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Časopis pro pěstování matematiky, roč. 105 (1980), Praha 

HEAT SOURCES AND HEAT POTENTIALS 

JOSEF KRAL and STANISLAV MRZENA, Praha 

(Received October 31, 1977) 

We shall deal with potentials in Rm+1 corresponding to the well-known kernel 

xeRM, t > 0, ^.Г^exp^-Iÿ), 
(1) *M-v 

N 0 , xeRm, f g O , 

which represents a fundamental solution of the heat conduction operator 

dt .=i bx\ 

(cf. [1]). The term measure will always mean a finite positive Borel measure with 
a compact support in a Euclidean space. Let v be a measure in Rm (describing a space 
distribution of heat sources) and let Q be a measure in R1. Then the heat potential 
of fi = v <g> Q defined by 

(2) Sp{x, t) = f S{x - I, t - T) d/<{, T) 

may be interpreted as the temperature resulting at the time t and the point x e RM 

under the action of time-variable heat sources which are so distributed that the 
quantity of heat emanating from a Borel set M <=• jRm during the time interval I c Rl 

is given by fx(M x i ) = v(M) Q(I). We shall adopt the following 

Definition. Let a ^ 0 be a real number and suppose that v is a measure in Rm. 
We shall say that v is ct-admissible if there is a non-trivial measure Q in R1 such that 
the heat potential u = &\i corresponding to \i = v ® Q satisfies the condition 

(3) ti(x, t) - u(y, v) -> o(\x - y\* + |t - t;|a/2) as |x - y\ + \t - *| -> 0+ . 

Any (? with the above properties will be called an a-admissible factor of v. 
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Let 
fi(r,x) = { { 6 r ; | « ~ * | < r } 

denote the open ball with center x and radius r. We are going to prove the following 
result characterizing all a-admissible measures in Rm for a 6 <0,1). 

Theorem. If cue <0,1), then a measure v in Rm is a-admissible if and only if 

(4) sup f r^mv(Q(r9 x)) dr = o(5*) as 5-+0+ ; 
*»«m J o 

for a G (0,1) the condition (4) may be replaced equivalently by (14). 

Remark 1. Let v be a non-trivial measure in Rm and denote by eto the Dirac 
measure (= unit point-mass) concentrated at a point t0 in R1. It is known that et0 is 
never a O-admissible factor of v -£ 0 (compare [2]). • 

Remark 2. If M c Rl and T e R1 we put 

M - T « {* - T; r e M}. 

Given a measure g in R1 we may define the translated measure QX by 

Qt(M) = <?(M - t) 

on Borel sets M a R1. Further we put for any ft > 0 

e* ( ' ) = i íV t (* ) d т ' 
The measure Qh is absolutely continuous with respect to the Lebesgue measure A 
in R1 and the corresponding Radon-Nikodym derivative is given by the function 

f-»lime*~V(<f - e, r» 

which is everywhere defined and finite. Besides that, Qh(Rx) = Q(R1)- If Q is an a-
admissible factor of v, \i = v ® Q arid u = &\i is defined by (2), then Fubini's theorem 
yields 

«ř(v ® ß*) (x, í) = 7 í "(^, í + т) dт 
Ь J o 

Hence it follows that (3) is again satisfied with u replaced by uh = S(v ® Qh). In 
other words, Qh is also an a-admissible factor of v. 

Proof of the theorem. Suppose first that v is an a-admissible measure in Rm. 
Let Q be an a-admissible factor of v. According to Remark 2 we may suppose that Q 
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is absolutely continuous (A) and lim e""1^* — fi, f>) (e -* 0+) is everywhere defined 
and finite in JR1. Let us fix a T e R1 such that 

' l i m g « * - ^ » = g > 0 . 

*->o+ h 

We have then for suitable S > 0 the implication 

(5) 0 < h = S => \qh ^ ( < T - A , T » g 2gh . 

Let c > 0 and consider the set 

-4 (X,T ,C) = { [ £ , t t ] e l T + 1 ; S{x - £, T - u) > c} = 

= i [ £ , n] e Jt"+1; ti e^T - 1 c"2^, T V |X - £|2 < r(tt) | , 

where 
r(w) = 4(T - M) log [C(4TI(T - tt))m/2]-- . 

If £ € Rm is fixed in such a way that 

« N-«l-'^)'-* 
with p € <0,1), then 

(7) {£} x A - — c~2/m , * - — c ~ 2 / A c A(x, T, c) . 
\ 4rce 4rce / 

This may be verified by a simple calculation; note that A(x, T, C) is convex and 

m 
2яe 

<Г 2 / m = max ̂ ..(.-^-„l.^-i,--). 
According to (5) we obtain for c, jp submitted to 

(8) J _ <T2/m = 5 ? p e < 0 , i > 
4Tte 

the estimate 

Q(/T--L c-2/m, T _ _L. c-2lm\\ = 

\\ 4ne 47te // 

-<<*-=^M('-£'-*•*))* 
= i « — c_2l* - 2.J ---- c- 2 / m - - £ - ( $ - 2p) c-2 / m £ 

4ne 4»te 4ne 

" = _ « _ c - 2 / « . 
16jte 
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In view of (7), (6) we have the inclusion 

{[t.]i|«-H.!i^)«-*..-J-«----.-
4яe 

whence we get 

(9) <.•<) w*,«»i J L « - ~ v ( 0 ( i ^ ( i ) «-<-,,)) 

Consider first the case a = 0. If/i = v ® £ and 

(10) $ii(x91)(= r»(A(x919 c))dc\ 

is a continuous function of the variables x, t9 then 
/•oo 

(11) lim sup fi(A(x919 c)) dc = 0 
a-*oo x,t Ja 

(compare Proposition below). Employing (9) we obtain for 

-La->>»>15, s = ̂ -_, z = l 1(2.) 
4rce 16rce 8 \] \2neJ 

the inequality 

ľ џ(A(x, x, c)) àc ^ s l™c-2'mv(Q(zc-ílm, x)) ác = 

/•za"*-/m 

r1_,"v(.Q(r,x))dr = smzm~~2 

which combined with (11) yields (4) for a = 0. 
Conversely, suppose that (4) holds with a = 0. Fix an arbitrary measure Q in R1 

satisfying for a suitable K > 0 the estimate 

(12) £ « T - <5, T » = K5 (T e R\ 8>0) 

and put \x = v ® £. The inclusion 

^ T . « ) = 0 ( > / ^ ; ) . - . x ) x ( , : i . . - . . ) 

together with (12) gives 

H4».^))s|c-*v( f l(^)«-»-,») , 

187 



whence (putting C = N/(m/27ie)) 

r°°/i(A(x,T,c))dc = £ ^ C m - 2 p ' r*~mv(Q(r9x))dr. 

Using (4) with a == 0 we arrive at 

/•CO 

lim sup I fi(A(x9 T, c)) dc = 0 
a-*oo x,t J a 

which quarantees that the potential (10) is a uniformly continuous function of the 
variable [x, f]e_Rm+1 (compare Proposition below). Thus the theorem is proved 
for a = 0. . 

Now consider the case ae(0,1). Let \i be a measure in Rm+1 and denote by 
u SB <_f/i its heat potential. Then the equation 

- ^ U = fi 

holds in JRm+1 in the sense of the distribution theory. Suppose now that for all [x, t]9 

[>>*'] in 

the estimate 

holds. 

ß(2r, Ç) x <т - (2r)2, т + (2r)2> 

|u(x, l) - «(>-, í')| á Q(r)(\x - y\> + \t- ť|«-) 

There is an infinitely differentiate function <p(x, t) vanishing outside 

Q(2r, { ) X < T - (2r)2, T + (2r)2> 

such that q> = 1 on fl(r, <J) x <T - r2, T>, 0 ^ q> £ 1 and 

ćty 
ðt + 1 

i = l 

д2ę 
Ôxï 

й 2(m + 1) r" 

Then 

/ ^ 7 I ) x < T - r 2 , T » = f 9d/i = 

__f ( ^ + |-Mi!)V„(x,o-«({,T)]d»(i,. 

Jam + i\, df | s s l dx\ ) 

Hence we conclude that 

(13) /*(^r7{)x.<T-r2,T>)^fce(r)r»+« 

with an absolute constant fc (independent of r, /*)• Assuming /* = v ® <? with Q 
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absolutely continuous (X) and having an everywhere defined finite density 
lim e""1 (̂<^ - e, t}), we may again choose T e R1 and q, 5 > 0 such that (5) holds. 

e-*0 + 

Combining (13) and (5) we get for r2 ^ S 

v(Q(r, £)) = 2k Q(r) q-ir
m-2+« . 

If (3) holds, then lim Q(r) = 0 and we obtain 
r->0 + 

(14) sup v(Q(r, x)) = o(rm~2+*) as r -> 0+ . 

Conversely, assume (14) and fix an arbitrary measure g in R1 satisfying (12). Then 
li = v ® Q satisfies 

sup ii(Q(r, x) x <T - r2, T>) = o(rm+flC) as r -• 0+ , 
JC,T 

which implies that u = S\i fulfils (3) (compare Remark 5 and Lemma 4 in [3] and 
note that the derivatives of u have zero limits at infinity). To make the proof complete 
it remains to observe that (4) and (14) are equivalent for a e (0,1). 

Remark 3. The assertion of the theorem (but not that of Remark 1) remains valid 
if o is replaced by O simultaneously in (4) and in the relation (3) occurring in the 
definition of a-admissibility (compare also [4]), .provided a > 0. 

We shall now complete the detailed proof of the condition for continuity of the 
heat potential that has been useful in the course of the proof of the theorem. 

Proposition. The heat potential S\i corresponding to a measure \i in Rm+1 is finite 
and continuous on Rm+1 if and only if 

/• 00 

(15) lim sup fi(A(x, t, c)) dc = 0 . 
a-*co x,t Ja 

Proof. Put for a .> 0 

= min (a, S) , Saџ(x, t) = Г Sa(x - £, t - т) dџ(Ç, т) 
JÄw+l 

For any x0 e Rm and t > t0 the estimate 

(16) ttfxo, t) = [4n(t - r0)]-1/mK{[^o^o]}) 

shows that Ii({[x0, t0J}) = 0 whenever Sfi is locally bounded. Suppose now that Sfi 
is finite and continuous. Then Sa(x - f, t — T) -* Sa(x0 - ^, t0 — T) for ^-almost 
every [f, T] e Rm+1 (i.e. for every [£, T] 4= [x0, t0"]) as [x, t] -* [x0, t0~], so that Sjx 
is continuous on Rm+1. Since Sa\i Z1 Sfi as a / oo we conclude from Dini's theorem 
(which may be applied to the Aleksandrov compactification of _Rm+1, because all the 

189 



functions in question tend to zero at infinity) that 

(17) m lim sup \S\i(x91) - Sa[i(x9*)] = 0 . 

Noting that, for fixed [x, t] e Rm+i
9 S(x - f, f - T) - Sa(x - £, f - T) vanishes 

outside _4(x, f, a) and equals S(x — £, t — r) — a for [£, T] € .A(x, t9 a) we get 

#x(x, 0 - <M*> 0 = I W * - £> ' - T ) " fl] dK& T) = 
Jx(x,M) 

/•oo /•OO 

= M([& T] €^(*>*> aY> s(x - L t -x)> a + c})dc=\ n(A(x919 c))dc . 

Jo Ja 

The equality 

ji(A(x919 c)) dc 

together with (17) yields (15). Conversely, assume (15). In view of (18), Sa\i J* S\i 
uniformly as a /• oo. Since the functions Safx are bounded, the same holds of S\x 
and (16) shows that p, does not charge points. As we have seen above, this implies 
the uniform continuity of Sa\i and, consequently, of S\x as well. 

Remark 4. If v is a measure in jRm and m ^ 2, then we denote by 

Uv(»= f K*-3<M£) 
JRm 

its Newtonian (in the case m > 2) or logarithmic (in the case m = 2) potential cor­
responding to the kernel 

|x|2"m if m > 2 , 

M o g ^ if m = 2 . 
H 

If a € <0,1), then v satisfies (4) if and only if 

(19) U v(x) - U v(y) = o(\x - y\a) as |x - 3>| -» 0+ . 

This assertion remains valid for a > 0 if o is replaced by O in (19) and (4) simulta­
neously (compare [5] - [9]). 
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