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Časopis pro pěstování matematiky, roč. 104 (1979), Praha 

ON THE EXISTENCE OF PERIODIC BOUNDARY 
CONDITIONS FOR CERTAIN NONLINEAR VECTOR 

DIFFERENTIAL EQUATIONS 

G.G. HAMEDANI, Tehran 

(Received January 26, 1977) 

In [5], B. MEHRI uses a special case of a theorem about contractions given in [3] 
(which, due to the finiteness of distance functions considered in [5], is in fact the 
usual theorem about contractions; see, e.g. [6]), and a result reported by CURIKOVIC 
[1], to establish the existence and uniqueness of solution of the nonlinear differential 
equation x" + Kx = f(t, x, x'), satisfying the periodic boundary conditions x(0) — 
— x(co) = x'(0) — x'(co) = 0. Although Mehri's Theorem 1 covers both cases 
K > 0 and K < 0, his Theorems 2 and 3 are restricted only to the case K > 0. 

In this note, we first extend all the results in [5] to a system of nonlinear second 
order differential equations. Then we establish two theorems whose scalar cases give 
analogues of Theorems 2 and 3 of [5] for the case K < 0. 

Consider the vector boundary value problem 

(1) x" + Ax = f(t9 x, x ' ) , 

(2) x(0) - x(co) = x'(0) - x'((o) = 0 , 

where x = (xl9..., x„) is an /i-dimensional vector; A is a constant diagonal n x n 
matrix; and f(t, x, y) = (ft(t, xl9 ..., xn9 yl9 ..., yn)9 .,., fn(t9 xl9..., xn9 yl9..., yn)) is 
a vector valued function, defined for (t9 x, y)e E = [0, co] x Rn x Rn. 

Throughout this paper, we take ||x|| = Max jxf| and \\A\\ = Max \aik\ respectively 
i i,k 

as the norm of x = (xl9..., xn) and of A = (aik). 

Theorem 1. Suppose that the matrix A = (af<5f*)" (<5ffc is the Kronecker delta) is 
such that all the a f are nonzero and have the same sign. Suppose further that the 
vector function f(t, x, y) is continuous, bounded in E and satisfies the inequality 

(3) \\f(t, xlt yi) - f(t, x2, y2)\\ *S c{||*x ~ *2|| + 1/&II.V- - y2\\}, 
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where b = Min^/I^l ' C > 0 is a constant such that 

« ' £<>• 
Then in [0, of\ c [0 nja], where a = Max V^t if 

i 

(5) at > 0 , i = 1, . . . , / i , 

and w [0, a>] £ [0, + co), if 

(6) a « < 0 , i = l, . . . , n, 

the problem (1) (2) has a unique solution. Moreover, Picard's sequence of successive 
approximations defined by 

(?) 
/•CO 

n(t) = G(t, s)J(s, XИ-ІO), *w-.iO)) ds , n = 1, 2,.. 

(where G(t, s) is Green's matrix for the problem (1), (2)) for a«>> vector function 
x0(i) specified below, converges in distance to this unique solution. 

Proof. If (5) holds, then problem (1), (2) is equivalent to the integral equation 

(8) x(t) = [WG(t, s)f(t, x(s), x'(s)) ds, 

where G(t, s) is Green's matrix for the problem (1), (2), 

2-\yjA)-i fsin y/(A) - I " ' Cos y/{A) (- + s - A for 

(9) G(t,s) 
0 < s < t ś æ 

2-^A)-1 fsin J(A) | 1 _ 1 COS VU)(| + . - S) + ř - s l for 

O ^ ^ ѕ ^ ш , 

and the matrix functions Sin y/(A) t and Cos y/(A) t are defined by the matrix series 
([2], p. 118), 

SinV(̂ )' = E ( - l ) ' ' ^ f ^ ' 2 p + 1 . 
P=O 

CnҖĄt-Іi-iүШZŕ'. 
p = 0 
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If (6) holds, then problem (1), (2) is equivalent to (8) where 

(10) 

' - " V H ) " 1 lE - exp VMI aT1 {e*p [-VMI (< - s)] exp (VMI«>) 
+ exp [7|A | (j - s)]} for s ^ f 

2~1(VMD"1 [£ - ^P VMI ©V1 W [—./Ml (- ~ 0] «p(VM «>) 
+ exp [7|A | (s - t)]} for r ^ s, 

G(í, s) = 

and the matrix functions exp [->/|-4| f] and exp [— /̂lAj r] are defined by the matrix 

series 

exp 
[VIAI (] = i ^ / M ' ř , ; e x p - _ _ M ř ] = g ( _ 1 ) p (VI4Y ř, 

P=O p! P=O T! 

Let 5 be the set of all continuous vector functions x(t) = (xx(t)9 ..., xn(t)) with 
continuous first derivatives x'(t) = (x[(t)9 ..., x f̂)) on [0, co]9 and define the distance 

(11) d(xl9 x2) = Max hXl(t) - x2(t)\\ + i ||x'i(r) - x2(*)|l > 
t*e[0,w] ( 0 J 

for an arbitrary pair of elements xt(t)9 x2(t) of S. Then K = (5, d) is a complete 
metric space. We define an operator U on X by 

(12) Ux(t) = Г G(t, s)f(s, x(s), x'(s)) ds . 

The operator U maps the space X into itself. 
Let x^t), x2(t) be any two elements from X9 then 

\\UXl(t) - Ux2(*)|| ^ C d(xl9 x2) Max -i- £ £ d(xl9 x2) , 

and 

Hence 

i I - Ux.(í) - - Ux2(í) 
b \\át v 7 df w g г d(Xi, x2) Max - — = — d(xí9 x2). 

b І JìaÁ b2 

2C d(Uxí9 Ux2) g — d(xí9 x2) 

Now (4) and the fact that any two elements of X have a finite distance, complete the 
proof of the theorem. 
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In the following two theorems we shall assume that (5) holds. Since <o e [0,7c/a], 
it follows that V(a0 W^) 6 [0> nl^] f° r e a c ^ *> anc* bence Sin y/(at) (co/2) 2> 
^ (2/71) yjfai) (co/2) for each i involving 

|GM! £;-£-. ||G,(t, s)|| < - f . 
2o co 2bco 

Let S and U be as before, then US c S. Let (S*, d) be the completion of (US, d) 
where d is given by (11). 

Theorem 2. Lef f(f, x, y) be a vecfor function defined and continuous on E, and 
satisfying the following conditions 

(13) |Д í , x, ;y)|| <-tp, pžO, (t,x,y)єE, 
2ҡ 

(14) \f(t, *., yi) - /(r, x2, y2)l < ^ | | |x . - x2||« + g | | y i - >>2|| J } 

for (f, xi? J,) € E, i = 1, 2, where q^l, 0 < r < 1, r = p(a — 1) and 

-J-f-L-Y" 
(l-r)\p-Hj 

< 1. 

Then problem (l), (2) has a unique solution x(t) e 5*, and the successive approxima
tions defined by (7) for any x0(t) e S, converge in distance to this unique solution. 

Proof. The space X = (S*, d) is a complete metric space, and U, defined by (12), 
maps X into itself. Let zx(t), z2(t) be any two elements of X, then from (12) and (13) 

1 
zt(t) - z2(t)lй-Г IЩsЦŕăз 

n Jo 2(p + 1) coи 

and 

i |K(0 - z2(0| < ^ f \\Gt(t, s)\\ s> ds < _ J _ «/ . 
b nbjo 2(p + 1) 

From (14) and (11) we obtain 

1̂ ,(0 - Moi s £ (-̂ -Y"'. - i - . &^) a,- s 
7T \ P + 1 / ™ ' 

<i 1 

2b2ю (1 - r) 

<l(-i> Zą) 

and 

- UzЛt) - - Uz2(t) 
dř W dí W 

2 (p + l Г 1 ( 1 - r ) 

1 1 d(zu z2) 

2 (p + !)•-- (1 - r) 
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From the last two inequalities, it follows that 

. d(Uzu Uz2) S \ • •—- d(zu z2) 
(p + If 1 - r 

which completes the proof. 

Remark. In Theorem 2 it is assumed thatf(f, x9 y) is bounded on E. The following 
theorem (whose proof is similar to that of Theorem 2) shows that this assumption 
is not necessary. 

Theorem 3. Let f(t9 x9 y) be continuous on E and saiisfy the following conditions 

(15) ' \f(t9x9y)\£±-r*9 0 < p < l , (t9x9y)eE9 

2n 

(16) \\f(t, xu y,) - f(t, x2, y2)\\ g -£ **"-> {ix, - *a|« + g \\yi - y2{t\ , 

where q §: 1 and 
1 V"1 1 

< 1 . Ö p(q - 1) + 1 

Then problem (1), (2) has a unique soluiion, and the successive approximations 
defined by (7) for any x0(t) e S, converge in distance to this unique solution. 

In the following two theorems we shall assume that (6) holds. Then we have 

2b co 2bco 

Theorem 4. Letf(t9 x, y) be continuous on E, and let C > 0 be a constant such that 

(17) lf(t,x,y)\£?£t>, p^O, (t,x,y)eE, 

(18) | / 0 . *i. .v.) - f(U x2, y2)\ ^ - ^ j | K - xa|« + [ i b , - y a | J } , 

where - I ^ l , 0 < r < 1, r = p(q — 1) and 

( 1 \1/q / 1 V"1/* 

rb) tbi) <K 

Then /here exists an co0 > 0 such that for every co9 0 < co g c00, (1), (2) has a unique 
solution x(t) e S*, and /he successive approximations defined by (7) for any xQ(t) e S, 
converge in distance to this unique solution. 
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Proof. Let X = (S*, d), and let z^r), z2(t) be any two elements of X, then from 
(12) and (17) 

\\zx(t) - z2(r)|| <; b*c f| |G(r, _)|| _>ds <; C < 2 + bco}f 
Jo 2(p + 1) 

and 
C(2 + b (o) cop 

2(p + 1) 

From (18) and (11), it follows that 

\ IKW- 4(011 _ ^ J > . M « s > d s í ş . 

oŕ-' й 1UZ1(0 - Uz2(0|| <. b2C . f_í__________Y_1 . _ + _ _ . _ £ _ _ ) c 1 -
\ p + 1 / ?f>2co 1 - r 

= 2- (p + i r 1 - ^ / ^ ^ 

i [A UZl(o - A Uz2(o I _ i . _*__*_£ . ___. «... Z2). 
b d í W dř W 2 í p + l ) 4 " 1 l - r V l ; (p + 1)" 

From the last two inequalities we obtain 

(p + 1)* * 1 - r 

U is a contraction map provided that 

(20) _ _ _ _ _ f . . _ _ _ < ! . 
V ' (p + 1)«_1 1 - r 

Clearly (20) is satisfied if 

(21) a » < i | i ( p + l ) « - « « ( l - r ) " « - 2 . 

Therefore, if co > 0 is chosen so that (21) is satisfied, then problem (1), (2) has 
a unique solution with the desired property. 

Theorem 5. Let /(*, x, y) be continuous on J_, and let C > 0 be a constant such 
that 

(22) lf(ttX9y)l£*£r'9 0 < P < 1 , (t9x,y)eE9 

(23) ||/(r, xl5 y,) - f(t. x2, y2)\\ =g bW-»{{lxt - x2||< + g fly,- ya||JJ 
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where q ^ 1, and 

( 1 \q-i/q / 1 \ l l c l 

—) GsTiJTT) ° -
Then fhere exfsrs an co0 > 0 such that for every co,Q < co <^ co0> (1)> (2) ^ 5 a unique 
solution, and the successive approximations defined by (7) f0r any x0(t) e S, con
verge in distance to this unique solution. 

Proof. Let X = (S*, d) and let z^t) and z2(t) be any two elements in X, then 

l | z l ( 0 _ 2 i ( f ) |<C(2±Hi^ . 
b II 1W 2V ;il - ^ _ ^ 

From (23) we obtain 

d(Uz rrz , < l ^ i l M ' 1 ^ z ) 
d(UZl,UZ2)< (i_p)q_t •piq_l) + 1d(*u*2). 

Again U is a contraction map if 

(25) co < i | i (1 - „)«--/« (p(« - 1) 4- l)1" - 2J . 

Therefore, if co > 0 is chosen so that (25) is satisfied, then problem (1), (2) has 
a unique solution with the desired property. 

Remarks, (a) In case that equation (1) is a scalar equation, Theorems 4 and 5 
are analogues of Theorems 2 and 3 of [5] for the case K < 0. (b) In [5], Mehri 
defines four distance functions which are equivalent in the sense that if S* is complete 
with respect to one of them, it is also complete with respect to the three others, and 
the factors 1/|K|P, 1/0JP or l/c0"p do not contribute anything as far as the proofs of 
theorems in [5] are concerned. 
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