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LAPLACE TRANSFORM OF EXPONENTIALLY
LIPSCHITZIAN VECTOR-VALUED FUNCTIONS

MIRrOSLAV Sova, Praha
(Received February 28, 1977)

The purpose of this note is to give the theory — in the form as definitive as pos-
sible — of the Laplace transform of exponentially Lipschitzian vector-valued func-
tions whose most important part was proved and applied in [1] (see especially
Section 4).

We shall use the following notation: (1) R — the real number field, (2) R* — the set
of all positive real numbers, (3) (w, ) — the set of all real numbers greater than
if @ € R, (4) E — an arbitrary Banach space over R, (5) M; > M, — the set of all
mappings of the whole set M, into the set M.

1. Lemma. For every a« =0, ¥ > 1 and re{O, 1, } such that r > ya, the
following inequality holds:
"\ < -1
r—al

Proof. We have under our assumptions

which implies

r Y\ o\
( ) - (1 + ) = (ea/(r—a))r = er/(r—a)a < e(x—1e

r—ao r—a

2. Lemma. For every a 2 0 and r € {2, 3, ...} such that r > a?, we have

r r
< eWrlWr=1)a
r—aou
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Proof. We have \/r > «,i.e. r > a /(r). Hence wecanchoose y = ,/rin Lemma 1
and the desired inequality follows.

3. Lemma. For every w 20, 0 <t, <t, and pe{0,1,...} such that p >
> (wt, + 1)* we have
t2 t2

1 dr < 1 V@DVt 1)-1)ar .

(1_ T )’” _1_ wt,
t p+1 p+1 t

Proof. It follows by means of Lemma 2 with « = wt and r = p + 1 that

12 ta
1
: p+2 de = . p+1 dr =
_(1_ wr) | @t <1__ wt)
t p+1 p+1dJ, p+1
v t2
< ____1__.__ WP+ D/(J(p+1)—1net qr
- wt,
p+1J,

4. Theorem. Let w be a nonnegative constant, F € (v, ©) — E and let My, M,
be two nonnegative constants. Then

(A,) the function F is infinitely differentiable on (w, ©),

(Ay) H 7 (2 )“ < 7 Mop)pn forevery A>o and pe{0,1,..},

M, p!
o for every 1> w and pe{l,Z,...,},

W [ <

if and only if there exists a function f € R* — E such that

(By) |f(®)] £ Mee™* for any teR*,

(By) |If(t) = f()] = Mlj e"dt forany t,5,€R*Y, t; <t,,

(Bs) F(4) =J e *f(t)dt forany A> w.

Proof. “Only if” part. Let us first denote
(1) G(p) =F(p + w) forany pu>0.
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- It follows from (A,)—(Aj) that
(2) the function G is infinitely differentiable on R*,

3) N-_c() °”1 forany u>0 and pef0,1,..},
o |- o]
= “B—u—’ [(x + ) F(u + ) — o F(u + )] ” < (M, + ©Mo) p! :p‘f?l")”!

forany u >0 and pé{1,2,...}_

Let us now denote

) afn=C 1) (‘1+ ) G@)(q—t—l) for teR* and ge{0,1,...}.

t t
By (2) and (3) we obtain
(6) the function g, is differentiable on R* for every g € {0, 1, ...},
(M) |gf0)] £ M, forevery teR* and qe{0,1,...},

®) g)) = (= )+1( +1)q+l(q+1)G(q,<q+1)+

t t

N (_1)‘1+1(q + 1>q+1q + lG(““) (q + 1) _

q! t t? t

g+ 1 q+2 e T
_(=)"*tg+1 (q+1)G(q,q+1 +q+lG(q“)l.q+1
T g+ 1\ ¢ t t t

forevery teR* and q€{0,1,...}.

Now we need to estimate the growth of g,. To this aim, let us denote
(9) H(w) = nG(u) for p>0. '
It is clear that
(10) HO*D(u) = (g + 1) G9(i) + p G4* V() forany p>0 and
qe{0,1,...}.
Now (9) and (10) permit us to rewrite (8) in'the form

1) gl = ﬂf(ﬂ_ﬂ)"” H@+D (gj_l)

(g+ 1\ ¢ t
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On the other hand, we have by (4) and (9) that

(M; + oM,) (g + 1)! forany u >0 and

q+2
u

(12) [H D) =

qe{0,1,...}.

We see from (11) and (12) that [|g)(t)| < M + wM, for every te R+ and g e
€ {0, 1, ...} which implies

(13)  |lg4ts) — 94(t2)] < (M + @Mo) |t; — t,| forevery t;,t,€R* and
qe{0,1,...}.
In view of (6) and (7) we can define

(14)  Gy(p) = f e * g (r)dr forevery pu>0 and ge{0,1,..}.
(1]

It follows easily that
(15)  the functions G, are infinitely differentiable on R* for all g€ {0, 1, ...}.

Now we proceed to the decisive step of the proof.

According to (A,) and (A,), the hypotheses of Lemma [1] 4.15 are fulfilled for
the function G and consequently, (5), (14) and (15) imply

(16)  GP() > G™(w) forany p>0 and pe{0,1,..}.

This result enables us to construct a function g whose Laplace transform is G.
Indeed, by A.3 from the Appendix we obtain from (6), (7), (13) and (14) that
) (Ml + COMO)t + 2M0

|G e () - a0 ] < B+ 2

forevery teR* and p,qe€{0,1,...} whichimplies

(17) l (__1)m (p_1+_1)r1+1 Gg‘") (P1 + 1) _
py! t t
_ (-1)= (p2 + 1)P2+1 G;”’) (Pz + 1) ” <
j 2% t t

1 1 1
= (M wMo)t(‘i/(p, 0 Y+ 1)) + 2 (J(pl A

1
) forevery teR* and p;,p»9€0,1,...

Ym0
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It follows from (16) and (17) (¢ — o) that

1) | () g ()
pq!

t t

- (_l)p2 (Pz + 1)1’:"‘1 G(pz) (P2 + 1) ” g
t

p2! t

1 1 1
< (M, + a)Mo)t(\/(pl ey + Yo + 1)) +2Mo(m +

1 ) forevery teR* and p;,p,e{0,1,...}.

J(p2 + 1)

In view of (5), we can write (18) in the form

Oﬂlmm—%MMHM+wMM(

+

o, 1 >+
Vo + 1) Ypa+ 1)

+2M0( 1 1 ) for every teR* and

NCED RS

P, p2€{0,1,...}. .

By (19) we can write
(20) g(r) =limg,(t) for teR™.
poo

It follows from (7) and (20) that
(21) |g(?)| £ M, forevery teR*.
Further, (19) and (20) give

— < (Ml + wMO)t Mo
(22) g,(t) — 9(v)] = Y+ 1) * J+1)

teR* and pef0,1,...}.
It follows from (6) and (22) that

for every

(23) the function g is continuous on R*.

Finally by (6), (7), (22) and (23) we conclude that

(*o0

(24) e * g, (1) de —»,_,wj e " g(r)dr forevery u>0.
(1] (1]

o

On the other hand, (14) and (16) give

@
(25 e g (t)dr =, G(u) forevery u>0.
0o
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Thus, it follows from (24) and (25) that

(26) G(u) = j e " g(r)dc forevery u>0.
(1]
The desired function f will be now defined by
(27) f(t) = e g(tf) forany teR*.

Our final task in this part of the proof is to verify the properties (B,), (B.), (B3) for
the function f defined by (27).
First by (21) and (23)

(28) [If())] < Moe** forevery teR*,
(29) the function f is continuous on R* .

Further by (1) and (26)
(30) f e *f(r)dr = F(A) forevery 1> .
0

Now we shall prove

t2
(B @) - f(r)] = M1J\ e**dr forevery t;,t,eRY, t; <t,.

ty

To this aim, let us define

(32) f,(1) = (;f_)f (M)PH F® <p__—t_1> for every pe{0,1,...} and
p!

t t
0<t<(p+1))(w+1).
Using 4.4 and 4.10 from [1] we obtain by (28)—(30) and (32) that
(33) f(t) 2,0 f(t) forevery teR*.
On the other hand, by (A,),

(34) the functions f, are differentiable on (0, (p + 1)/(w + 1)) for every pe

e{0,1,...},
, —1)p*! p+1(p+ 1Y p+1
(35) f, (t)=(~—p—)!—(p+ )= (—~p ; )F“’)(———t )+
+(_1)p+1 p+1 p+1p+1F(p“’ p+1 _
p! t t? t

=(___.£iﬂ_1p+z (p+1)F(p) p+1 +P+1F(p+1)p+1
(p+ 1\ ¢ t t t
forevery pe{0,1,..} and 0<t<(p+ 1)f(w+ 1).
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For the sake of brevity, we denote
(36) J(A)=AF@) for A1>w.

It is clear that v
(37) J**H) = (p + 1) FP(2) + }.F“’“’().) for every A>o ‘and

pe{0,1,...}.

Now by (35)—(37) we have . \

(3®) f£()= g 2 ;)' (p j l)p“]("“’ (P—i—_-l> forevery pe{0,1,...}
cand 0<t<(p+1)f(w+1).
On the other hand, by (A,) and (36)

(39) |verv@)| = _Ml(p+ 1! forevery 1> and pe{0,1,..}.

(ﬂ. ) p+2

It follows from (38) and (39) that

11501 = M, (—1—w—

pt2

1 — =

p+1
for every pe{0,1,...} and 0 < t < (p + 1)/(w + 1) which implies

/
p+1)

and O<t1<t2<(p.+1)/(w+1).

t2

(40) | £,(t)) = £t = M,

sdt forevery pef{0,1,...}

Using Lemma 3 we get from (40) that

at

(41)  |f(t)) = f{t2)] = M, _r » VDIV D=1et 4r  for every
o
1- 2

p+1dJ,

pe{0,1,...} and O0<t <t <(p+1))(ow +1).

Letting p — oo in (41) and using (33), we obtain at once (31).

Since the properties (B,), (B), (B;) of the function f are contained in (28), (30)
and (31), the proof of the “only if*” part is complete.

“If” part. Let f be a fixed function with the properties (B,), (B,), (Bs).
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It follows from (B,) that
(1) the function f is continuous on R* .
Now we obtain easily from (1) and from (B,) and (B3) that

(2) the properties (A,), (A,) hold .

t+h .
To prove (A,) let us first denote f,(t) = % J f(t)dtforany h > Oand t > 0.
t

It follows from (B;) that

1
O Il o |

t+h h

e dr = Moe“"%lj‘ e*dt forany h>0 and t>0.

t 0 -
Further we see easily from (1) that

(4) the function f, is continuous for any h > 0,

5 fH-rf()(h>0,) forany teR*.

On the other hand, by (B,) we have

© |06+ n-50)

1 t+h 1 h
éM‘Z( e“"d-t:Mle“"zJ et dt

0

vt

forany h>0 and ¢>0.

Moreover, a simple calculation shows

M £l = %j;(f(r + h) — f(r))dr + %Ihf(t) dt forany h>0 and t>0.

Let us now write Fy(1) = {§ e"* f,(t) dt for h > 0 and A > w, which is admissible
thanks to (3) and (4).

We get easily from (3)—(5) that
(8) F®P(1) - F®(3) (h>0,) forany A>w and pef0,1,..}.

On the other hand, if follows from (7) that

R =3 j B U+ 1) = e+ 55 :f(f) g,

ie.
(9) AF,4)= jwe“' B (f(r + h) - f(-c))] dr + %'.rf(T) dz
0 0
forevery h>0 and 1> w.
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It follows from (6) and (9) that

1) |

"
).F,,(l)”SM‘ )p+11f e*dt forevery h >0, A>w

and pe{1,2,..}.
Using (8) and (10) we see immediately that
(11)  the property (A,) holds .
By (2) and (11), the proof of the “if* part is complete.
5. Remark. We have here the opportunity to correct a mistake in Proposition 4.9
of [1] which is true for @ = 0, but generally w must be replaced by 2w. The same is

true in Proposition 1.4 in [1] which was used in the proof of 4.9. In the Appendix to

this note we shall give a modified and improved version of the above mentioned
Proposition 4.9 from [1].

APPENDIX

The aim of this Appendix is to examine the so called inversion problem for the
Laplace transform of exponentially bounded functions.

A.l. Lemma. For every te R* and pe{0,1,...}, we have

1
_1_(1’ + 1)” .r e- P+ DI 4o — 1 .
pI\ ¢ 0

Proof. Cf. [1], Proposition 4.6.

A.2. Lemma. For every teR*, yeR and pe{0,1,...} such that p + 1 > 2yt,
the following inequality holds:

+1 t—t/4/(p+1)
_1_(17 + 1)" U‘ T e @ D= pr gp
pI\ t 0

+ Jw e ((p+D)/t-ptp d{l 1 e'xt
t+1/4(p+1) \/(p + 1)

Proof. Let te R*, xe R and pe {0, 1,...} be fixed so that p + 1 > 2yt.
Let us recall that clearly

xt 1
1 < -,
0 p+1 2

(2 3/(_1);-_1_)(1: —t)*21 forevery teR suchthat |t — ¢ > t{/(p +1).
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Using (1) and (2) we get

+1 —-t/4/(p+1)
_1_<P + 1)" U" B S P
pI\ 1t 0

0
+J e~ ((p+1)/t=1)trp d‘c] <
t+t/%/(p+1)

< l(p + 1>p+1 Jp+1) [‘[HW(Hl)e“("“”"l)'t"(z e
p! t

2
t 0

0
+J e~ (D= Degp(y _ f)2 dr] <

t+t/4/(p+1)

< 5(1» + 1>"“«/(p + 1)

_(( +)/t=0)0.p(r _ 1)2 —
5 j P OeeP( — 1) dr =
0

l(l’ + 1)”“ VP +1) [J o~ @+ D=0 +2 o _
!
0

P 2

[eo]
— ZtJ‘ e—((p+1)/t—x)rtp+l dr + tlf e
0

(o

_ ;}_' (p f 1) J(p; 1) [(p + ) ( m) _

p+2 pt1
- 2t(p + 1)! ;) + t2p! _ =
p+1—yt p+1—gxt

_+ 1+ 1) [ P+2)! e+ 1)
(

p!
p! p+1— P (p+1-xpP*? (p+1- xt)"“]

\/(p+1)< p+1 t)"“[(p+1)(13+2)_v2(p+1) +1]=

p+1—yg p+1—x)* p+1-—yxt
+1 !
—-J(p+1)( P ) x

(p+1)(p+2)—2(p+1)(p+1—xt)+(p+1~xt)2

—((p+1)/t=p)trp d{l =

p+1-x)?
N p+1 'p+1+(n) _
\/(p+1)(p+l—xt) (p+1-x)?

p+1

=J(p + )(p T 1)2(p 1= )p+3(p + 1+ (x)?) =
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-l )

1 1 p+3(1 )

e+

p+1
Xt p+3
p+3
_ 1 1+ p+1 ot = 1 <1+2 xt) ot —
JVip +1) L Jp +1) p+1
p+1
o b (et < L ap
(e Prier <
Vip +1) Jo+1)°

A.3. Proposition. Let f € R* — E and let o be a nonnegative constant. If
() the function f is continuous on R*,

(B) the function e~ f(t) is bounded on R*,
then for every te R* and pe {0, 1, ...} such that p + 1 > 2wt, the following
inequality holds:

(V]

p! t

= swp o (If@) -0 + —— [||f(‘)|| + ™ sup (e[ £ )] -
o=l <t/4V(p+1) J(

Proof. Let us denote for the sake of simplicity

(1) M =sup (|70,

2 z,= forevery teR* and

(h—L—J+—Lﬂ
Y +1) Ve +1)
pef0,1,...}.

By use of the preceding Lemma A.1 and Lemma A.2 with y = 0 and x = @ we
get, with regard to (1) and (2)

“ (,, : I)H f e~ DI (£(2) — f(1) de
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IA
-

~
~|+
—

)Hl (% o= o+ 170255 1£G) - 7)) ¢ =

0

= |-

(p + 1)p+1 ( e_((p+l)/r)ncl’"f(‘t) “f(t)" dv +

Zep

+
|-

(p + 1>p+1 r e_((p+1)/t)t1.p”f(r) - f(t)" dt £

R\Zt,p

A
|-

—
s
-~ |+
(==Y

+1p
)p e~ W+DIr de sup (| f(2) - f()]| +
t€Ze,p

JZtp

+1p
(B[ e s+

R\Z;,p

+
==

+
= |-

+1 0
(Y[ e s

J R\Z; P

oo

(p + 1>"+l e~ +DIp de sup (|| f(2) — F(O)]) +

Jo t€Ze,p

<p+1"“"

t JR\Z;,p

+1
+ Mi<p : 1)" J e~ (P D/i=0)yep dr =
p! t RN\Z¢,p

= Ssu T . e
sup (116) = 10D + ot O + M ey

for every te R* and pe {0, 1, ...} such that p + 1 > 2wt.
It is clear that (1), (2) and (3) give the desired result.

Il

-

+
=

e~ ((p+ 1)/t 4o "f(t)" +

A.4. Remark. The proof of Proposition A. 3 was inspired by a fascinating idea
of W. Feller who used a probabilistic approach based on Chebyshev’s inequality —
see Chap. VII of [2].
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