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Časopis pro pěstování matematiky, roč. 106 (1981), Praha 

ON THE CONTINUITY OF HEAT POTENTIALS 

MIROSLAV DONT, Praha 

(Received March 28, 1979) 

This note is devoted to a certain analogy of the continuity principle for the heat 
potentials in R2. We shall show that if/J is a measure in JR2 such that p({[x, t]}) = 0 
for each [x, t] e R2 and the support of the measure p lies on a curve of the form 
x = cp(t), where q> is a ̂ -Holder continuous function, then the heat potential of the 
measure p is continuous in R2 if and only if the restriction of this potential on the 
support of p is continuous. Further, we shall show that this assertion fails in the case 
that cp is a-H61der continuous only for some a < \. 

We deal in this paper with heat potentials in R2 only. Points in R2 are denoted 
[x, t], [£, T] etc. G will stand for the heat kernel in R2, that is G(x, t) = 0 for t = 0 
(xeR), 

G(x, t) = (nt)~112 exp (- --\ for t > 0 . 

For [x, t] e R2, c > 0 let us denote 

(1) A(x, t; c) = {[£, T] G R2; G(X - & t - r) > c} . 

If /i is a Borel measure (non-negative and finite — we shall deal only with non-
negative and finite measures) with compact support in K2, then the heat potential U^ 
of the measure p is defined by 

(2) Ufa t) = f G(x - (, t - T) dp({, T) ([X, t] e R2) . 
JR-

We shall deal in what follows only with continuous measures, that is with measures 
which vanish on singletons. The following assertion holds (see, for instance, [3], [4], 
[5])-

1. Proposition. Let K c R2 be a compact set, p a continuous Borel (non-negative) 
measure with compact support in R2. Then the restriction U^K is continuous onK 
if and only if the following condition is fulfilled: 

(3) lim /sup J p(A(x, t; c))dc; [x, t] eK i J = 0 . 
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Further, let cp be a continuous function on an interval <a, b> «a, b> is supposed 
to be non-degenerate and compact). Let us denote 

K = K9 = {[x, t]eR2; te(a, b>, x = cp(t)} . 

We shall deal with heat potentials for measures \i with spt \i <-= K. For the sake of 
simplicity we shall identify in this note the measure \i with spt \i c K with a certain 
measure X on the interval <a, b> in the following way. If /* is a measure in R2 such 
that spt fi c K then we assign to this measure a measure X on <a, b> (that is a measure 
in R1 with support contained in <a, fc>) such that for each Borel set M c <a, by 
we put 

A(M) = n({[x, t]eK; t e M}) 

(roughly speaking the measure X is a projection of the measure \i on the f-axis). On 
the other hand, to a Borel measure X on <a, b> we assign a measure // in R2 with 
spt /z cz K such that 

fi(M) = ^({t G <a, by, [<p(t), t] e M}) 

for any Borel set M c K2. In this sense we shall call here the measures \x, X (on R2 

and <a, b}, respectively) associated measures (more precisely, associated measures 
with respect to cp). Further, let @l+ = ^ + « a , fr» denote the set of all Borel (finite, 
non-negative) measures on <a, b>, 

^o = ^o«a9 by) = {X e @+((a, by); X({t}) = 0 for each t e <a, by} . 

For Xe@+ let 
Kx = {[x,t]eK; tesptX} . 

If Xe$+ and fi is the measure associated with X (in the above mentioned sense) 
then Kk = spt /z. For this pair of associated measures we shall write Ux = U\ = I/M, 
that is 

(4) U\\x, t) = U^x, 0 = f G(x - {, t - T) d/*({, T) = 

= f G(x - CP(T), f - T) <U(T) ([x, t] 6 R2) . 

Let us take notice of the following three simple assertions. 

2. Lemma. Let X e @+((a, by) and let 

(5) lim (sup | ^((t - c"2, 0 ) dc; t e R1^ = 0 . 

Then the potential Uk is continuous (on R2). 
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Proof. If [x91] eR2, c> 0, then 

A(x^;c)c J [£ ,T ]GR 2 ; Te(t-^c'29tY £eRl\^ 

C = { [ ^ T ] € R 2 ; T G < t ~ c - 2 , 0 , ZeR1}. 

If \i is the measure associated with A then 

/i(A(x, r; c)) = X(0- c~2
9t» 

and it follows from (5) that 

lim ( sup i n(A(x91\ c)) dc; [x91] e R2i J = 0 . 

Let us note that we immediately get from (5) that A({f}) = 0 for each t e JR1. The 
assertion follows now from Proposition 1. 

3. Lemma. Let us suppose that the function cp is ^-Holder continuous on <a, b>/ 
Then for Ae@£((a9 b>) the restriction Ux\Kji is continuous on Kx if and only i. 

(6) lim (sup i l({t - c"2, ty) dc; t e spt ;it j = 0 . 

Proof. Let fi be the measure associated with A (with respect to cp). The restriction 
UX\KA is continuous on Kx if and only if 

(7) lim / s u p | J ii(A(x91; c))dc; [x91] eKx\J = 0 . 

It is clear that (6) implies (7) (see the proof of Lemma 2). 
Suppose now that the condition (7) is fulfilled. For t e <a, b>, c > 0 let 

B(t9 c) = {T e <<i, b>; (>(T), T] G A(q>(t)91; c)} = 

= {T G <a, b>; G(<p(t) - (]P(T); f - T) > c} . 

The function q> is supposed to be ^-Holder continuous, that is there is a constant k 
such that 

for f, T G <a, b>. Let t9xe <a, b>, T < t. Then 

GftO - ?(*), t - T) = Kt - T)]"v- exp(- ( ^ ~ / | ) ) 2 ) ^ 

raW.-T) ] -w«p( - -^) . 
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If T 6 (t - c~2, t) n <a, by then 

[n(t - T)]" ^ exp ( - j ) =" I™" 2 ]" 1 / 2 exp ( - *) = cfc, , 

where 

"•=jM'ki)-
Hence 

<a, b> n (t - c"2, f) c B(t, ckx) 

for f e <a, b> and thus (as A is a continuous measure by assumption) 

f °°A«f - c"2, r> dc = f °°A(B(f, ckx)) dc = — | °° k(B(t, u)) dw = 
Jd Jd k1Jdkl 

1 f°° 
= — ii(A(cp(t), t; u)) du . 

ki Jdfci 

Now we can see that (7) implies (6). 

4. Lemma. Let Ae@+((a, b}), d > 0. Then 

(8) 

sup i A«r - c"2, r>) dc; f e K1 i = sup i A«f - c"2, 0 ) dc; t e spt Al. 

Proof. Let t e R1 - spt A. If spt A n (-co, f) = 0 then A«f - c"2, f» = 0 for 
each c > 0 and thus 

Г л « í - c - 2 , ť>)dc = 0. 

In the case spt A n (— oo, f) #= 0 let us denote 

t0 = sup [spt A n (— oo, *)] . 
Then 

spt Xn> (t - c~2, 0 c spt A n <f0 - c"2, f0> 
that is 

A « r ~ c - 2 , r » g A ( O 0 - c " 2 , / 0 » 
and hence 

r*((t - c"2, r»dc = [WA«r0 - c"2, r 0 »dc . 
Jd Jd 

But f0 e spt A and the assertion follows. 
From Lemmas 2, 3, 4 we obtain immediately the following assertion. 
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5. Theorem. Let <p be a ^-Holder continuous function on <a, b>, K = {[<?(*)> *]» 
t e <a, b>}, \i a continuous measure in R2 with spt fi cz K. Then the heat potential U^ 
is continuous on*R2 if and only if the restriction UM|SptAi *s continuous on spt/x. 

We shall now show two examples that the assumption that the function <p is \-
Holder continuous is essential in Lemma 3 as well as in Theorem 5. 

6. Example. We shall show that for each a e (0, i) there is an a-H61der continuous 
function q> on <0,1> and a continuous measure X on <0,1> such that the potential U\ 
is continuous even on R2 but for X the condition (6) from Lemma 3 is not fulfilled. 

Given a e (0, i) let <p(x) = ra for T e <0,1>. Let X be the measure on <0,1> defined 
by the density h (density with respect to the Lebesgue measure on K1), 

h(r) = x~\ T G ( 0 , 1 ) , 

where 

(9) i g y < l _ ^ _ . 
3 — 2a 

Then the measure X does not fulfil the condition (6). Indeed, if the condition (6) is 
fulfilled for X then, choosing for instance q>0 = 0, the restriction U\°°\Kx is continuous 
by Lemma 3. But for t e (0, 1> 

^°(o, o = 4- f W - *ri/2 dx = 4- f W - or i / 2 d* = v* 

and Ut°(0, 0) = 0 (in the case y > i it even holds 

limUr(0, f)= +oo). 
f-*0 + 

Let us now show that the potential Ux = U\ is continuous in _R2. It is evident that Ux 

is continuous on R2 - {[0, 0]}. Ux(x, t) = 0 for t g 0 and so it suffices to prove 
that 

(10) lim Ux(x91) = 0 . 
[jr,f]-[0,0] 

t > 0 

Choose /? such that 

(u) JFT)<'<*-
(it is seen from (9) that there is such a /?). Note -that /? > 1. Let us estimate the 
potential Ux at the points of the form [(ct)a, f], t > 0, c e <0,1>. If f e (0,1) then 

eg „i8«0P.o.±JV-.-,r",«p(--^-)*-
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V^JM, V 4 ( Í - T ) / 

where we put 
Mt = (0, t) n {T; |T - ct\ > tp] , 

M2 = (0, r) n {T; |T - ct\ < tp) . 

Consider first the integral Ix. Let 0 < T ^ ct. Then 

|(cf)~ - Ta| ^ |T - c*| a(cr)a_1 ^ «|T - c*| J""1 

(for c ^ 1, a - 1 < 0). If ct ^ T g r then 

\(ctf - Ta| ^ |T - ct\ aT8"1 ^ a|T - ct\ t^1 . 

So in any case 
|(cf)a-Ta| _z a |T- ct\ta~l 

for T e (0, r). Consider T e (0, t) such that |T - ct\ _% t0. Then 

((*)' - <f ^ «2(T - cQ2 .2-2 > a 2 W 2 _ a_2
 f2(a+/J)_3 

4(f - T) ~ 4(t - T) ~ 4( 4 

It is 2(a + p) - 3 < 0 by (11). Hence we obtain 

(13) / . < -J- exp ( - - f2(«+«-3>\ | V ? ( . - T)"1'2 dT <. 

<. -j- exp ( - - «-(«+«--) |(72) r1'2 f " V ' dT + Vt-> P (* - T)- 1 ' 2 dT | = 

_ J - e x p ( - ?! ^ + « - 3 > \ | _ _ L r 1/2 ^ i - 7 + 2»+-f-»(ir)i/-l = 

1 / a 2 \ f2''-1/2 

1 ,1/2-y ' a . « » - . • « - * V- 1.4 v̂  í
1'2"* exp ( - - í 2<«+«-3\ |?!^! + 2»+-/-| -> (^0 + ) 0 . 

The terms in (13) are independent of c e <0,1>. 
Now let us consider the integral 12. First, we have 

1 pmin{ct + tP,t} 

(14) 7 ^ T T - ' ( < - T ) - V a d T . 
V*1 Jmax{cf-f/»,0} 

161 



Let us suppose that t*~ l < \ and consider the following four cases: 

1) 0 g c S 2tfi~\ 2) 2r/?"1 <cSh 3) i < c £ 1 - 2tp~\ 
4) 1 - 2 ^ _ 1 < clg 1. 

In the case 1) we have 

(15) I2 ̂  4 - r T~y(f - T ) _ i / 2 dT ^ 4 - o - 3 < T I / 2 — (3^)i_ 

V71 Jo V71 ! ~ V 
3 l - y 

VЧi - 7) 
(ì-ъŕ-1)-1'2^1-*-1'2-*^,,^, 

since yS(l — ^) — ^ > 0 by (11). The last term in (15) is independent of c. 
In the case 2) we have 

(i6) I2 g 4 - r + " T" y(* - T ) " 1 / 2 d T = 4 - rPy(f - a - fpyi/2 2tti = 

yJnJct-tfi \/n 

= 2[TC(1 - c - ^-i )]-i/2^-/5v-i/2 g 2[TC(± - ^ - - ) ] - - / 2 j/M-y)-i/2 ^ ( ^ 0 + ) 0 ; 

the last term is independent of c. 
In the case 3) we have 

(17) I2 S 4 " r + ' *~v(* - T ) " 1 / 2 d* -̂  (^ ~ < V [*(' - 0 - ^))]" 1 / 2 2^ -̂  
y/KJct-t' 

^4-( i-^1)"Vf'/2"^-o+)0; 

it suffices to note here that if y e <i, 1> then 1/2(1 — y) ^ 2y and thus -\fi — y > 0. 
The last term in (17) is independent of c. 

At last we obtain in the case 4) 

(18) I2 S 4~ f *~VC* - 0" 1 / 2 dr g 4 " (' ~ 3 ' V f' (' - T ) " 1 / 2 dT = 
yjKjt~3te V7 1 J t - 3 . ' 

= l ^ ( 1 . _ 3 ^ - 1 ) - v ^ 2 - - ^ ( f . 0 + ) 0 . 
V7 1 

The last term is also independent of c. We get immediately from (13), (15), (16), (17), 
(18) that 
(19) lim Ufa t) = 0 .. 

rx,t.Hro,o] 
t>oto<ix<:tat 

If x S 0, t > 0 then (x - Ta)2 ^ T2a. Hence 

(20) Ufa t) £ 17,(0, t) 

162 



for x = 0, t > 0. Similarly (x - T*)2
 = (*a - Ta)2 for t > T > 0, x = f and thus 

(21) U,(x, t) = Uk(t\ t) 

for t > 0, x = f. Finally, it follows from (20), (21) and (19) that (10) holds. 

7. Remark. In a similar way one can easily show that the restriction Ux\Kx is con
tinuous on Kx (where Kx = {[Ta, T]; T e <0, 1>}) whenever y < 1 — a. We have just 
shown that Ux is continuous on R2 if y < 1 - (1/(3 - 2a)). But 1 - (1/(3 - 2a)) < 
< 1 — a for a < \ and thus a question arises if the potential Ux is continuous on R2 

in the case 1 — (1/(3 — 2a)) ^ y < 1 — a. I do not know the answer. 

8. Example. We shall show in this example that for each a < \ (a > 0) there is an 
a-H61der continuous function cp on <0, 1> and a continuous measure X on <0, 1> 
such that the heat potential U\° is not continuous on R2 while its restriction U*\KA 

is continuous on Kk (Kk = {[<p(f)> t]; te spt A}). It is thus seen from this example 
that the constant } in Theorem 5 is exact. 

Choose 0 < £ < J and let D c (0,1) be the standard "symmetric" set of the 
Cantor type obtained from the interval <0, 1> so that the "middle" interval of the 
length 1 — 2£ is removed in the first step, two intervals of the length £(1 — 2£) are 
removed in the second step etc. Let cp be the corresponding Cantor function (see, 
for instance, [9] — under the notation used in [9] we choose d = 1). So D is the set 
of all real numbers of the form 

00 

(22) ^ ( 1 - o z i . r 1 , 
where ik = 0, 1. For t of this form we have 

(23) <p(t) = £ | • 
fc=i 2 

It is well known that (p is a monotonic continuous function on <0, 1>. Further, the 
function cp is an a-Hdlder continuous function, where 

h . In2 1 In 4 
(24) a = - In { 2 - In I 

(see [9] for example). We suppose £ < \ and thus a < \ (and for any given ax e 
G (0, i) one can choose £ < % such that a = ax). 

Now let m be a given integer, m > 1. Let us denote by Dm the set of all * e D of the 
form (22) such that for each integer fc = 1 there is a v e {0,1,. . . , m} with ik+v = 1. 
It is easily seen that Dm is a compact uncountable set. Denote further 

Km = {[cp(t),t]; teDm}. 
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Thr heat kernel in R2 can be regarded as a function on R2 x jR2 if we write 

Gt(x, t, {, T) - G(x - {, t - T) . 

Let us take notice of the property of Km that the restriction of the kernel Gx on 
Km x Km is continuous (and bounded for Km is compact). For the sake of simplicity 
one can consider a function H defined on Dm x Dm by . 

H(U T) = G(q>(t) - p(t), f - T) , (f, T e Z)m) . 

Let us show that H is continuous on Dm x Dm. H is clearly continuous on the set 

{[f, T] e Dm x Z)m, * * T} 

(that is, outside the diagonal). It suffices to prove that H is continuous at the points 
of the form [f0, f0], t0 e Dm. We have 

H(t0910) = 0 . 

If [f, T] G Dm x Dm T ̂  f, then H(f, T) = 0. Let [f, T] G .Dm x Dmi T < f and let 

Since T < f there is an integer fc0 such that iv = jv for v = 1,2,..., k0 — 1, ito = 1, 
j k 0 = 0. Then 

(25) ( l - 2 ^ ) ^ - 1 g . - T = ( l - « S ) ( ^ - 1 + f) ( i . - A ) ^ - 1 ) ^ 
fc = * o + l 

^( l -OS^" 1 "^" 1 -
k = fco 

Further 

There is a v G {0 ,1 , . . . , m} (by the definition of Dm) such that i*0+i+v = 1 and thus 
ijto+i+v - Ao+i+v 4s - 1 - Hence 

(26) <p(f) - ©(T) > — - f ! + — - — > - — . 
v ; n ; n ; - 2 k 0 k s t + i 2 k 2 k o + 1 + v ""2 k o + m + 1 

We obtain from (25), (26) that 

= [jt(l - 2^)^-1]^1 /2exp[-(4 .22 (*0 + n , + 1 )^-1Y1] = 

- W l - 2*)]-1/* ?l-™>2 e x p [ - (4̂ )"*o J L ] - 0 . . . + . , 0 , 
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as 4£ < 1. The last term is independent of the choice of t e Dm (that term depends 
on k0, that is on the distance of the points t, T — see (25)). Now it is seen that H is 
continuous on Dm x Dm. 

Let X e ^ + « 0 , 1>) be arbitrary but such that spt X c Dm. For f e I)m we have 

tflfoW, 0 = f ̂ OKO - <K*)>' ~ *) <U(T) = f H(t, T) <U(T) = 7(0 . 
Jo jDm 

As the function H is continuous on Dm x Dm the integral I is continuous on Dm 

and so the restriction U%\Km is continuous. In other words for any measure \i in R2 

such that spt \i c Km the restriction UM|xm is continuous (this is an analogue of the 
trivial fact that the heat potential of any measure with support contained in the 
x-axis vanishes on the x-axis). 

Now it suffices to find a continuous measure X with spt X a Dm for which the po
tential UJ is not continuous. We shall show a little more — that the heat potential U\ 
is discontinuous for any non-trivial measure X on <0, 1> with spt X <= D. 

Let X e ^ + « 0 , 1>), spt X c D and let A«0, 1» > 0. First we show that the fol
lowing assertion holds: 

There exists a constant fc > 0 such that for each e > 0 there are t e (0, 1), 0 < 8 <e 
with <f - 8, t + <5> c <0, 1> such that 

X«t -8,t + 8»^ kb* 
(a is defined by (24)). 

Suppose that this assertion is not valid. Then for each fc > 0 there is an e > 0 
such that for any / e (0, 1), 0 < 5 < e with (t - 8, t + 8} <= <0, 1> it holds 

A«r - 8, t + 8}) < kS*. 

It is well-known that the a-dimensional Hausdorff measure of the set D is finite. It is 
seen from the definition of the a-dimensional Hausdorff measure that there is a con
stant M such that for each e > 0 there are intervals Il9I2,... <=- <0, 1> such that 
diam/v < e (v = 1, 2,...), 

U Iv => O and £ (diam Iv)
a <: M . 

v=í 

Hence 

A«O, i» = A(D) s f m s f k f-^-i-Y = 
v=l v=l \ 2 / 

= fc 2"a £ (diam Iv)
a ^ fc 2"aM. 

v = l 

As k > 0 is arbitrary, we have A«0, 1>) = 0 which contradicts the assumption that 
the measure X is not trivial. (Note that the mentioned assertion follows immediately 
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from some much more general assertions concerning the so-called upper fi-derivative 
with respect to the function h(t) = f — see, for instance, [8] or [6] , ch. 3, § 3. It is 
perhaps of interest tc5note here that it may happen in the case a < 1 that a non-trivial 
measure k has its support contained in a set of zero a-dimensional Hausdorff measure 
but the lower h-derivative with respect to the function h(t) = f vanishes every
where — see [8] , p. 20.) 

It is seen from the mentioned assertion that there are k > 0, tte (0, 1), c5f > 0 
(i = 1, 2 , . . . ) such that d{ -» 0 for i -> oo, <ff — 5h tt + c5f> cz <0, 1> and 

K«i - *» U + c5,» = kS\. 

The function q> is an a-H61der continuous function, that is, there is a kt such that 

\<p(t) - (K0| = fci|r" T h t, re (0,1}. 

Consider i sufficiently large such that c5?~2a ^ \. For T e <ff - Si9 tt + c5,> we then 
have 

\cp(t^Cp(x)\^k1\ti^x\*^k1d*i, 

|r, + S2* - T| = c52a - |tf - T| = c5?a - 5, = S2*(l - 5\~2*) = ic52a 

and hence 

Further 
|rf + c52a - T| £ <52a + c5f = c52a(l + c5j-2a) = fc52a . 

We obtain from the last two inequalities that 

G(cp(u) - cp(r), U + <52* - T) - M ' , + *?' ~ 'A" 1 / 2 exp (- ^ ' I ^ Q = 

= (iO"1/2exp(-i/c2)c5ra = /c05ra 

for T € <rf — c5f, tt + c5,;> (if i is sufficiently large). Thus we see that 

{[C/>(T), T ] ; TG <tt - c5,., f, + «,>} c A((p(f,)> f, + c52a; c) 

for each 0 < c < fc0c5ra. If M -s the measure in R2 associated with X (with respect 
to <p) then we have 

fi(A((p(tt), tt + c52°; c)) = A«f, - Si9 tt + * , » = M? 

and so for d > 0 

/•oo fkodi~* 

fi{A{(p{tt), u + S?; c)) dc £ kS*t dc = kS%k0Sr -d) = 

= kk0 - kdS\ ->(,_+ 00) kk0 . 
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In the end we obtain that for any d > 0 

sup i ii(A(<p{t^ tt + S2*; c)) dc; i > 0 integer I ^ kfc0 > 0 

which implies that the heat potential U\ = U\ is not continuous in R2 (note that if 
tt -> f0, then the potential l/J is not continuous at the point [cp(t0), f0], for instance). 

Now it suffices to note that Dm c D is an uncountable compact set and thus there 
are non-trivial continuous measures X with spt X c Dm (see, for example, [6], theorem 
35). It follows from the first part of this example that if .A is any measure with spt X cz 
cz Dm then the restriction Ul|KA is continuous. On the other hand, by the second part, 
the potential U\ is not continuous in R2 whenever spt X cz D and X is not trivial. 
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