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1. INTRODUCTION 

In the paper [1] devoted to the axiomatic theory of differential equations, 
O. HAJEK introduced the notion of the process p in an abstract set P over a subset T 
of the reals as a relation p in the cartesian product P x T, satisfying the following 
three conditions: 

(i) ((y, v), (x, u)) e p implies v ^ u; 
(ii) ((y, u), (x, u)) e p implies y = x; 

(in) ((y, v), (x, u)) e p iff for each w e <w, v} there exists zeP such that ((y, v), (z, w)) e 
e P, ((z, w), (x, u)) 6 p. 

In [2], omitting the group property (iii), Hajek introduced the notion of a pre-
process and conjectured that many properties of the processes could be proved for 
the pre-processes as well. This idea inspired the authors to develop the theory of 
pre-processes (called pseudoprocesses in our terminology) and to prove some results 
concerning local determinacy of these objects. For the motivation of both the notions 
introduced and the investigations performed in the paper see [1], [2] and [4]. 

First of all we shall recall several notions and the notation concerning relations 
between two sets, which will be used throughout the paper. 

. 1.1. Relations. Let X, Y be arbitrary sets. Any subset r of the cartesian product 
X x Y (in this order) is called a relation between X and Y. If X = 7, then a relation 
r cz X x X is called a relation in X. When a pair (x* y) belongs to a relation r, then 
we write either (x, y )eror xry. 

Since relations are sets, the meaning of the symbols r e s , r u s , r n s etc. for any 
two relations r, s between X and Y is obvious. Recall that the relation inverse to 
r c X x Yis the relation r"1 c Y x X defined as follows: 

(1.1.1) xr-*y iff yrx. 
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The identical relation in X will be denoted by \x and defined by 

(1.1.2) m x\xy iff x = yeX. 

If r c X x y, s cz y x Z, then the composition r o s of the relations r and s 
(in this order) is the relation r o s c K x Z satisfying the following condition: 

(1.1.3) xr o %z iff there exists y e Y such that xry and jrz . 

For each r c X x Y we ciefine the domain of the relation r as the set 

(1.1.4) Dt =- {y e y | xry for some x e l } . 

Given r c: X x Y9 we set 

(1.1.5) ry = { x 6 l | ( x , j ) e D r } , 

(1.1.6) rA -= {x6X | (x, >>)e Dr for some j e i } 

for each y e yand .4 c Y. Analogously, we set 

(1.1.7) xr ~{yeY\(x9y)eDr}9 

(1.1.8) Br = {y e Y \ (x, y) e Dr for some xeB} 

for each xeX and B cz X. 
The partialization of a relation r c Z x Yto a subset A cz Yis the relation 

(1.1.9) r\A = r n (K x A) . 

Recall that r cz X x yis said to be reflexive, symmetric or transitive iff \xcz r, 
r = r"1 or r o r c r, respectively. 

It is evident that i f r , s c l x l , then 

(1.1.10) r c s iff r"1 c: s"1 , 

(1.1.11) ( r ° s ) _ 1 ^ s - ^ r ^ 1 . 

In what follows, P will denote an arbitrary fixed set and T will denote a subset 
of the set R of all reals, ordered by the natural order relation ^ inherited from R. 
The symbol R# will be used to denote the extended real line R u {-oo, +00} with 
the ordering extended frpm R to R# in such a way that — 00 < x < + 00 for each 
x e R. If M is a subset of any one of the sets T, R9R*9 then sup M will denote the 
least upper bound (l.u.b.) of the set M in the set R#. 

The main objects investigated in this paper are relations r in the cartesian product 
P x T. Each such relation determines uniquely a system of relations 0ru in P9u,ve T, 
such that 

(1.1.12) (y>v)r(x9u) iff yprux. 
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Conversely, each relation r c (P x T) x (P x T) is uniquely determined by such 
a system of relations vru c P, u,veT according to (1.1.12). 

Evidently, (1.1.5) and (1.1.7) imply 

(1.1.13) vrux = {y e P | yvrux} , 

(1.1.14) yvru = {xeP\yvrux}. 

1.2. Lemma. Let r, s be relations in P x T. Then the following assertions are 
equivalent: 

(i) r c: s. 

(ii) (y, v) r(x, u) implies (y, v) s(x, u) for all (x, u), (y, v)eP x T. 
(iii) yvrux implies yvsux for all x, y e P, u,veT. 
(iv) vrux cz vsux for all xeP, u,veT. 
(v) vru c vsu for all u,veT. 

1.3. Lemma. Let p, r, s be relations in P x T. Then the following assertions hold: 

(i) v(r u s)tt = vru u vsu for all u,veT. 

(ii) v(r n s)u -= vru n vsu for all u,veT. 

(iii) (vPu)~l = uPv1 for all u,veT. 

2. RIGHT PSEUDOPROCESSES 

2.1. Definition. Let P be an arbitrary set, T a R*, p c (P x T) x (P x T). The 
relation p is said to be a pseudoprocess in P over T iff it satisfies the condition 

(I) ttpM c 1p for all u € T. 

A pseudoprocess p in P over T is said to be right iff 

(R) vpu # 0 implies u «J v . 

The set of all right pseudoprocesses in P over T will be denoted by Ps(P, T). 

2.2. Remark. In accordance with (1.1.4), the domain of a pseudoprocess p in P 
over T is the set 

Dp = {(x, u)eP x T\(y,v) p(x, u) for some (y, v)eP x T} . 

Given a pseudoprocess p in P over T, we shall denote by Ip the set 

(2.2.1) Ip = {(x, u) € Dp | (x, u) p(x, u)} . 

Quite illustrative examples of pseudoprocesses may be found e.g. in [5]. 
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The behaviour of many physical systems may be analysed by means of pseudo-
processes. From this point of view the following question is very natural: Given 
p € Ps(P, T), (x/u) e £>p, what is the set of such t e T that fpMx 4= 0? To answer this 
question, we need first to introduce several further notions. 

2.3. Definition. Let p e Ps(P, T). The map 

(2.3.1) e : Dp - R* , 

defined by 

(2.3.2) e(x9 u) = sup {t e T | fpMx 4= 0} , 

is called the extent of existence of the right pseudoprocess p. 
A right pseudoprocess p is said to have local (global) existence at a point (x, u) e 

€ Dp iff (x, u) e Jp and e(x9 u) > u (e(x9 u) = sup T). 
A right pseudoprocess p is said to have local (global) existence iff it has local 

(global) existence at each point (x, u) e Dp. 
A point (x, u) e Jp is said to be a start point of the right pseudoprocess p iff xup, = 

= 0 for each t e T n < — oo, u). 
A point (x, u )e l p is said to be an end point of the right pseudoprocess p iff 

tpux = 0 for each teT n(u9 + oo>. 

2.4. Remark. Evidently, if tpux 4= 0, then necessarily u S t S e(x, «)• 
A point (x, u)elp is an end point of a right pseudoprocess p iff yrpMx, t ^ u, 

teT implies (y91) = (x, u), i.e. iff e(x9 u) = u. 

2.5. Definition. Let p e Ps(P, T). The map 

(2.5.1) d : Dp -» R# , 

defined by 

(2.5.2) d(x9 u) = sup {w e R | card (fp„x) <; 1 for all t e T n <u, w>} , 

is called the extent of unicity of the right pseudoprocess p. 
A right pseudoprocess p is said to have local (global) unicity at a point (x, u) e Dp 

iff d(x9 u) > u (d(x9 u) = + oo). 
A right pseudoprocess p is said to have local (global) unicity iff it has local (global) 

unicity at each point (x, u) e Dp. 

2.6. Lemma. Let pe Ps(P, T). Then the following assertions hold: 

(i) If (x, u) € Dp, then u S d(x9 u) <J + oo. -
(ii) / / d(x9 u) < + oo, then to any v > d(x9 u) there exists teT such that d(x9 u) ^ 

S t < v and card Qvc) S~ 2; especially, u ^ d(x, u) g e(x, u) jg sup T. 
(iii) 1/ d(x, u) < +00, ffeen e(x, u) > u. 
(iv) J/ e(#, u) «* u, rAen d(x, u) =-= + oo. 
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2.7. Remark. Let p, p' e Ps(P, 7), p' c p. Then evidently 

(2.7.1) vp'u cz vpu for all u = t> in 7 , 

(2.7.2) Dp,czDp, V c / p I 

If ^ x =t= 0, then also „pwx 4= 0 so that the corresponding extents of existence e' 
and e of the pseudoprocesses p' and p fulfil 

(2.7.3) e'(x, u) g e(x, u) for all (x, u) e Dp, . 

Hence, if p' has local existence at a point (x, u) e Ip, then also p has local existence 
at the point (x, u). If a point (x, u) e Dp, is an end point of p, then also (x, u) is an 
end point of p'. Finally, if Dp, — Dp and if p' has global existence, then also p has 
global existence. 

If card (fpux) ^ 1, then card (tpux) ^ 1 so that the corresponding extents of 
unicity d! and d of pseudoprocesses p' and p fulfil 

(2.7.4) d(x, u) ^ d'(x, u) for all (x, u) e Dp, . 

Hence, if p has local or global unicity at (x, u), then also p' has the same property. 
If d'(x, u)< +oo, then (2.7.3), (2.7.4) and 2.6. (ii) yield 

(2.7.5) d(x, u) = d'(x, u) £ e'(x, u) = e(x, u) for all (x, u) e Dp,. 

2.8. Definition. Let p e Ps(P, T), s cz P x 7. The relation s is called a solution of 
the right pseudoprocess p iff the following three conditions are satisfied: 

(i) the domain Ds od s is an interval in 7; 
(ii) s is a map of Ds into P; 

(hi) s(v) vpu s(u) holds for all u, v e Ds, u = v. 

The set of all solutions of p will be denoted by Sp. 

2.10. Remark. According to the preceding definition, each p e Ps(P, 7) is assigned 
a set Sp of maps from 7 into P — the set of solutions of p. A question arises whether, 
given an arbitrary set S of maps from 7 into P such that for each s e S its domain Ds 

is an interval in 7, there exists a pseudoprocess p in P over 7 such that S cz Sp. Let 
us show that the answer to this question is affirmative. 

Given a set P, T c R* and S a set of maps s : 7 -> P with Ds an interval in 7, let us 
define a relation p5 in the set P x 7 as follows: 

(2.10.1) (y, v) ps(x, u) iff there exists seS such that u, ve Ds, u ^ v, s(u) = x, 
s(v) = y. 

Clearly ps e Ps(P, 7) and vp
s
u 4= 0 iff u ^ v in 7 and there exists s e S such that 

(2.10.2) u,veDMt s(v)vp
s
u s(u) . 
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Hence 

(2.10.3) m S c S p S . 

Let now p e Ps(P, T) be given and let us apply the preceding construction to the 
sets P, T and Sp. We obtain a right pseudoprocess pSp. According to (2.10.1), for 
each (y9 x) e vplp there exists s e Sp such that S(M) = x, s(v) = y9 s(v) vpu s(u), i.e. 
(y> x) e upu. Hence 

(2.10.4) p ^ c p . 

The converse icnclusion does not hold in general. (Take, for example, any p e Ps(P, T) 
with Dp - /p =# 0.) This result leads to the following definition. 

2.11. Definition. Let p e Ps(P, T). The pseudoprocess p is said to be solution 
complete iff for each pair ((y9 v)9 (x, M)) e p there exists s e Sp such that S(M) = x, 
s(v) = y. 

2.12. Remark. Let p e Ps(P, T) be solution complete and let (y9 x) e vpu. Then 
there exists s e Sp such that 

S(M) = x , s(v) = y 
and 

(y,x) = (s(v)9s(u))evp
s
u». 

Hence 

(2.12.1) p c pSp . 

From (2.12.1) and (2.10.4) we obtain the following assertion. 

2.13. Lemma. Let p e Ps(P, T). Then p is solution complete iff p = p5p. 

2.14. Remark. Let p, p' e Ps(P,' T), p ' c p , If s e Sp,, then all M, V e D59 u = v 
satisfy 

(s(v),s(u))evp'uc vpu 

so that s e Sp. Hence 

(2.14.1) S p , c S p , 

3. COMPOSITIVE RIGHT PSEUDOPROCESSES 

3.1. In the theory of processes one of the axioms for an abstract process in P 
over T is the equality < 

(3.1.1) vpu =- vpt o tpu for all M g f g v in T. 
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This equality is clearly equivalent to the following two inclusions 

(3.1.2) vpu c vpt o rpu for all u ^ t ^ v in T 

and 

(3.1.3) vpu => vpt o tpu for all u ^ t = v in 7 . 

Now we shall investigate in some detail the right pseudoprocesses satisfying the 
condition (3.1.2). 

3.2. Definition. Let p e Ps(P, T). The right pseudoprocess p is said to be com-
positive iff the condition 

(RC) vpu c vpt o tpu for all u g t <^v in T 

is satisfied. 
The set of all compositive right pseudoprocesses in P over T will be denoted by 

Psc(P, T). 

3.3. Remark. Given p e Ps(P, T), w, v e T, then ^p,, 4= 0 need not imply upu 4= 
4= 0 nor ^p,, =# 0. Nonetheless, if p is compositive, then from the condition (RC) 
and the assumption vpu 4= 0 one obtains for t = u9 t = t? the inclusions 

0 * „ptt <= ppB o ttpu , 0 4= vpu a vpv o ^ , 

respectively; hence it follows upu 4= 0, vpv 4= 0, respectively. Thus for p e Psc(P, T) 
the sets Dp and Jp coincide and may be characterized as follows: 

Dp = /P = {(x9u)eP x T|upttx 4=0}. 

3.4. Lemma. Let p e Psc(P, T), (x, u) e Z)p. TAen the following assertions hold: 

(i) Ifu < e(x9 u)9 then tpux 4= 9 for all teT n <u, e(x, u)). 
(ii) If u ?& t £ v < d(x9 u) in T and if zvpux9 ytpux9 then also zvpty. 

(hi) If u ^ v < d(x9 u) in T and yvpux9 then 

(3-4.1) d(x9 u) ^ d(y9 v), e(x9 u) ^ e(y9 v) . 

Proof. The assertion (i) follows easily from (RC). 

The assertion (ii) follows from (2.5.2) and (RC). Indeed, {z} = ^ x , {y} = rpMx 
so that 

{A » vPu* c vPt o tpux = vpty , 
i.e. z.p^. 

We shall prove the assertion (iii). Let u £ v < d(x9 u)9 let ye P be such that 

{y} = vPux- T h e n (*C) implies 

(3.4.2) rpMx c ^ o vpux = rp„y for all w «£ t? <i f in T. 
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Thus 
card (fpttx) ^ card (tpvy) . 

Hence and from (2.5.2) one easily obtains the first inequality in the assertion (iii). 
The second inequality follows from the inclusion 

{ * 6 T | f p ^ * 0 } c : { f e r | , p , y * 0 } , 

which is a direct consequence of 3.4.(i) and 3.4.(ii). 

3.5. Definition. Let p e Ps(P, T), (x, u) e Dp, s c P x T. The relation s is called 
a characteristic solution of p through the point (x, u) iff it satisfies the following 
two conditions: 

(i) Ds = {v 6 T | card (fpMx) -= 1 for all t e T n <w, v}}; 
(ii) s(v) vpux holds for all v e Ds. 

3.6. Remark. It follows immediately from the condition 3.5.(i) that Ds is an interval 
in T and that s is a map of Ds into P. Observe that a characteristic solution need not 
be a solution. 

3.7. Lemm&. Let p e Psc(P, T), (x, u) e Dp, u < d(x, u), let s be a characteristic 
solution of p through (x, u). Then s e Sp with Ds an interval of the form <w, u') or 
<u, «'>, where 

• f( \ A( \\ /e&u) V d(x,u)= +co, u = mm {e(x, u), d(x, u)} = <T 
xa(x, M) if d(x, u) < + oo . 

Proof follows easily from 3.5, 3.4.(ii) and (3.4.1). 

3.8. Theorem. Let p e Ps(P, T). Then the following assertions hold: 

(i) If p is solution complete, then it is compositive. 
(ii) If p is compositive and has global unicity, then it is solution complete. 

Proof. Ad (i). We have to prove the inclusion 

(3.8.1) vpu c vpt o fptt for all u <; t ^ v in T. 

Let (y, x) e vpu. Then there exists s e Sp such that s(u) = x, s(t;) = j ; and 

s(v) vpt s(t), s(l) tpu s(u) for all M ̂  t <; t? in D s . 
Thus 

(3.8.2) s(t;) ,,pf o fpM s(u) for all w ^ r ^ t; in Ds. 

Since s(u) = x, s(p) = >?, it follows from (3.8.2) that (y, x) e vpt o fpa. The pair (y, x) 
was taken arbitrarily from „pM, hence (3.8.1) holds. 
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Ad (ii). The assertion follows from 3.7 and 3.5. 

3.9. Remark. In [2] Hdjek applies some methods of the lattice theory in order to 
construct least upper bounds and greatest lower bounds of sets of processes. This 
idea motivates also the following definition. 

3.10. Definition. Let p, pA e Ps(P, T). The pseudoprocess pA is called a lower 
modification of the pseudoprocess p iff 

(i) pA c p; 
(ii) pAePsc(P,T); 

(iii) p 'e Psc(P, T), p' c p implies p' cz pA . 

3.11. Lemma. Let p e Ps(P, T). Define p~ e Ps(P, T) as follows: 

(3.11.1) . p - , = f){vpt *tpu\u£t£vinT}. 

Then p~ has the following properties: 

(0 P~ c p; 
00 P~ = P iLTpePsc(P,T); 

(iii) p 'e Psc(£, T), p ' c p implies p' cz p~. 

Proof. Ad (i). Setting t = v in (3.11.1) one obtains easily 

(3.11.2) vp~u cz vpu for all u ^ v ,.w T, 

whence p~ cz p. 

Ad (ii). Let p~ = p. Then 

,P~« = vPu = 0{vPt o tPu | u S t£ v in T} 
so that 

(3.11.3) vpu cz vpt o tpu for all u <; t <L v in T. 

Thus p is compositive. 
Conversely, if p is compositive, i.e. if (3.11.3) holds, then 

,P« <= f){vPt o rP« | w S t£ v in T} = vp~ t t . 

Hence and from (3.11.2) we obtain easily that p~ = p. 
Ad (iii). If p' cz p, then (2.7.1) implies 

^p,' o tpu cz ^pf o tpu for all u S t ^ v in T. 

Since p' is compositive, the inclusions 

vPu c vP't o tPu c t̂ Pr o rPu 
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hold for all u S t S v in T. Hence 

vP'u c 0{uPt o tPu I w S t S v in T} = l,p~ll for all u S v in T, 

which yields p' c p~. 

3.12. Construction of a lower modification. Let us define, by transfinite induction, 
pseudoprocesses p„ as follows: 

Po = P > P«+ 1 = P~n » Pco = H P» > 
n<co 

where p~„ denotes the pseudoprocess connected with pn according to the preceding 
lemma. The sequence (p„)„^o *s then constant starting at least from a certain ordinal, 
say m; thus p~m = pm. Let us show that this pm is the lower modification of the 
pseudoprocess p. 

Clearly, pseudoprocesses pn and p~„for each n satisfy the assumptions of Lemma 
3.11. Hence all p~w satisfy conditions 3.10.(i) and 3.10.(iii) with p~M instead of p A . 
Since p" m = pm, 3.11.(ii) yields pm e Psc(P, T) so that pm satisfies all three conditions 
of Definition 3.10. 

3.13. Remark. Let p e Ps(P, T) and let pA be its lower modification. Since pA c p, 
(2.7.2) implies 

(3.13.1) Dpл c D 
P 

The inclusion in (3.13.1) cannot be in general replaced by the equality. However, 
if p is such that 

(3.13.2) £p = JP> 

and (x, u)e Dp is arbitrary, then according to (3.11.2) 

u P V = uPu* = {*} > 

hence (x, u) 6 Dp. Thus Dpcz DpA. This together with (3.13.1) gives the assertion 

(3.13.3) Dp = DpA whenever (3.13.2) holds . 

From 3.3 there follows that the equality .Dp = DpA holds for all p e Psc(P, T). 

Now, let J be an arbitrary set and let pf e Ps(P, T) for all i e /. Set 

P = f l Pf • 
iel 

Clearly, p € Ps(P, T). However, if all pt are compositive, p need not be compositive. 
Let APi denote the lower modification of flPi- According to Definition 3.10 it 
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holds APiG PscC** 7")- From APi c Pi f° r all iel one obtains 

(3.13.4) DAPJ c=Dp/ for all jel9 

hence 

(3.13.5) DAPI<=f)DPj. 
jel 

If all Pi satisfy the condition (3,13.2), then the same holds also for their intersection 
and the equality 

IV = n DPJ 

takes place. The condition (3.13.2) is fulfilled e.g. if all pt are compositive. 

3.14. Theorem. Let p e Ps(P, T) and let pA be the lower modification of p. Then 
Sp = SpA . 

Proof. Let s e Sp. Then Ds is an interval in T and 

(314.1) (s(v)9 s(u)) e .,ptt for all k ^ t> in Ds. 

Let us show that 

(3.14.2) «v)9s(u))evp~u for all u£v in Ds, 

where, according to (3.HA), 

(3.14.3) vp~u = f|{,Pr o ,pM | u S tS v in 7} . 

From (3.14.1) it follows 

(s(v)9s(t))evpt9 (s(t)9s(u))etpu for all u S t £ v in Ds, 

hence 
(s(v)9 s(u)) 6 vpt o ,ptt for all u S t <> v in Ds. 

This and (3.14.3) imply immediately (3.14.2). From (3.14.2) and from the construction 
of the lower modification pA described in 3.12 it follows easily that 

(s(v)9 s(u))evp*u for all u £ v in JDS, 

i.e. se SpA. We have proved the inclusion Sp c SpA. Since Sp* <= Sp according to 
(2.14.1), the theorem is proved. 

3.15. Corollary. Let pt e Ps(P, T)/or ifrom an arbitrary index set I. Then 

SAPi " n Sp / , 
jel 
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3.16. Remark. Let et and dt denote the extent of existence and the extent of unicity, 
respectively, for p( e Ps(P, 7), i e I9 and let e and d denote the extent of existence and 
the extent of urlicity, respectively, of p = AP»- Then 

(3.16.1) e(x9 u) <| inf {e((x, u)\ iel} 9 d(x9 u) ^ sup {dt(x9 u) \ iel} 

for all (x, u) e Dp. Hence it follows immediately that each start or end point of some pf 

is the point of the same type of p. The converse does not hold. If some pf has local or 
global unicity at (x, u)9 then p has the same property. The analogous assertion for 
local or global existence is not valid. 

4. TRANSITIVE RIGHT PSEUDOPROCESSES 

4.1. In 3.1 we decomposed the equality (3.1.1) into two inclusions (3.1.2) and 
(3.L3). In the preceding section we have investigated right pseudoprocesses fulfilling 
the condition (3.1.2). Now we shall investigate the right pseudoprocesses which 
fulfil the condition (3.1.3) and also those fulfilling both the conditions (3.1.2) and 
(3.1.3). 

4.2. Definition. Let p e Ps(P, T). The right pseudoprocess p is said to be transitive 
iff the condition 

(RT) vpu ^ vpt o tpu for all u ^ t S v in T 

is satisfied. 
The right pseudoprocess p is called a right process in P over T iff it is compositive 

and transitive. 
The set of all transitive right pseudoprocesses in P over T will be denoted by 

Pst(P, T) and the set of all right processes in P over T will be denoted by P(P, T). 

4.3. Lemma. Let p e Ps(P, T). Then p e P(P, T) iff p 0 p = p. 

Proof. Indeed, the equality p = p o p is equivalent with 

vPu = vPt ° tPu for all u <5 t g t? in T. 

4.4. Lemma. Let p e Ps(P, T), let J be an interval in T and I an arbitrary set. 
Then the following assertions hold: 

(i) If se Sp> then s\j e Sp. 
(ii) If $t e Spfor i e I are such that Dnst is an interval in T, then f)st e Sp. 

(iii) If p is transitive and steSp for iel are such that Dst n DSj 4- 0 and sf u Sj 
is a map for all i$ j e I, then \J$t e Sp. 
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4.5. Lemma. Let p e Pst(P, T), u :g v in T, yvpux. Then the following assertions 
hold: 

(i) If v = e(x, u), then (y, v) is an end point of p. 
(ii) If v ^ w in T, zwpvy, then also ẑ p̂ x. 

(iii) d(x, u) S d(y, v), e(x, u) ^ e(y, v). 
(iv) If pe P(P, T), v < d(x, u) in T, then 

d(x, u) = d(y, v) , e(x, u) = e(y, v) . 

4.6. Example. In the assertions 3.4.(iii) and 4.5.(iv) the local unicity of p at the point 
(x, u) is assumed. As will be shown, this assumption may not be omitted. 

Define the right pseudoprocess p in P = {x, y, z, u} over T = {0,1, 2} as follows: 

0Po = {(x, x)} , 

iPo = {(y> *)> (u> *)} > iPi = {(y> y)> («> **)}, 

2P0 = {(*> *)} > 2P1 = {(*> u)} , 2P2 = {(z> *)} : 

Clearly yiPo*, z2p0x, 2 = e(x, 0) > e(y, 1) = 1, 0 = d(x,0) < d(y, 1) = +00. 

4.7. Remark. If p e Psc(P, T), it may happen that y^p-pc, d(x, u) = -f 00 and 
d(y, v) < + 00. Lemma 4.5.(iii) yields that this situation is impossible if p is a process. 

4.8. Remark. Let us show what is the advantage of passing to a lower modification 
of p in the case when p is transitive. From the construction of a lower modification p A 

of p, described in 3.12, one easily obtains that if p € Pst(P, T), then pA 6 Pst(P, T). 
Since pA e Psc(P, T) holds for each p 6 Ps(P, T), it is clear that if p 6 Pst(P, T), then 
pAeP(P,T). 

If Pf for i from an arbitrary index set are right transitive pseudoprocesses, their 
intersection is again a transitive right pseudoprocess. If pt are right processes, their 
intersection need not be a right process, because the intersection of compositive right 
pseudoprocesses need not be compositive. However the lower modification Apt 
of the intersection of transitive right pseudoprocesses or right processes is a right 
process. 

5. LOCAL DETERMINACY OF RIGHT PSEUDOPROCESSES 

5.1. In this last section we are going to investigate the question, when the knowledge 
of the local behaviour of a right pseudoprocess enables us to make conclusions 
concerning the local behaviour of another right pseudoprocess. In this context we 
shall study also the problem of the local equivalence of right pseudoprocesses. 

Given p 6 Ps(P, T), let us denote 

Lp~{(s9u)eSp x T\ueDs}9 
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where, as usual, Ds denotes the domain of the solution s e Sp, and let Sfp or £p stand 
for the set of all start or end points of p, respectively. 

5.2. Definition. Let p e Ps(P, T), (x, u) e Dp. The right pseudoprocess p is said 
to have right (or left) local existence of solutions at a point (x, u) iff the following 
conditions are fulfilled: 

( i ) (x ,u)^ < T p (or(x ,u)#^ p ) ; 

(ii) there exist a > 0 and s e Sp such that 

<u, u + e> n T cz D, (or (u — e9 u} n T c Da) 9 

respectively. The right pseudoprocess p is said to have right (or left) local 
existence of solutions iff it has this property at each point (x, u) € (Dp — Sp)9 

(or (x, u) € (Dp - S?p)), respectively. 

5.3. Definition. Let p € Ps(P, T), (x, u) e Dp. The right pseudoprocess p is said 
to have bilateral local existence of solutions at a point (x, u) iff it has 

(i) right local existence of solutions at the point (x, u) if (x, u) e (Dp — Sp)'9 

(ii) left local existence of solutions at the point (x, u) if (x, u) e (Dp - Sfp). 

The right pseudoprocess p is said to have bilateral local existence of solutions iff 
it has this property at each point (x, u) € Dp. 

5.4. Remark. Observe that if p € Ps(P, T) is solution complete then it has bilateral 
local existence of solutions. If p is compositive and has local unicity at a point 
(x, u) with u < d(x, u) < -f oo, then p has right local existence of solutions at the 
point (x, u). 

5.5. Definition. Let p, p' e Ps(P, T). The right pseudoprocess p' is said to determine 
the local behaviour of the right pseudoprocess p (which is shortly written as p' -< p) 
iff the following conditions are fulfilled: 

(i) p' c p; 
(ii) there exists a map 

(5.5.1) k : Lp -> R* 

such that fc(s, u) > u for u < sup D„ k(s9 u) «- u for u = max Ds and 

(5.5.2) *k*<i,«)>eSp,. 

5.6* Definition. Let p, p' e Ps(P, T). The right pseudoprocess p is said to determine 
the bilateral local behaviour of the right pseudoprocess p (which is shortly written 
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as p' =̂  p) iff the following conditions are fulfilled: 

(0 P' <= P; 

(ii) there exist maps 

(5.6.1) ku k2 : Lp -> R*' 

such that 

kt(s, u) < u for inf Ds < u , k^s, u) = u for min Ds = u , 

k2(s, u) > u for sup Ds> u , k2(s, u) = u for max Ds = u 

and 

(5 -6 . 2 ) S|<*1(S,I|),*2(S,M)> e ^P ' * 

5.7. Remark. Clearly the property =̂  is stronger than <, i.e. if p, p' e Ps(P, T), 
p' =̂  p, then p' < p. Since many assertions concerning the relations < and ^ may 
be formulated simultaneously, we shall do it using the symbol <. In these assertions 
the symbol < has to be replaced either by < or by = .̂ 

5.8. Lemma. Let p, p' e Ps(P, T). 

(i) / / p' < p, then Sp, c Sp, and Dp, c Dp. 

(ii) If p' -< p, then Sp, = ip n Dp,. 

(iii) If p' =< p, then Sp, = $p n Dp, and Sfp, = Sfp n Dp,. 

0V) If P' "< P ^ d P has right or left local existence of solutions, then Dp, = Dp, 

£P> = ^P; if, in addition, p' < p, then also Sfp, = Sfp. 

5.9. Lemma. Le> p, p', p" e Ps(P, T), p" cz p' c p. Then the following assertions 
hold: 

(i) 1/ p* < p, then p' < p. 
(ii) If p" < p, then p" < p'. 
(iii) If p" < p'9 p' < p, then p" < p. 

5.10. Lemma. Let p, p' e Ps(P, T), p <z p'. Then p < p' ijfpA < p'. 

5.11. Lemma. Le* p, p', p" 6 Ps(P, T). Then the following three assertions are 
equivalent. 

(i) p' < p, p" < p. 
(ii) p' n p" < p. 
(iii) p ' A p \ p , . 
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Proof. Let us prove the equivalence of the assertions (i) and (ii). According to 
Definitions 5.5 and 5.6 p' < p, p" < p iff p' c p, p" c p and for each (s, u) e Lp 

there exist internals Iu I2 <= Ds such that 

(s(t), s(v)) e tp'v for all v ^ t in Ix, 

(s(t), s(v)) e tpv for all v ^ t in I2 . 

This occurs iff p' n p' c p and 

(s(t), s(v)) e tp'v n rp; = r(p' n p")„ for all v^t in I± n I2 , 

i.e. iff p' n p" < p. 
The equivalence of the assertions (ii) and (iii) follows directly from 5.10. 

5.12. Definition. Let p, p' 6 Ps(P, 7). The right pseudoprocesses p and p' are said 
to be locally equivalent or bilaterally locally equivalent (which is shortly written 
as p <>• p' or p -<> p') iff there exists p" e Ps(P, 7) such that p" -< p, p" -< p' or 

5.13. Remark. Clerly, if p <>= p', then p - 0 - p'. In what follows, the symbol <> 
has to be replaced either by - 0 or by =-^.. 

5.14. Lemma. Let p, p' e Ps(P, 7). Then the following assertions are equivalent: 

(i) p o p ' . 

(ii) p n p' < p, p n p' < p'. 

(iii) p A p' < p, p A p' < >'. 

5.15. Theorem. The local equivalence and the bilateral local equivalence of 
right pseudoprocesses in P over T are equivalence relations on Ps(P, 7). 

Proof. The relation <> is clearly reflexive and symmetric. So it remains to prove 
that it is also transitive. 

Let p, p', p" e Ps(P, 7) be such that p <> p', p' <> p \ Then 5.14. (ii) yields 
p n p' < p', p' n p" < p', hence p n p' n p" < p' according to 5.11. This together 
with the inclusions 

p n p ' n p ' c p n p ' c p ' , p n p ' n p ' c p ' n p ' c p ' 

guarantees that the assumptions of Lemma 5.11 are fulfilled. Applying this lemma, 
one obtains 

p n p' n p" < P n p' < p , p n p ' n p f f < p ' n p " < p V 

which means that p <> p". 
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5.16. Theorem. Let p, p' 6 Ps(P, T) have right local existence of solutions. Then 
p -O- p' iff the following conditions are fulfilled: 

(i) Dp = Dp,, * p = Sp.\ 

(ii) there exists a map 

(5.16.1) r:Lp-+R* 

such that r(s9 u) > u for u < sup Ds9 r(s9 u) = u for u = max Ds and 

(5.16.2) s|<a>r(s>u)>eSp,. 

Proof. Let p -O- p'. There exists p"ePs(P, T) such that p" -< p, p" -< p'. 
According to 5.8.(iv) we have Dp = Dp„ = Dp,, Sp = 8p„ = Sp> so that (i) holds. 
Take any (s, u) e Lp. Since p" -< p, there exists a real fc(s, u) such that 

s|<tt,*(s,f/)> e SP" c ^ P ' • 

Hence the condition (ii) is satisfied with r = fc. 

Now we shall prove the second part of the theorem. Let p, p' 6 Ps(P, T) satisfy 
the conditions (i) and (ii). We have to prove that p -O- p'. According to 5.14.(ii) 
it is sufficient to show that p n p' << p, p n p X p'. 

Clearly p n p' c p, p n p' c p', hence 5.5.(i) holds. 
Take any (s, u) e Lp. Then, according to (5.16.2), there exists r(s9 u) such that 

S|<u,r(s,u)> e Sp' . 

Since s e Sp9 it holds also 
S|<u,r(s,«)> e Sp. 

Hence 
S|<u.r(s,u)> e ^p' n S p = Sp.np , 

which is the condition 5.5.(ii). Thus p -O- p'. 

5.17. Example. Let us show that locally equivalent pseudoprocesses may have 
different start points. 

Define a right pseudoprocess p in R over R as follows: 

ytpux iff y = x - u + t for u ^ t in R, x , ^ e R . 

Define a right pseudoprocess p' in R over R as follows; 

ytpux iflf y = x - u + t 

for u ^ t in R and x, >>6(- oo, 0) o r x j e < 0 , + oo). Clearly Dp = Dp„ For any 
(s, u) e Lp there exists a real r(s9 u) such that r(s9 u) e (u, + oo) if s(u) ^ 0, r(s, u) € 
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e(u,u - s(u)) if s(u) < 0 and it holds 

S|<«,r(5,ii)> 6 Sp. . 

Finally, neither p nor p' has an end point, hence p -O- p' according to Theorem 
5.16. However, p has no start point, while each point (0, u) with u e R is a start 
point of p'. 

5.18. Theorem. Let p, p' e Psc(P, T) have local unicity. Then p -O- p' iff there 
exists a map 

(5.18.1) h : D = Dp u Dp. -» R* 

such that 

(5.18.2) h(x, u)> u for all (x, u)eD 

and 

(5.18.3) tpux = fp'Mx for all u ^ t ^ ft(x, «) in T. 

Proof. Let p -O- p' so that the conditions (i) and (ii) of Theorem 5.16 are 
satisfied. Denote D = Dp = Dp. and construct the map h from (5.18.1) having the 
properties (5.18.2) and (5.18.3). 

Take (x, u) e D. If a point (x, u) is an end point of p, then it is also an end point 
of p' and Definition 2.3 yields 

tpux = tpux = 0 for all t > u in T. 

In this case we may define h(x9 u) > u arbitrarily. If the point (x, u) is not an end 
point of p, then p has local existence at (x, u). Since p is compositive and has local 
unicity at (x, u), there exists a solution se Sp with a nondegenerate Ds and satisfying 
s(u) = x. From 5.18.(ii) we have a real r(s9 u) such that 

S|<M,r(s,u)> e Sp' , 

whence the equality (5.18.3) follows with h(x9 u) = r(s9 u). 
Suppose now that there exists a map h from (5.18.1) having the properties (5.18.2) 

and (5.18.3). Then one verifies easily that the condition (5.18.3) together with 3.3, 2.3, 
3.5 and 3.7 yields the conditions 5.16.(i) and 5.16.(ii), hence p -O- p'. 

5.19. Remark. Example 5.17 shows that locally equivalent right pseudoprocesses 
need not coincide. A similar situation described in terms of local semi-dynamical 
systems may be found in [3], chap. Ill, items 2.12 and 2.13 and in [7]. As will be 
shown in Theorem 21, if local equivalence is replaced by bilateral local equivalence, 
we are able to obtain a more definite result. First we shall formulate the counterpart 
of Theorem 5.16 for bilaterally locally equivalent right pseudoprocesses. 
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5.20. Theorem. Let p, p' e Ps(P, T) have bilateral local existence of solutions. 
Then p =^= p' iff the following conditions are fulfilled: 

(i) Dp = Dp,, Sp = $p., 9>p = Sfp.\ 
(ii) there exist maps 

(5.20.1) ru r2 : Lp - R* 

such that 

rx(s, u) < u for inf Ds < u , rx(s, u) = u / o r min Ds = u , 

^(s.. u) > u /or sup Ds > u , r2(s, u) = u for max Ds = u 

and 

(5 .20.2) S|<ri(s.ti),r2(s,«)> G 5 p ' • 

Proof is an easy modification of the proof of Theorem 5.16. 

5.21. Theorem. Let T be a closed subset of R and let p, p' e P(P, T) be solution 
complete processes. Then p =^- p' iff p = p'. 

Proof. If p = p', then evidently p - s ^ p'. So the only nontrivial part of the proof 
is that p -50s. p' implies p = p'. 

Let p = ^ p'. We shall prove that p c= p\ 
Take arbitrary ((y, v), (x, u)) e p. Since p and p' are solution complete, they have 

bilateral local existence of solutions so that we can use Theorem 5.20. If v = u, 
then necessarily y = x and using the equality Dp = Dp, from 5.20.(i) one obtains 
(x, u) e Dp,, so that 

(5.21.1) ((y,v),(x,u))ep'. 

Thus, in what follows it will be supposed that v > u. 
First, let us suppose that (x, u) $ Sfp and (y, v) £ &p. Then there exist points (x', u'), 

( / , v') such that u' < u < v < v' and 

((x ,u) , (x' ,u') )ep, ( ( / , 4 ( ^ ) ) e p , 

Since p is solution complete, there exists a solution se Sp such that 

s(u') = x', s(u) = x , s(v) = y , s(v') = y'. 

Clearly <u, v} a (u', v') c Ds. The assumption p = ^ p' and Lemma 5.14.(ii) imply 
p n p' -^ p, p n p' ^ p' so that there exist maps ki9 k2 from (5.6.1) such that 

s|<Ms.r),*2(,,o> e VP' c SP' for each *e<u',t/> in T. 

Thus for each t e <u', v'} n T there holds 

st - sl<ki(s,t).k2(«.«)) Є "V ' 
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The set <M, t>> n T, being an intersection of the compact set <t/, v} and the closed 
set T is compact and 

<M, v>nTc U{(fci(*, t)9 k2(s, t))\te <u, v> n T} . 

Thus there exists a finite number of tl9129..., tn such that 

<u, v> n T c= (J (k,(s, tt), k2(s, tt)) . 
i-=l 

Since sf, c: s for each i = 1,2,..., n, it is also 

n 

i = I 

with 
R 

<M, t>> n T c Ds> cz U (fci(s, rf), k2(s, tt)). 
i = l 

Certainly Ds. is an interval in T containing the set <u, v) n T. From sri e Sp, and from 
Lemma 4.4.(iii) one obtains s' € Sp>. Hence and from s' cz s, u,ve Ds> we conclude 

S'(«) = S(K) = X , s'(t,) = s(i;) = j ; , s'(v) v?'u s'(u) 

so that (5.21.1) holds. 
Now, let us suppose that (x, u) e £fp. To each s e Sp with s(u) = x, s(v) = >; there 

exists a real fc2(s, w) > u such that 

S|<«,*2(5,tl» G ^ P O P ' C ^ P ' « 

Denote 
w = fc2(s, u ) , s" = s| < t t j W > , z = s"(w) . 

Clearly ((>>, v), (z, w)) e p', (z, w) £ (^p u £p) so that according to the first part of 
the proof ((y, v), (z, w)) e p'. Since ((z, w), (x, u)) e p' as well and p' is transitive, 
one has (5.21.1) also in this case. 

Finally, let us suppose that (y, v) e Sp. Corresponding to seSp with s(u) = x, 
s(v) = y there exists a real kt(s, v) < v such that 

S|<ki(a,»),»> G ^Pnp' C ^ p ' • 

Now applying the same argument as in the preceding part of the proof one obtains 
again (5.21.1). 

Since the pair ((y, v), (x, u)) was taken arbitrarily in p, we have proved the inclusion 
p e p ' . 

The assumptions concerning p and p' are the same. So interchanging the role of p 
and p' in the above reasoning we obtain the opposite inclusion p' cz p. Thus p ==- p', 
which completes the proof. 

132 



References 

[1] Hájek, O.: Theory of processes I, Czech. Math. Journal 17 (92), (1967), 159—199. 
[2] Hájek, O.: Theory of processes II, Czech. Math. Journal 17 (92), (1967), 372-398. 
[3] Hájek, O.: Dynamical Systems in the Plane, Academic Press, London—New York 1968. 
[4] Hájek, O.: Axiomatization of difFerential equation theory, Proceedings of EQUADIFF II, 

Bratislava 1967. 
[5] Nagy, J.: Stability of sets with respect to abstract processes, Lecture Notes in Operations 

Research and Mathematical Economics, Vol. 12, Mathematical Systems Theory and Eco-
nomics II, pp. 354—378, Springer Verlag, Berlin—Heidelberg—New York 1969. 

[6] Nováková, E.: A contribution to axiomatization of differential equations. Thesis, Fac. of 
Electrical Engineering, Czech. Techn. Univ., Prague 1976. (Czech) 

[7] Ura, T.: Locaí determinacy of abstract Jocal dynamical systems, Math. Syst. Theory, 9 
(1975), 159-189. 

Authors' address: 166 27 Praha 6, Suchbátarova 2 (Katedra matematiky elektrotechnické 
fakulty ČVUT). 

133 


		webmaster@dml.cz
	2012-05-12T09:43:25+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




