOPOLOGICAL 
CIRCUMFERENCE 

ILJA CERNY, Praha 

(Received June 11, 1975) 

In the present paper we prove that any homeomorphic mapping h of a topological 
circumference T a S into S (S being the closed Gaussian plane) can be extended to 
a homeomorphic mapping of the whole S onto S. The only more advanced results 
used from the topology of the plane are the Jordan theorem and the theorem on the 
0-curves. 

The result just formulated is of crucial importance for the topology of the plane as 
well as for its applications e.g. in the theory of functions of a complex variable. It 
implies immediately a.o. the theorem on accessibility of all points of the boundary dQ 
of a Jordan region Q from the region as well as other analogous theorems (concerning 
the outer topological properties of topological circumferences) useful in the theory of 
conformal mappings and other fields. 

However, the application of the above theorem in the mentioned direction in 
elementary courses of the theory of functions is essentially hindered by the fact that 
the usual proofs given in the literature are based a.o. on the theorem on accessibility 
of boundary points of a Jordan region Q from Q (cf. e.g. [l], pp. 374—381). The 
present paper offers an almost elementary proof of the theorem, showing how the 
proof from [1] can be modified not only to remove the above mentioned drawback 
but also to avoid the use of other theorems, not widely known and difficult to prove. 

Let us first introduce the necessary notation, definitions and theorems. The closed 
Gaussian plane is denoted by S, the open Gaussian plane by £. The boundary of 
a set M c $ will be denoted by 3M, the closure by M. If 0 -# M a £, then 

diam M = sup \z' — z"\ ; 
z',z"eM 

besides, we put diam 0 == 0. If diam M < oo, then M is said to be a bounded set. 
If0=t= M< c Efor i = 1, 2, then 

dist (M1(M2) = inf | z ' - z " | . 
г'eMi,z"eAÍ2 
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If for instance Mi = {a} is a one-point set, then we write dist (a, M2) instead of 
dist ({a}, M2). 

If M c S is either a closed or an open set and if p, q e S — M are two points, we 
say M separates the points p, q in S, if p, q belong to different components of the 
set S - M. (Cf. [2], p. 108.) 

Let us recall the Janiszewski theorem (see e.g. [2], p. 172): If the sets Mu M2 

(czS) are either both closed or both open, if P, q are two points from S — (Mi u M), 
if neither Mt nor M2 separates the points p, q in S and the intersection Mx n M2 

is connected, then the set Mt u M2 does not separate the points p, q in S, either. 
For any e e (0, oo) and z e £ the set 

U(z, e) = {z' e £; \z' - z\ < e} 

is called an e-neighbourhood (briefly: a neighbourhood) of the point z; for each 
M c £ we put 

U(M, e) = U U(z, e) . 
zeM 

A segment with end-points a #- b from £ is the set 

w(a, b) = {z; z = a + f(b - a), re <0, 1>} ; 

the corresponding open segment is defined to be 

o(a, b) = u(a, b) — {a, b} *) . 

The points z e 0(a, fc) are called the interior points of the segment w(a, b). 
An arc is a homeomorphic image of a segment. The images of the end-points of 

the segment in the corresponding homeomorphic mapping are called the end-points 
of the arc. If L is an arc with end-points a, b, then 

£ = L - {a, b} 

defines the corresponding open arc. The term topological circumference stands for 
a homeomorphic image of a circumference. Under a polygonal line we shall mean 
here an arc or a topological circumference which is the union of a finite number of 
segments. 

A region (i.e., a connected open set) whose boundary is a topological circum
ference is called a Jordan region. We shall use the term polygon for a bounded 
Jordan region whose boundary is a polygonal line, or for the closure of such a region; 
the actual meaning will be always clear from the context. Any maximal segment 
contained in dQ will be called a side of the polygon Q while each end-point of any 
one of its sides will be called its vertex. 

*) {<*> b} is the two-point set consisting of the points a, b. 
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The Jordan theorem (see [2], p. 108) asserts that for every topological circum
ference T a S, the set S — Tis the union of two disjoint Jordan regions whose com
mon boundary is T. If T c £ then one of these regions contains the point co (we shall 
denote it by Ext T) while the other one is bounded (and will be denoted by Int T). 

The theorem on 0-curves will be applied in the following form (see [2], p. 184): 
If Q is a Jordan region, Lan arc with end-points a, b in dQ and satisfying L c Q, 
if Mx, M2 are arcs with the same end-points a, b for which Mx u M2 = dQ, then 
Q — Lis the union of two disjoint Jordan regions Qu Q2 which fulfil dQt = Mt u L 
for i = 1,2. 

The concept of a net (cf. [1], p. 374) will be of importance for us. Let Q be 
a bounded Jordan region, let Tk (2 g h _̂  n, n ^ 1) be arcs with end-points ak, bk. 
The sequence 

(1) Tt=dQ,T2,...,T„ 

is called a (n-term) net in Q if 

(2) rtcfi 
and 

(3) Tkn(Tiu...uTk.1) = {ak,bk} 

for each k = 2,..., n. 

The following assertion is easily proved (by induction with respect to n) in virtue 
of the theorem on 0-curves (cf. [1], p. 374): 

n 

Lemma 1. Let (1) be a net in Q. Then the set Q — \J Tk has exactly n components, 
* = 2 

say Ql9 ..., Qn, and 

(4) (J dQk = U Tk . 
k=l k=l 

n 

The boundary of the only unbounded component of the set S — \J Tk is dQ. Each 
n k = 2 

point z e dQ — \J Tk belongs to the closure of exactly one component of the set 
n k = 2 

fi-Ur, 
k = 2 

Another concept needed in the sequel is the linear accessibility: Let Q be a region, 
a e dQ. We say that the point a is linearly accessible from Q, if there exists a segment 
u(a, b) such that u(a, b) — {a} c O. 

The following lemma is easily verified (cf. [2], p. 527): 

Lemma 2. If Q is a bounded region then the set Z of all points from dQ which are 

linearly accessible from Q is dense in dQ. 

Let us recall another fact which we believe to be well-known: 
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Lemma 3. Each point of the boundary of a polygon is linearly accessible from it. 

The following result will be of importance as well: 

Lemma 4. Let (1) be a net in D with T2,..., Tn polygonal lines. Then every point 
n n 

z e U Tk n Q is linearly accessible from each component of the set Q — \J Tk 

*=-2 k=2 
to whose boundary it belongs. 

n 
Proof. If z e U Tk n Q, then for every sufficiently small neighbourhood U(z, e) 

fr = 2 n 
of the point z the set U(z, e) — U Tk is the union of a finite number of open circular 

fc = 2 n 
sectors and each component of the set Q — U Tk whose boundary contains the point z 

k = 2 
includes also one of these sectors. Obviously, the point z is linearly accessible from 
any one of these sectors. 

The following assertion plays an important role in the sequel: 
Lemma 5. Let e > 0. Let us denote by Sf the family of all squares 

Cwn = {z; (m — 1) e _5 Re z <£ me, (n — 1) e 5̂  Im z g ne] 2) 

where m, n are integers. Let Q be a bounded Jordan region, M a straigt line inter
secting Q. Then there exists a finite family S£ of segments which satisfies the fol
lowing four conditions: 

(40 LeSe^>L^M\ 

(42) Le S£, L = u(a, b) => o(a, b) c Q, a, be dQ; 

(43) Ll9 L2 eSe, Li+L2=>LinL2 = 0; 

(44) none of the components of the set Q — \J L intersects simultaneously two 
Lese 

squares C', C eSf which lie in different components of the set £ — M. 

Proof. Let SP* be the family of all segments which are closures of the components 
of the set M n Q. The family S£* is either finite or denumerable and satisfies the 
implications (4t)—(43) with S£ replaced by S£*. 

If the family S£* is finite put S£ = S£*. Then the implication (44) is obvious as 
well: every connected set included in Q and intersecting both components of the set 
£ — M intersects also the set M n Q = U L. 

LeSe 
It remains to prove the assertion under the assumption that the family S£* is 

infinite. In this case let us arrange the segments of the family S£* in a sequence 
L l 5 . . . , Ln,... with mutually different terms. Let the endpoints of the segment Ln 

2) Re z, Im z stand for the real and imaginary parts of a number z e Et respectively. 
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be am bn. With regard to the fact that the open segments Ln are disjoint and con
tained in the bounded part Q n M of the straight line M we have 

(5) \a„ - M - 0 . 

Let us choose an arc X of the topological circumference dQ which does not inter
sect M, and let Y be the arc of the topological circumference dQ with the same end-
points as X, which satisfies X u Y = dQ. Let <p be a homeomorphic mapping of the 
interval <0, 1> onto Y. Denoting 

(6) a„ = <p^t(am) , Pn = (P-i(K) 3) 

we can assume that an < /?„ for all n since the denotation of the endpoints of the 
segments Ln is immaterial in the sequel. We have fin — ocn -> 0 by (5) and in virtue 
of the uniform continuity of the function (p-x. Hence, with regard to the uniform 
continuity of <p, 

(7) diam (p«a„, pn}) -> 0 . 

The theorem on 0-curves implies (for every n) 

(8) Q - Ln = Qnl u Qn2 

where QnU Qn2 are disjoint Jordan regions with 

(9) dQnl = Ln u <p«a„, /»„» • 

Since 

diam Owl = diam dQnl = diam Ln + diam <p«an, /?„>) , 

we conclude by (5) and (7) that 

(10) diam Qnl -> 0 . 

Let Zl9 Z2 be open half-planes determined by the straight line M. Let us denote 
by W( (i = 1, 2) the union of all squares Cmn e Sf which are contained in Zt and 
intersect -2. The sets W( (being finite unions of compact sets Cm>rt) are compact. If one 
of them is empty then our assertion is trivial as the empty family may be taken for L. 
Therefore, let Wx =f= 0 * W2; then 

(11) dist ( O n M , Wi) > 0 for i = 1, 2 . 

Since Qnl n (O n M) 4= 0 for every n, by (10) and (11) there exists a positive integer p 
such that 

(12) SMl n (PVj u Jf2) = 0 for all n > p . 

) The symbol (p^.t denotes, of course, the inverse mapping to <p. 
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Put ££ = \Li9..., Lp} and assume that there exists a component K of the set 
p 

Q — [J L = Q — \J Ln which intersects both Wt and W2. Let us choose points 
L€JSf * » I = 1 

zteK n IVf (i = 1, 2). As K is a region, there exists an arc N contained in K, with 

the end-points zi9 z2. Further, there exists an n > 0 such that U(N, n) c K. With 

regard to (10) there exists a q > p such that diam Dni < n for all n > q. This implies 

(13) Qni n N = 0 for all n > q . 

It is easy to see that the set 

(S - Q) u U Ln = (S - *2) u U Ln 
n>q n>q 

is a continuum4). This continuum does not separate the points zi9z2 in S, since its 
complement 

S - ( ( S - f l ) u U L f l ) = ( 7 - U L „ D D - U S n l 
n>t2 »><? n><? 

1 

contains the connected set N. If the continuum (S — Q)u\J Ln did not separate 
» = i 

the points zl9 z2 in S, then the same would hold according to the Janiszewski theorem 
also for the set 

( S - 0 ) u | j L „ = ( ( S - D ) u U Ln) u ((S - Q) u U K), 
n = l n>q n=l 

since the intersection 

1S 

((S - (2) u (J £„) n ((S - Q) u U ^n) = S - Q = Ext 8Q 
n>q n=l 

oo 

connected. However, this is not the case, since M c ( $ - n ) u U L „ and M 
л = l 

separates the points zi9 z2 in S 5 ) . Consequently, 

(14) the continuum (S - jQ) u U L„ separates the points zl9 z2 in S. 
n = l 

On the other hand, we know that 

p 

(15) the continuum (S — Q) u U £« d ° e s n o t separate the points zi9 z2 in S 
n=l p p 

(since the connected set K c Q — U Ln — S — ((S — O) u U Ln) contains these 
points). n = 1 * B = 1 

4) That is, a compact connected set. 
00 

5) Let us note that (12) implies that zteQ — U ^»i» hence also zteQ — U Ln for / -= 1,2. 
n > p n=1 
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(S - Q) u U Ln u Qri 

Let r be the least positive integer such that 
r 

(16') the continuum (S — Q) u U Ln separates the points zi9 z2 in S. 
« = i 

Then p < r = q and 
r - l 

(16") the continuum (S — Q) <u \J Ln does not separate the points zi9 z2 in S. 
« = i 

The set S — jQrl = Ext dQri is connected and according to (12) contains both zi 

and z2. Consequently, Qri does not separate these points in S. Further, we have 

((S - Q) J u L„) n S r l = ((S - „) n (1rl) u (\J Ln n Sr l) = <p«xr9 ft» u yl, 
w = l n = l 

where zl is the union of all segments Ln (n = 1,..., r — 1) satisfying L„ c Orl. The 
end-points of such segments belong to (S — Q) n 0 r l = (?(<ar, /?r>) and therefore 
the union (p({ocr9 /?r>) u A is connected. The Janiszewski theorem implies that the set 

r - l 

w = l 

does not separate the points zi9z2 in S, either. The less does so the smaller set 
r 

(S — Q) u U Ln; however, this contradicts (16'). 
H = l 

This completes the proof of Lemma 5. 

Lemma 6. Let Q be a bounded Jordan region and let e > 0. Then: 
1. There exist segments Li9:..9 Lq (with q — 0) such that 

(17) dQ9 Li9 ...9Lq is a net in Q ; 

(18) every component of the set Q — \J Ln has a diameter less than e. 
w = l 

2. / / Q is a polygon and the set Z is dense in dQ9 then it is possible to choose the 
segments Li9..., Lq so that, in adition to (17) and (18), the following two conditions 
hold: 
(19) every point zedQ belong to at most one set Ln (l = n = q); 

(20) LnndQ a Z for all n = 1,..., q . 

Proof. 1. Let Q be a bounded Jordan region, e > 0. Let us denote by Sf the 
family of all squares 

Cmn = {z; ^(m — 1) e = Re z g ^me, |(n — 1) e = Im z = £ne} 

where m, n are integers. 
Let J£x be the family of all straight lines 

(21) {z; Im z = i(2k - 1) e} 
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where fc is an integer satisfying 

(22) {z eJ2; Im z = ifce} * 0 4= {z e Q; Im z = j(fc - 1) e} , 

and let ^ 2 be the family of all straight lines 

(23) {z; R e z = £ ( 2 j - l ) e } 

where 7 is an integer satisfying 

(24) {z e G; Re z = ije} * 0 # {z e O; Re z = i(I - 1) e} . 

Put M = Jix u -^2- ^ follows from the boundedness of the set Q that the family Ji 
is finite. 

According to Lemma 5 we have to every straight line M e M a finite system 
S£(M) of segments satisfying 

(25-.) Le&(M)=>LcM; 

(252) Le ^f(M), L = u(a, b) => 0(a, b)cQ, a,be dQ; 

(253) L', L" e ^f(M), L' # L" => L' n L" = 0; 

(254) none of the components of the set Q — (J L intersects simultaneously two 
LeSe(M) 

squares C, C" e «_/* which belong to different components of the set £ — M. 

Let K be one of the components of the set 

(26) Q- U U L. 
MeJt LeSf(M) 

Then there exists a maximal integer fc such that {z e K; Im z ^ £(fc — 1) e} = 0. It 
follows from its definition that K n Cmuk 4= 0 for a certain integer mx. If it were 
{z eK; Im z ^ -J(fc + l)e} =f= 0, then K n Cm2>n =# 0 for some two numbers m2 

and n ^ fc + 2. The straight line M = {z; Im z = £(2fc + 1) e} would belong 
to Mx. However, this is not possible, since K is part of a component K' of the set 
Q — U Land according to (254) K' does not intersect both squares Cmuk, COT2>„, 

LeJSf(M) 

as they belong (in virtue of the inequality n = fc + 2) to different components of the 
set E — M. Thus we have proved that 

(27) K c {z; i(fc - 1) e ^ Im z < i(fc + 1) e} 

for fc suitably chosen; we can prove similarly that 

(27') K c {z; i(I - l)e g Rez = i(j + l)e} 
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for j suitably chosen. The last two inclusions imply immediately 

diam K ^ diam {z; £(; - 1) e .^ Re z ^ 1(I + l) fi , 

i(k - 1) e ^ Im z ^ J(fc + 1) e} = e Vf < e . 

Consequently, 

(28) if K is a component of the set (26), then diam K < e. 

Let us now arrange all segments of the family U S£(M) in a sequence Ll9..., Lp 
MeMi 

with mutually different terms (so that p ^ 0). With regard to (25!)—(253) and to 
the fact that the straight lines from Ji1 are disjoint we obtain that 

(29) the sequence dQ, Ll9..., Lp is a net in Q. 

On the basis of the families ££(M)9 where M e Ml9 we form new systems ££*(M) 
in the following way: For every Le IJ ££(M)9 let 

MeM2 

(30) L n (5*2 u U L„) 6) = {a£,..., <&>} 
« = 1 

where 

(31) Im ao < I m a i < • • • < Im tfrtL) • 

Let the family ££*(M) contain exactly all the segments 

w(«0» 0i)> w(al> a£)> •••» «(«KL)-l> aKL)) 

where Le S£(M). 

If all segments of the family U &*(M) are arranged in a sequence Lp+l9 ...,Lq 
MeM2 

with mutually different terms, then q ^ p and it is evident that (17) holds. Further, 
obviously 

U L„= U U L, 
n = p+l MeM2 Le&(M) 

hence also 

(32) U l w = U U L. 
n = l Me.* Le&{M) 

In virtue of (28), (18) is proved. 
2. Now let Q be a polygon and Z a set dense in dQ. Without any loss of generality 

we may assume that 

6) This set is finite, since L n dQ is a two-point set according to (252) and L is ortogonal to 
each segment Ll9..., Lp. 
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(33) any vertex of the polygon Q belongs neither to a line {z; Re z = |fe} nor to 
a line {z; Im z = J/e} with I odd, 

(34) no point of the form ^(lt + iT2) e with ll9 l2 odd belongs to dQ9 

since, if necessary, Q may be suitably translated without affecting essentially our 
argument.7) 

Let the symbols Cmrj, £f9 Jtl9 Jtl9 Ji have the same meaning as in Part 1 of the 
proof. According to (33) the set M n dQ is finite for every M e Jt\ let 

(35) Mn8Q=-{a^9a^9...9a^M)} 

where 

(36j) * R e a f < Re a f < ... < Re a?fM) if MeJtl9 

(362) Im af < Im af < ... < Im a^M) if MeJt2. 

Further, let us denote by Xf the side of the polygon Q which contains the point af; 
since the point a£* is not a vertex of the polygon Q there is exactly one such side, 
it is not parallel to M, and the point a™ is its interior point. Let P+(M)9 P~(M) be 
the components of the set £ — M. Let W+(M) and W~(M) be the unions of all 
squares Cmtne5f which intersect Q and satisfy Cm/l c P+(M) and Cm>n c P~(M), 
respectively. 

We shall prove that for every sufficiently small 8 > 0 the following five conditions 
hold: 

(37x) for any M e Jt9 there is no vertex of the polygon Q in the strip U(M, 8); 

(372) U(M, 8) n (JV+(M) u W~(M)) = 0 for each MeJi; 

(373) if Mx 4= M2 and either M l 5 M2 e ^ or M l 5 M2 e Jil9 then U(M1? <5) n 
n U(M2, <5) = 0; 

(374) if Mx e Jil9 M2 e Jil9 then U(Ml9 8) n U(M2, £) n <90 = 0; 

(375) given arbitrary points fef e Xf n U(M, 3) (where M e J , 1 ^ k ^ r(M)), 
then the angle between the segment w(b£_i, bf) (where 1 < k S r(M)) and 
the line M is non-negative and less than in. 

With regard to (33) we find that (37t) holds for all sufficiently small 3 > 0. As 
W+(M) U W~(M) is a compact set disjoint with M, (372) holds for all sufficiently 
small 3 > 0 as well. If 0 < 3 < £e, then (373) holds, too. Further, (34) implies that 

7) It is sufficient to use a translation vector v which is parallel neither to the real and imaginary 
axes nor to any side of the polygon Qt and whose magnitude is less than (i) the distance of every 
vertex of the polygon Q from the union of all straight lines {z; Re z = le/6}, {z; Im z = le/6} 
with / odd, not containing this vertex, (ii) the distance of every point (lx + il2) e/6 with ll912 odd 
from any side of the polygon Q not containing the point in question. 
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also the condition (374) is fulfilled for all 5 > 0 sufficiently small. If the points bM 

are sufficiently close to the points aM, then all conditions concerning angles will be 
fulfilled as required in (375). Taking into account that the segments XM are not parallel 
to the straight lines M we see that the points fcM e XM n U(M, 8) will be arbitrarily 
close to the points aM(eXM n M) provided 5 > 0 is sufficiently small. 

Let us now fix a number 3 > 0 so that (37x) — (375) hold. Denote 

.(40^ AM = {zeM; Re z < Re af} , AM
M) = {z e M; Re z > Re aM

M)} 

for M e Jtu 

(402) < = { z e M ; I m z < Im af}, ^M
M ) = {z e M; Im z > Im aM

M)} 

for M € e^2>
 anc~ let 

<403) < = o ( a f , aM
+1) 

for M G ^ and 1 = k < r(M). 
Further, let GM (where M e «^, 0 ^ k S r(M)) be the component of the set 

r(M) 

U(M, <5) — U XM containing the set Af. Let us note that each set GM is convex (being 
k=l 

the intersection of three or four half-planes). 
First, let us show that the number r(M) is even for all M e M and 

(41) AMu^Mu...u<M)c_S-0, A f u . . . u < M H c O , 

In virtue of its connectedness*and of the condition AM n dQ = ® each set AM is 
contained either in S — O or in Q. Since obviously AM u AM

M) <= S — Q, (41) will 
be proved (together with the evenness of r(M)), if we show that 

(42) for each k = 1, ..., r(M) one of the sets A^-u Af is contained in S - Q, the 
other one in Q. 

To prove (42), let us choose (with k =-= 1, . . . , r(M) fixed) a neighbourhood U of the 
point aM so small that U n 50 = U n XM. Then the set U — 5(2 is the union of two 
open semicircles, one of them being contained in S — O, the other one in Q according 
to the Jordan theorem. At the same time it is apparent that one of the sets A^-i, -4M 

intersects one of these semicircles while the other set intersects the other one. This 
implies immediately (42) in virtue of the fact that each set Af is a subset either of 
S — Q or of Q. 

If we show that 

(43) Gf ndQ = 0 for every MeJt and every k = 0, ..., r(M) , 

then (41) together with the connectedness of the sets Gf will imply 

(44) G M u G M u . , . u G M
M ) d S - 3 , GM u ... u G%^ a Q . 
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Let us suppose that there is a point z0eGM n dQ. By (37,), the point z0 is an 
interior point of a certain side X of the polygon Q, while the end-points of X do not 
belong to G?. Hence X intersects dGM in two points z1 4= z2. Since obviously 

KM) 

.X" 4= XM for j = 1, . . . , r(M), we have z1? z2 ^ U XM and, consequently, the points 
1=i 

zl9 z2 belong to the straight lines whose closures form dU(M, d), and lie in different 
components of the £ — M. This implies that X n M =t= 0; it is easy to see, with 
regard to the convexity of the sets GM, that o(zl9 z2) c GM so that the point of 
intersection of X and M belongs to AM = GM n M. However, this is a contradiction 
since AM n dQ = 0. 

This completes the proof of (43), and thus also of (44). 
Since the set Z is dense in dQ, there exist points 

(45) bMeXM nZn U(M, 5) (M e M, 1 g k = r(M)) . 

For M 6 J(x let us put 

(46,) BM = {z; Re z < Re bf, Im z = Im bf}, 

BM
M) = {z; Re z > Re bM

M), Im z = Im br
M

M)} , 

for M e c/^2 let 

(462) BM = {z; Re z = Re bf, Im z < Im bM} , 

< M ) = {z; Re z = Re bM
M), Im z > Im br%} ; 

for every MeJi let 

(463) B» = o(b?,b?+1) ( l^ fc<r(M)) 

and 
r(M) 

(464) BM = U -8f • 
r = 0 

As evidently Bf c GM, we have, by (44), 

(47) BMKjBMv...uBM
M)czS-n, 5 f u . . . u < M ) - i c ^ . 

The set BM is a topological circumference, hence the set S — BM has exactly two 
components in virtue of the Jordan theorem. Since BM <z U(M9 8), one of the com
ponents contains the half-plane P+(M) — U(M9 6), hence (by (372)) also the set 
W+(M)9 while the other one contains the half-plane P"(M) — U(M, 6), and hence 
also the set W"(M). This implies that every connected set intersecting both W+(M) 
and W~(M) intersects BM as well, so that 

(48) none of the components of the set Q - BM intersects both W+(M) and W~(M). 
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If for any M e M9 the symbol «S?(M) stands for the system of all segments EM, 
BM

9 BM
M)-i9 then the system is obviously disjoint and, by (47), 

(49) QnBM = U £, 
LeSf(M) 

so that, by (48), 

(50) none of the components of the set Q — \J L intersects (for any M e M) 
both sets W+(M)f W~(M). Le*(M) 

Hence it follows similarly as in Part 1 of the proof that 

(51) to every component K of the set Q — U U L there exist integers I, fc such that 
MeM LeSe(M) 

K c {z;i(; - 1) s = Re z = $(j + *) £> i(k-l)e = Imz = i(k + 1) e}, 

and consequently 
(52) diam K < e for every component K of the set Q — U U L. 

MeM Le&(M) 

Now let us arrange all segments of the system U SP(M) in a sequence Ll9..., Lp 
MeM 

Avith mutually different terms. Similarly as in Part 1 of the proof 

(53) the sequence dQ9 Li9 ..., Lp is a net in H. 

If Le S£(M) with MeM2, then the set 

(54) Ln (dQv\JLn) 

is finite since Ln dQ is a two-point set and the segments L , L „ ( l ^ n ^ p ) are not 
parallel (as, by (375), the angle between the segment Land the imaginary axis as well 
as the angle between any one of the segments Ln and the real axis is less than in). 

Consequently, for every M e M2 a system £P*(M) can be defined analogously 
as in Part 1 of the proof; we arrange the segments of the system U &*(M) in 
a sequence Lp+l9..., Lq with mutually different terms as before. MeJil 

Again, (17) and (18) hold by an analogous argument. Two different segments 
L', L" belonging either both to U &(M) or both to U &(M) do not intersect 

MeM i MeM 2 

(which is a consequence of the construction of the systems £?(M) — cf. (373)). If 
L' e ^(Mj), L" e Se(M2) with Mt e Ml9 M2 e M29 then L n L' is part of U(M29 S) n 
n U(M29 S) which is a set disjoint with dQ according to (374).Hence it follows 
that the condition (19) is satisfied. The validity of the condition (20) follows from the 
fact that every point from Ln n 8Q with 1 ^ n S q. is one of the points bM. 

This completes the proof of Part 2 of Lemma 6. 
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Definition. Let Q and Q* be bounded Jordan regions. Suppose that 

(55) - dQ = Tu T2, ..., Tn is a net in Q, 

(55*) dQ* = T*, T2*, ..., T* is a net in Q* . 

A homeomorphic mapping h of the set U Tn onto the set U T* is said to be regular8} 
« = 1 n = l q 

if it is possible to number the components Ql9..., Qq of the set Q — U Tn and the 
•2 n= 1 

components .Q*,..., Q* of the set O* — U T* in such a way that 
« = i 

(56) h^G,,) = dQ* for /t = 1, ..., q . 

Lemma 7. Let Q be a bounded Jordan region, Q* a polygon. Let f be a homeo
morphic mapping of dQ onto dQ*. Then: 

1. Under the assumption (55) there exist polygonal lines T*, ..., T* such that 
(55*) holds and the mapping f can be extended to a regular homeomorphic map-

* ping F of the set \J Tn onto the set \J Tn 
n-l 11=1 

2. Let Z denote the set of all points from dQ which are linearly accessible from Q; 
let Z* = / ( Z ) , / * = / - ! • Let us further assume that (55*) is satisfied, 

(57) U T* n dQ* c Z* , 
n = 2 

and 

(58) there are no two arcs T*, T*, 2 — m < n ^ q, with a common point in dQ*~ 

Then there exist polygonal lines T2,..., Tq such that (55) is satisfied and that the 
mapping f* can be extended to a regular homeomorphic F* mapping of the set 

U T* onto the set \J Tn. 
n = l n = l 

Proof. Let the assumptions of Part 1 of Lemma 7 be satisfied; we shall proceed 
by induction with respect to q. 

For q = 1 it is sufficient to notice that every homeomorphic mapping of dQ onto 
dQ* is regular. 

Let the assertion analogous to the above one hold for each (q — l)-term net. If 
(55) is satisfied, then 

(59) dQ = Tl9..., Tq_x 

8) Cf. [1], p. 376. 
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is a (q — l)-term net so that there exist polygonal lines T*,. . . , Tq*-X such that 
dQ* = T*, T*,..., Tq*_! is a net in Q* and the mappingfcan be extended to a regular 

.3-1 q-1 

homeomorphic mapping g of the set U Tn onto U T*. This means that numbering 
n = 1 n = 1 q-1 

suitably the components Gl9..., G^_t of the set Q — U Tn and the components 
q-1 n = l 

G*,..., G*_! of the set Q* - \J T* we have 
n = l 

(60) g(dGn) = dG* for w = 1, . . . , a - 1 . 

According to the definition of a net, Tq is an arc contained in Q with its end-points 
q-1 q-1 

a, b in U Tn while Tq n \J Tn = 9. This implies that Tq is part of a certain component 
n = 1 tj—l n = 1 

of the set Q — U Tn. Without any loss of generality we may assume that this com-
« = i 

ponent is Gq-X. Then a, be dGq.x. Since G*_x is a polygon, the points g(a), g(b) e 
e 3G*_! are linearly accessible from G*_x (see Lemma 3); consequently, there exists 
an arc T* with end-points g(a), g(b) which is a polygonal line and satisfies T* c G*_ t. 
The topological circumference dGq_ x is the union of two arcs Ml9 M2 with end-points 
a, b. Denoting M* = g(M^ for i = 1, 2 we conclude that M* are two arcs with 
end-points g(a), g(b) whose union is dG*-1. In virtue of the theorem on the 0-curves 
we have 

(61) Gq_, -Tq = Qq.lKjQq, G*_, - T* = Q*.t u Q* , 

where ^ . l 5 O g a s well as Q*-u ®* are disjoint Jordan regions with boundaries 

(62) dQq-t=TqvMl9 dQq = TquM29 dQ*., = T* u M* , 

ao* = r* u M* , 

respectively. Let h be a homeomorphic mapping of the arc Tq onto the arc T* 
satisfying h(a) = g(a)9 h(b) = g(b). Then we may put 

q-1 

,9 m U T „ , 
(63) F=^ n = L 

* in Tq, 

and F is evidently a homeomorphic mapping of U Tn onto U T* which is an exten
sion of / . q

 rt=1
 q

 n=l 

It is easy to see that the sets Q — \J Tn and Q* — U T* have the components 
n = l n = l 

Qx = G x , . . . , Qq.2 == G 4 _ 2 , Q ^ . i , Qq 

and 

^1 = G1? . . . , X2€-2 = ^.2-2- -3fl-l> ^ > 
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respectively. With respect to (60), (62) and (63) we have evidently 

F(dQn) = dQ* for n = 1, ..., q 

so that the mapping F is regular. 
2. Now let the assumptions of Part 2 of Lemma 7 be satisfied. Again we proceed 

by induction with respect to q. The assertion for q = 1 is evident; let the assertion 
analogous to the above one hold for any (q — l)-term net. 

The induction hypothesis together with (55*), (57) and (58) implies that there 
exist polygonal lines T2,..., Tq^x such that dQ = Tu T2,..., Tq-t is a net in Q 
and that the mapping f* can be extended to a regular homeomorphic mapping g* 

q-l q-l 

of the set U T* onto the set U Tn. This means that the components G*,..., G*_x 
* n = 1 q-l n = l q-l 

of the set Q* - \J T* and the components Gl9..., Gq-t of the set Q - U Tn can be 
n = l n = l 

numbered in such a way that 

(64) g*(dG*n) = dGn for n = l,...,q-l. 

The arc T* let have end-points a*9 b*. By (55*), T* is contained in a certain com-
q-l 

ponent of the set Q* - U T*; we may assume that the numbering is chosen so that 
n = l 

Tf <= G*-i- Then also a*, b* e dG*_t. Let us denote further a = g*(a*), b = g*(b*); 
then a, be dGq-.x. 

If a* e dQ* then a* e Z* according to (57) so that the point a = g*(a*) = 
4 - 1 

= f_i(a*) e Z is linearly accessible from Q. According to (58) we have a* $ \J T*; 
q-l n=2 

consequently a $ \J Tn and there exists a segment u(a, ax) satisfying u(a, at) - {a} c 
q-l n = 2 

c Q — U Tn. The connected set u(a, ax) — {a} is part of a certain component of the 
n = l 
4 - 1 

set Q — U Tn and the point a belongs to its closure. However, in virtue of Lemma 1 
n = l q-l 

the point a e dQ — U Tn belongs to the closure of only one component of the set 
q-l n = 2 4 - 1 q-l 

Q - U Tn. Hence u(a, ax) - {a} c Gq-±. If a* e \J T* n Q* then ae\JTnnQ 
n=1 n=1 n=1 

and a similar segment u(a, at) exists by Lemma 4. The existence of a point b! such 
that u(b, bx) — {fc} cz G€_x is shown similarly. 

Now it follows easily that there exists an arc Tq which is a polygonal line with 
end-points a, b and satisfying Tq a Gq-X. 

If h* is a homeomorphic mapping of the arc T* onto T4 with h*(a*) = a, h*(b*) = 
= b, then 

,ff* in U V , 
» = i • < • in T* 
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is the required regular homeomorphic extension of the mapping f*. (The proof is 
quite analogous to that of a similar assertion for the mapping F in the proof of 
Part 1 of the lemma.) 

Lemma 8. Denote 

(65) Q = {z; |Re z\ < 2, |lm z\ < 2}, Qx = {z; |Re z\ < 1, |lm z\ < 1} . 

Let —2 < a < b < 2, let Mu M2 be two arcs with end-points a, b and such that 
T = Mx u M2 is a topological circumference contained in Q. Further, let 0 e Int T, 

(66) i max {Im z; zeT, Re z = 0} e M2 , 

and 

(67) (Mx u M2) n « - 2 , a> u <b, 2 » = 0 . 

Lef f fee a homeomorphic mapping of the set Tonto dQx satisfying 

(68) / ( a ) = - 1 , f(b) = l, 

(69) / (M t) = {ze 30.; Im z = 0} , /(M2) = {ze 3fi.; Im z = 0} . 

Then there exists a homeomorphic mapping F of the set S onto itself satisfying 

(70) F\T-f, F | ( $ - e ) = W 9 ) . 

Proof. Let us denote 

(7i,)" Tt =Tr = aa, 
(712) T2 = < - 2 , a > u M 1 u < f e , 2 > , 

T? = <-2 , - l > u { z e d o , i ; Imz = 0}u< l , 2> , 

(713) T3^M2, T* = {ze8Qi; Im z = 0} . 

It is easy to verify that the sequences Tu T2, T3 and Tx*, T2*, T3* are nets in S-
3 

Moreover, it is evident that the mapping ft defined in U T„ by 
»=i 

(72) [/(z) for zeT, 
. . , _ \z for zedQ, 

J*Z) ~ i[z - 2(a + l)]/(c + 2) for z e <-2 , a> , 
fz + 2(1 - b)]j(2 - b) for z e <fc, 2> 

) Identical mapping; the symbol | is used for parcial mapping. 
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3 3 

is a homeomorphic mapping of U T„ onto U T* which is an extension of the map-
_• «, r n = l n-1 

Ping/. 
Let us show that fx is regular. We have 

(73) Q - T2 = Q1 u 0 2 

in virtue of the theorem on the 0-curves, where Qu Q2 are disjoint Jordan regions 
with boundaries 

(74) eQt = T2 u {z e dg; Im z = 0} , <3>Q2 = T2 u {z e 3Q; Im z = 0} . 

<?, м̂  
l 

<?, 

\ ţ л-

Ï л« 
#o . т, 

-2 o 
л« 

#o 
V 2 

""""wiľ 
Q 

rø» т. 

т; 
** 

ґ 

r 

lí 
•2 -1 

r 
1 2 

<? Ą 

9Q - V 

Further, we have T2 = M2 c ^ u ^ so that either M2 c Ql or M2 c Q2. Let us 
denote by Lthe segment with end-points 2f, i max {Im z; z e T, Re z = 0}. Then 

(75) Q1- L=G1KJG2 

where Gu G2 are disjoint Jordan regions satisfying 

(76) aeG1-G29 beG2-G1. 

If it were A?2 a Qu then with regard to (75) and (76) necessarily 

(77) JV?2 n Gx # 0 + A?2 n G2 

which would imply M 2 n SGt =t= 0 as well. However, in virtue of the equality 
3Gi n Qx = L (which is an easy consequence of the theorem on the 0-curves) and 
the inclusion fJl2 c Ql9 this would yield Si2 n £-# 0 which contradicts the as
sumption (66). 

Consequently, 

(78) T3 = Si2 <= Q2 
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and the theorem on the 0-curves together with (73) yields 
3 

(79) Q - U r „ = finufi12ufi13 
1 1 = 1 

where Qxj (j = 1, 2, 3) are the components of the sets on the left-hand side satisfying 

(80i) dQlt = T2 u {Z e dQ; Im Z = 0} , 

(802) dQ12 = T, 

(803) dQ13 = < - 2 , a> u T3 u <b, 2> u {Z e dQ; Im Z = 0} . 

We obtain similarly 

(81) Q - U T* = ^*i u fl*2 u fl*3 

where the sets on the right-hand side are the components of the set on the left-hand 
side, and 

(82j) dQ*lt = T2* u {Z e dQ; Im Z = 0} , 

(822) dQ*12 = dQ, , 

(823) dQ*3 = < - 2 , - l > u T * u < l , 2 > u { Z e d Q ; Im Z = 0} . 

The relations (79), (80!)-(803), (81), (82!)-(823) imply 

(83) fi(dQu) = dQ*j for j = 1, 2, 3 , 

i.e., the regularity of the mappingfj. 
Let us note that diam Q = ^32 < 6 and the more so, 

(84) diam Qxj < 6 , diam Q*j < 6 for j = 1, 2, 3 . 

Put 

(85) q(l) = 3 . 

Let us assume that for a positive integer fc we have defined nets T l 5 . . . , Tq(k) and 
Ti> •••> Tq%) i n S5

 t h a t Qkj and fl*y with j = 1, . . . , g(fc) are the components of the 
q(k) q(k) 

sets Q — U Tn anc* Q — U -C> respectively, that ffc is a regular homeomorphic 
/ i = l «j(/c) » = 1 q(k) 

mapping of the set U Tn o n t o t ^ e s e t U T* which is an extension of the mapping^, 
and n=1 n=1 

(86) T*,..., Tq*k) are polygonal lines , 

(87) diam Qkj < 6/fc , diam QkJ < 6/fc for ; = 1, . . . , q(k) , 

(88) fk(dQkj) = dQ*j for j = 1, . . . , q(k) . 

We see immediately that the above conditions hold for fc = 1. 
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In virtue of Lemma 6, Part 1, to every j = 1, . . . , q(k) there exist segments LJU . . . 
..., LjpU) such that 

(89^ " 8QkJ = Lj0, LJl9..., LJp(y) is a net in .Qky 

and 
PU) 

(892) every component of the set Qkj — U Ljt has a diameter less than 6j(k + 1). 
i = l 

In virtue of Lemma 7, Part 1, there exist polygonal lines L*l9..., L*p0) such that 

(90) dQ*j = L%, L% ..., L*pa) is a net in fijj,, 

PU) PU) 

and a regular homeomorphic mapping 4>, of the set U LJt onto the set U L*, which 
is an extension of the mapping fk | dQkj.

 i=0 i=0 

Let us put r = q(k) + p(l) + ... + p(q(k))9 let 

Tq(k)+l = L n , . . . , -̂ (fc) + p ( i ) = ^lp(l) > 

Tq(k) + p(l)+l = L2l, . - . , ^(*) + p(l) + p(2) = ^2/>(2)> •-. , Tr = Lqik)p{q{k)) , 

and similarly 

^(*)+i = L r i , . . . , Tr = Lqik)piqik)). 

Then it is evident that Ti9..., Tr and Tf,..., T* are nets in Q and the mapping 

PU) 

<P = <Pj in U ^ (j = l , . . . , # ) ) 
i = 0 

r r 

is a regular homeomorphic mapping of U Tn onto U -C which is an extension of 
n = l n = l 

the mapping fk (and thus also of fj). Numbering suitably the components Xl9..., Xr 
r r 

and X*9..., X* of the sets Q - U Tn and Q — U n̂*> respectively, we have 
n = l n = l 

(91) $(dXn) = dX*n for n = l , . . . , r ; 
P(1) 

besides, each of the sets Xn is a component of a certain set Qkj —• U LJt so that 
i = l 

(92) diamXn < 6/(fe + 1) for n = 1, . . . , r . 

Let us denote by Zn the set of all points from dXn which are linearly accessible 
from Xn9 let Z* = #(Z„). Then Z* is dense in 3X* and by Lemma 6, Part 1 there 
exist segments A*i9 1 g j <; s(n), such that 

(93^ 5*» = A*o> A*i, • • •> < ( n ) is a net in X* , 
5(») 

(932) every component of the set X* — U -4*t has a diameter less than 6/(fc + 1), 
i = l 

124 



(933) there are no two segments Anh Anj, 1 = i < j = s(n), with a common point 
in dX*n, 

(934) A*ni n 3X* c Z* for i = 1,. . . , s(n) . 

In virtue of Lemma 7, Part 2 there exist polygonal lines Ani such that 

(94) 8Xn = An0, Anl,..., Ansin) is a net in Xn, 

s(n) s(n) 

and a regular homeomorphic mapping Wn of the set U Ani onto U Ani which is an 
extension of the mapping <P__1 | dX*. , = 0 ' = 0 

Let us denote q(k + 1) = r + s(l) + ... + s(r), let 

Tr+1 = - ^ 1 1 J •••> -1r + s ( l ) = ^ - l s ( l ) 5 

r̂ + s(l)+l = A21, ..., 7̂  + s(1y+s(2) = A2s(2), ..., i9(k+1) = -4rs(r) , 

and similarly 
T * — A* T * — yl* 
- V + l — 7 1 l l 5 •••> i 9( i .+ l ) "" /lrs(r) • 

The mapping 

f * + 1 =!F„ in U4T, (n = l , . . . , r ) 
i=o 

q(k+l) q(k+l) 

is then evidently a regular homeomorphic mapping of the set U T* onto U Tn 
n=l n = l 

which is an extension of the mapping ^-l9 hence also of (f*)-i and (fi)-i- The 
q(k+l) 

mapping f k + 1 = (/*+1)_i is a. regular homeomorphic mapping of the set U Tn 
q(k+l) » = -

onto U T* which is an extension of the mapping #, hence also of fk and fv 
n -=l 

Numbering suitably the components Qk+1J and Qt+ij (j = 1, . . . , q(fc + 1)) of the 
q(k+l) q(k+l) 

sets Q - U Tn and Q - U T*, respectively, we obtain 
n = l n = l 

(95) fk+i(8Qt+ij) = Mk+ij f o r I = l , . - ,q ( fc + l ) . 

It is easily seen from our construction that 

(96) T*,..., Tq*k+1) are polygonal lines . 

q(k+l) 

Since every component Qk+1j of the set Q - U Tn is part of one of the sets Xn 
« = i 

q(k+l) 

and every component Q*+ij of the set Q - U T* is a component of a certain 
s(n) ' w = 1 

set X* - U 4!i, we have by (92) and (932) 
»=- i 

(97) d iamGk + l f i < 6/(fc + 1), 

diam Q$+1 j < 6/(fc + 1) for j = 1, . . . , q(k + 1) . 
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This completes the induction: For every positive integer k we have constructed 
nets Tl9..., Tq{k) and T*9..., Tq*k) in g, components Oky and Q*j (j = 1,..., q(k)) 

jK*) q(k) 

of the sets Q — *U Tn and Q — U T*9 respectively, and a regular homeomorphic 
»=1 q(k) « = 1 q(k) 

mapping fk of the set U Tn onto the set U Tn which is an extension of the mapping 
« = i « = i 

A- i (where f0 = f) so that (86) -(88) hold. 
Now we can show, similarly as in [1], pp. 378 — 379: 

00 00 

(98j) the set U Tn9 \J T* are dense in g, 
w=i « = i 

q{k) oo 

(982) the mappingfw =ffc in U Tn (k = 1, 2, ...) is uniformly continuous in U -d 
n = l n = l 

00 

and maps this set onto U T*. 
n = l 

The mapping fw can be extended continuously onto the whole Q by a well-known 
theorem10). Denoting the resulting mapping by F we can show that F is one-to 
one11), and hence a homeomorphic mapping of Q onto itself. The mapping F is an 
extension of the mapping fl9 hence also of the mapping f, and since f1 | <3Q = Id, 
we have F | dQ = Id as well. Putting now F = Id in S — Q we obtain the required 
homeomorphic mapping. 

Theorem. Every homeomorphic mapping of a topological circumference into S 
can be extended to a homeomorphic mapping of S onto itself. 

Proof. Let h be a homeomorphic mapping of a topological circumference T <= S 
into S. Let us choose points A, Be E in different components of the set S — Tand 
let r G (0, oo) be so small that U(A9 r) n T = <&. Putting 

(99) ^ - ^ h - r h ( 2 6 S ) 

we have 

\<P(z)\ ^ + < 2 for zeS - U(A, r), 
Z —•" A MJ -—" A 

so that 

(100) *(T) c Q 1 2 ) . 

Since $ is a homeomorphic mapping S onto S and since the points A9 B belong to 

10) See e.g. [2], p. 83. 
n ) The proof is not difficult. We refer the reader to [1], since here the present proof would 

bring nothing new. 
12) Q means the same as in (65); similarly for Qv 
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different components of the set S — T9 the points oo = <P(A), 0 = <P(B) belong to 
different components of the set S — <P(T). Thus the point 0 belongs to Int #(T). 

If we put 

a = min {Z e <P(T); Im Z = 0} , b = max {Z e &(T); Im z = 0} 13) , 

we have — 2 < a < b < 2. Denoting further by M1? M2 the arcs with endpoints a, b 
which satisfy Ml u M2 = <P(T) we have 

(Ai, u M2) n « - 2 , a> u <6, 2 » = 0 . 

Moreover, let us choose the notation so that 

i max {Im z; z e 3>(F), Re Z = 0} e Mt . 

Certainly there exists a homeomorphic mapping f of the set &(T) onto dQt which 
satisfies (68) and (69). Therefore, by Lemma 8, there exists a homeomorphic map
ping F of the set S onto itself, which is an extension of the mapping f 

The mapping F o # is a homeomorphic mapping of S onto S which maps the 
topological circumference T onto dQv Similarly, to the topological circumference 
h(T) there exists a homeomorphic mapping G of the set S onto itself with G(h(T)) = 
= dQx. The mapping 

W = G o h o ^ _ 1 oF_1 

maps 5QX homeomorphically onto itself. If it is extended by 

W(tz) = t W(z) for Z e dQt , r e <0, oo) , ^(oo) = oo 

to the whole S, it is seen immediately that the extended mapping W is a homeomorphic 
mapping of S onto S. 

Hence it follows that 
if = G _ I o ' P 1 4 ) o F o $ 

is a homeomorphic mapping of S onto itself which is an extension of the mapping h. 
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1 3) The right-hand extrema exist since 0 e ln t 0(T) so that the intersection of the straight 
line {z; Im z = 0} with #(T) is a compact set containing at least one negative and one positive 
number. 

1 4) !P stands here, of course, for the extended mapping. 
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