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Casopis pro péstovani matematiky, ro¥. 106 (1981), Praha

ON THE CONTINUITY OF HEAT POTENTIALS

MirosLAV DonNT, Praha
(Received March 28, 1979)

This note is devoted to a certain analogy of the continuity principle for the heat
potentials in R%. We shall show that if  is a measure in R? such that p({[x, t]}) = 0
for each [x, t] € R? and the support of the measure u lies on a curve of the form
x = ¢(t), where ¢ is a $-Holder continuous function, then the heat potential of the
measure p is continuous in R? if and only if the restriction of this potential on the
support of u is continuous. Further, we shall show that this assertion fails in the case
that ¢ is a-HOlder continuous only for some o < 4.

We deal in this paper with heat potentials in R? only. Points in R? are denoted
[x, £], [&, 7] etc. G will stand for the heat kernel in R, that is G(x, t) = 0 for t < 0
(xeR),

2

G(x, t) = (nt)~ /2 exp (— z—) for t>0.
t
For [x, t] € R?, ¢ > 0 let us denote

1) Alx,t;c) ={[&,1]eR* G(x — &, t — 1) > ¢} .

If p is a Borel measure (non-negative and finite — we shall deal only with non-
negative and finite measures) with compact support in R?, then the heat potential U,
of the measure p is defined by

@) U,(x, ) = ijG(x _g t—1dur) ([x]eRY).

We shall deal in what follows only with continuous measures, that is with measures
which vanish on singletons. The following assertion holds (see, for instance, [3], [4],

[5D)-
1. Proposition. Let K = R? be a compact set, u a continuous Borel (non-negative)

measure with compact support.in R%. Then the restriction U“|K is continuous on K
if and only if the following condition is fulfilled:

©) lim <sup {'J'“’u(A(x, t ) de; [x, 1] eK}) ~o.

d-»+ o d
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Further, let ¢ be a continuous function on an interval {a, b) ((a, b) is supposed
to be non-degenerate and compact). Let us denote

K =K, = {[x, ] R te<a, b}, x = (1)} -

We shall deal with heat potentials for measures u with spt 4 = K. For the sake of
simplicity we shall identify in this note the measure u with spt # = K with a certain
measure A on the interval {a, b)> in the following way. If u is a measure in R? such
that spt 4 < K then we assign to this measure a measure A on {a, b) (that is a measure
in R* with support contained in {a, b)) such that for each Borel set M < (a, b)
we put

AMM) = p({[x, t] eK; te M})

(roughly speaking the measure 4 is a projection of the measure p on the t-axis). On
the other hand, to a Borel measure A on {a, b) we assign a measure p in R? with
spt 4 = K such that

u(M) = i({r e <a, bY; [0 ]  M})

for any Borel set M < RZ. In this sense we shall call here the measures g, 4 (on R?
and {a, b), respectively) associated measures (more precisely, associated measures
with respect to ¢). Further, let Z#* = %#*({a, b)) denote the set of all Borel (finite,
non-negative) measures on {a, b),

By = B3 (<a, bY) = {2 B*((a, b)); A{t}) = 0 for each te<a, b)}.

For Ae &% let
K, ={[x,t]eK; tespti}.

If e #* and p is the measure associated with A (in the above mentioned sense)
then K; = spt p. For this pair of associated measures we shall write U; = U} = U
that is

@) US(x, i) = Uy(x, 1) = J G = & 1= ) du(e ) =

u

- I _”G(x (o)t — 1) die) ([x. 1] €RY).

a

Let us take notice of the following three simple assertions.

2. Lemma. Let A € #*(a, b)) and let

) lim (sup { J At = 2, 19) de teR‘}) ~0.

ia*to d

Then the potential U, is continuous (on R?).
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Proof. If [x, f]e R%, ¢ > 0, then
A(xet; ¢) = {[é, 7] e R?; TG(I - lc‘z, t) s éeR‘} <
T

c{[&t]eR* tet —c 31y, EeRY}.
If p is the measure associated with 4 then
HA(x, t; ¢)) < MKt = 72, 1))
and it follows from (5) that
lim <sup {J‘ H(A(x, t; ¢)) de; [x,t] e R2}> =0.
d=+ o d
Let us note that we immediately get from (5) that A({t}) = O for each te R'. The

assertion follows now from Proposition 1.

3. Lemma. Let us suppose that the function ¢ is 3-Holder continuous on {a, b)f
Then for A€ &5 (<a, b)) the restriction U,|g, is continuous on K; if and only i.

(6 lim (sup {J‘w/l«t — ¢ %, 1)) dc; tespt A}) =0.

d-+ d

Proof. Let y be the measure associated with A (with respect to ¢). The restriction
U,|k, is continuous on K; if and only if

) lim (sup { J WA, £; ) de; [x, 1] e Kl}) —0.

d—+ o d

It is clear that (6) implies (7) (see the proof of Lemma 2).
Suppose now that the condition (7) is fulfilled. For t € (a, b}, ¢ > 0 let

B(t, ¢) = {te<a, b); [¢(7), t] € A(o(t), t; ¢)} =
= {re<a, b); Glo(t) — o(z); t — 1) > c}.

The function ¢ is supposed to be -Holder continuous, that is there is a constant k

such that
() = o) < k|t = 1|
for t,7 e {a, b). Let t,7e<a, by, © < t. Then

2 [x(t — )] exp (— ";) .
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If te(t — ¢ %, 1) n<{a, b) then

[m( — 7))~ /2 exp(— kzz) 2 [re™ 2]~ 12 exp(— kf) = ck, ,

k ——lexp —k—2
! Jr 4)

{a, by n(t — ¢, 1) = B(t, cky)

where

Hence

for t € (a, b) and thus (as A is a continuous measure by assumption)

J A= e iy de < f "A(B(t, cky)) de = }:‘ ® Bt ) du =

d d 1 Jdk,

=k—11 H(A(o(e), £ ) du

Now we can see that (7) implies (6).

4. Lemma. Let e #*({a, b)), d > 0. Then

®)
P {,rl«t =~ hn)de te Rl} = sup {j Mt = ¢72,£))de; tespt l} .
d

d

Proof. Let te R' — spt A If spt A n(—oc0,t) = @ then A<t — ¢~2, 1)) = 0 for
each ¢ > 0 and thus

J-w,l«t —c¢c %4 1))dc=0.

d
In the case spt A N (— 0, t) % 0 let us denote

to = sup [sptAn (—oo,1)].

Then
sptAnd{t—c 2, t) csptindty — c %ty
that is '
Mt =c3 ) < l((to - ¢ 3, 1))
and hence

le«t —-c % t))de ’[ml«to — ¢ 3, tpy)dc.

d d

But ¢, € spt A and the assertion follows.
From Lemmas 2, 3, 4 we obtain immediately the following assertion.
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5. Theorem. Let ¢ be a 3-Hélder continuous function on {a, b), K = {[¢(t), t];
t € {a, b)}, p a continuous measure in R* with spt u = K. Then the heat potential U,
is continuous on-R? if and only if the restriction U,,|sm is continuous on spt u.
We shall now show two examples that the assumption that the function ¢ is 4-

Hoélder continuous is essential in Lemma 3 as well as in Theorem 5.

6. Example. We shall show that for each a € (0, 1) there is an a-Holder continuous.
function ¢ on {0, 1) and a continuous measure A on {0, 1) such that the potential U¢,
is continuous even on R? but for 4 the condition (6) from Lemma 3 is not fulfilled.

Given a € (0, $) let ¢(t) = 7* for 7 € €0, 1). Let A be the measure on <0, 1) defined
by the density h (density with respect to the Lebesgue measure on R'),

h(x) =777, 1€(0,1),
where

)] I<y<i1- 1

3 -2

Then the measure A does not fulfil the condition (6). Indeed, if the condition (6) is
fulfilled for A then, choosing for instance ¢, = 0, the restriction Uf°| k, is continuous
by Lemma 3. But for € (0, 1)

U0, ) = ﬁ f T = 1) M2 de 2 :/‘_TJ;[T(z _ ] M2 de = Jn

0

and U%°(0, 0) = O (in the case y > } it even holds

lim U2(0, 1) = +00) .

t-0+

Let us now show that the potential U; = U¢ is continuous in R?, It is evident that U,
is continuous on R? — {[0, 0]}. U,(x, ) = 0 for ¢+ < 0 and so it suffices to prove
that

(10) lim U,(x,£)=0.

[x,£1-[0,0]
t>0
Choose f such that

(1)

1
21 —y)

(it is seen from (9) that there is such a ). Note that 8 > 1. Let us estimate the
potential U, at the points of the form [(ct)*, t], t > 0, c€<0, 1). If t€(0, 1) then

12) Uty 1) = ﬁ '[ Tt = 1) 2 exp (_. M) de =

0 4t — 1)

<p<3-—-ua
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D e (=R
e (= ST e

+ 711;_‘;,:_?(‘ — )12 exp<_ (_(%E_:;I)dt =1, +1,,

where we put
My =0,0)n{z;|t - ct| > ¢},

M, =(0,0)n{z; |t — ct| <} .

Consider first the integral I,. Let 0 < 7 £ c¢t. Then

(et — | 2 |¢ = ct] afct)*™* 2 afr — ct] £~
(forc<1,a—1<0).If et <7<t then

l(ct)“ - 1“] > |1: - ct| ar* ! > alr - ctI e,
So in any case .

|(ct)" - r“l > alr - ctl e

for 7€ (0, r). Consider 7 € (0, ) such that | — ct| = . Then

((ct)a —_ ,ta)Z S dz(‘t — Ct)z t2¢—2 aZtZﬂtZa—Z
4t —-7) —  At-7) 4t

— “_2 (2a+pH-3
4
It is 2(« + B) — 3 < 0 by (11). Hence we obtain

1 aZ t
(13) I, £ —exp (— " t““*”*)J’ Tt - 1) V2de <

Jr 0
1 o? 2@a+p)-3 -1/2 " -~ —1/2
S —exp|— — 1% (V2)t tTVdr+ 27| (t - 1) V2de) =
NL 4 0 12

2
= ﬁexP (_ a_tz(aﬂi)—s) {_i_\_/—_z_; (—1/2 (%t)l—y + 27+1t—7(%t)1/2} —
2 (or—1/2
= _1_ tllz-}' exp (_ E._ tz(a+ﬂ)"3) {2 + 27""/2} _’('_.°+) 0 .
Jr 4 1—y

The terms in (13) are independent of ¢ € €0, 1).
Now let us consider the integral I,. First, we have

1 min{ct+18,t} _ “12
(14) , I, £ — Tt — 1)V dr.
\/ﬂ: max {ct—tF,0}
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Let us suppose that #~! < } and consider the following four cases:

)0sc=s2t, )28 <ec<d, 3)t<es1-207Y
4)1-2"1t<cxl

In the case 1) we have

' 1 318 1 1

(15) I, £ ——'J‘ r‘Y(I - 'r)—l/z dr < — (l _ 3tﬁ)—1/2 (31”)1_7 _
Jrlo Jr 1—y

3t

Jr(l =)

since f(1 — y) — 4 > 0 by (11). The last term in (15) is independent of c.
In the case 2) we have

(1 - 3tﬂ—l)- 1/2 4f(1-7)-1/2 > (1=0+) 0,

ct+ 8
(16) I, = L Tt — 1)V dr £ \71— Pt —ct — )12 2P =
T

ct—th

= 2[Tt(1 —-c - tﬁ-l)]-lll (B-Pr—1/2 < 2[.”(% - tﬁ*l)}—llz PFA-n-1/2 _,(’_.04_)0;

the last term is independent of c.
In the case 3) we have

ct+th
17) I, = 1 Tt = 1) P dr < (et = ) [t — (¢ = F)] V2 2P <

ct—th

2 -1\- -
= ——n(% = )T T 50040

it suffices to note here that if y € <4, 1) then 1/2(1 — y) = 2y and thus 8 — y > 0.
The last term in (17) is independent of c.
At last we obtain in the case 4)

t ’ t
(18) I, £ 1 TNt — 1) V2dr < L (t =3 (t=7)""2dr =
t—3t8 \/n t—3th

o+ 0.

- 2\/}13 (1 = 38=1)7 2=
T

The last term is also independent of c¢. We get immediately from (13), (15), (16), (17),
(18) that

(19) lim Uyx,f)=0..
[x,t]1-[0,0]
t>0,0=sxs1¢=

If x £0, > 0 then (x — %) 2 7%*. Hence

(20) ' Ui(x, 1) S U4 0, 1)
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for x £ 0, t > 0. Similarly (x — t%)* 2 (** — 1*)* for t > > 0, x = * and thus
(21) Uix, 1) S U5 1)
for t > 0, x = t*. Finally, it follows from (20), (21) and (19) that (10) holds.

7. Remark. In a similar way one can easily show that the restriction U ll K, is con-
tinuous on K (where K, = {[*% t]; T € €0, 1)}) whenever y < 1 — a. We have just
shown that U, is continuous on R?if y < 1 — (1/(3 — 2a)). But 1 — (1/(3 — 20)) <
< 1 — afor « < 1 and thus a question arises if the potential U, is continuous on R?
in the case 1 — (1)(3 — 22)) £ » < 1 — o. I do not know the answer.

8. Example. We shall show in this example that for each @ < % (« > 0) there is an
a-Holder continuous function ¢ on {0, 1> and a continuous measure 4 on <0, 1)
such that the heat potential U is not continuous on R? while its restriction U‘f{l Ka
is continuous on K, (K, = {[¢(¢), {]; t e spt A}). It is thus seen from this example
that the constant 4 in Theorem 5 is exact.

Choose 0 < ¢ < % and let D = <0, 1) be the standard ‘“‘symmetric” set of the
Cantor type obtained from the interval <0, 1) so that the “middle” interval of the
length 1 — 2¢ is removed in the first step, two intervals of the length &(1 — 2¢) are
removed in the second step etc. Let ¢ be the corresponding Cantor function (see,
for instance, [9] — under the notation used in [9] we choose d = 1). So D is the set
of all real numbers of the form

(22) t= (1 - é) Z ikék_l >
k=1
where i, = 0, 1. For ¢ of this form we have
2 i
23 f) = .2
( ) (p( ) kgl 2k
It is well known that ¢ is a monotonic continuous function on <0, 1). Further, the

function ¢ is an a-Holder continuous function, where

(24) "= In2 In4

1
—Iné 2-Iné

(see [9] for example). We suppose ¢ < } and thus o <3 (and for any given «, €
€ (0, 3) one can choose ¢ < } such that @ = a;).

Now let m be a given integer, m > 1. Let us denote by D,, the set of all ¢ € D of the
form (22) such that for each integer k > 1 there isa ve {0, 1, ..., m} with i, = 1.
It is easily seen that D,, is a compact uncountable set. Denote further

K, = {[o(t). t]; te Dy} .
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Thr heat kernel in R? can be regarded as a function on R? x R? if we write
Gi(x,,E1)=G(x — & t—1).

Let us take notice of the property of K,, that the restriction of the kernel G, on
K,, x K, is continuous (and bounded for K,, is compact). For the sake of simplicity
one can consider a function H defined on D,, x D,, by .

H(t,7) = G(e(t) — ¢(z), t — 1), (t,teD,).
Let us show that H is continuous on D,, X D,,. H is clearly continuous on the set
{[t.x]€ Dy x D,, t + 1}

(that is, outside the diagonal). It suffices to prove that H is continuous at thepoints
of the form [t,, to], to € D,. We have

H(to, to) = 0 .
If [t,7] e D,, x D,, t = t, then H(t,t) = 0. Let [t,7] € D,, x D,, v < t and let

t=(1-9Fiud", r=(1-)Tid".
. k=1 k=1
Since T < t there is an integer ky such that i, = j, forv=1,2,..., ko — 1, i, = 1,
Jko = 0. Then
@) (@-2)&tst—c=01-E" "+ ¥ (k-i)e )=
k=ko+1

é (1 - é) z fk—l — éko—l .
k=ko
Further

o) - o) = 5+ ¥ 22

2% iiger 2K

Thereisa ve {0, 1, ..., m} (by the definition of D,,) such that iy, 4, = 1 and thus
ikp+1+y — Jro+14y ¥ —1. Hence

1 hd 1 1 1
(26) ‘/’(t) - (P(T) 2 Eg —k=§+l 5" kot 1+ = Sko+m+1 "

We obtain from (25), (26) that

< [1!(1 _ 26) éko—i];l}z exp [_(4.22(ko+m+l)£ko— 1)—1] —

= [n(t — 26)]" 2 g0 4012 xp [— (e S ] sy 0

4m+2
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as 4¢ < 1. The last term is independent of the choice of t € D,, (that term depends
on ko, that is on the distance of the points ¢, 7 — see (25)). Now it is seen that H is
continuous on D,, X D,,. -

Let A€ #*(0, 1)) be arbitrary but such that spt 1 = D,,. For t e D,, we have

ULe(t), 1) = f ;G(q)(t) — o2t — 1) di(s) = f (e ) 4i() = ).

As the function H is continuous on D, x D,, the integral I is continuous on D,
and so the restriction Ufl,(m is continuous. In other words for any measure p in R?
such that spt u = K,, the restriction U,,| k., is continuous (this is an analogue of the
trivial fact that the heat potential of any measure with support contained in the
x-axis vanishes on the x-axis).

Now it suffices to find a continuous measure A with spt A < D,, for which the po-
tential U is not continuous. We shall show a little more — that the heat potential U%
is discontinuous for any non-trivial measure A on <0, 1) with spt A = D.

Let Ae #*(0, 1)), spt A = D and let 4(<0, 1)) > 0. First we show that the fol-
lowing assertion holds:

There exists a constant k > 0 such that for each ¢ > O therearet€ (0, 1),0 < 6 <e
with {t — §, t + 6> = (0, 1) such that

Mt — 6, t+ 8)) 2 ké*
(« is defined by (24)).

Suppose that this assertion is not valid. Then for each k > 0 there is an ¢ > 0
such that for any 1€ (0, 1), 0 < § < ¢ with {t — J, t + 6> = (0, 1) it holds

Mt =6, t + 6)) < ké*.

It is well-known that the «-dimensional Hausdorff measure of the set D is finite. It is
seen from the definition of the a-dimensional Hausdorff measure that there is a con-
stant M such that for each ¢ > O there are intervals I,,I,,... = <0, 1) such that
diamI, <¢ (v=1,2,..),

UI,> D and Y (diamI) S M.
v=1 v=1

i (dlalznl) _

= k27*Y (diam 1) < k27°M.
v=1

Hence

e

(<0, 1) = A(D) §v§l,1(lv)

As k > 0 is arbitrary, we have A(<0, 1)) = 0 which contradicts the assumption that
the measure 4 is not trivial. (Note that the mentioned assertion follows immediately
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from some much more general assertions concerning the so-called upper h-derivative
with respect to the function h(f) = * — see, for instance, [8] or [6], ch. 3, § 3. It is
perhaps of interest t& note here that it may happen in the case « < 1 that a non-trivial
measure A has its support contained in a set of zero a-dimensional Hausdorff measure
but the lower h-derivative with respect to the function h(t) = t* vanishes every-
where — see [8], p. 20.)

It is seen from the mentioned assertion that there are k > 0, t,€(0,1), §; > 0
(i=1,2,...) such that §; - 0 for i - oo, {t; = d;, t; + §,> = <0, 1) and

'1(<ti - 5i’ t; + 5,)) = ké",‘ .
The function ¢ is an a-Holder continuous function, that is, there is a k; such that

lo(t) = o(z)| < k|t — 1|, €0, 1.

Consider i sufficiently large such that 8} ~2* < 4. For te {t; — J,, t; + ;> we then
have :
|¢(tl) - (p(f)l é kllti - le é kléai Iy
|t + 67 — 1| 267 — |t — 1| 2 87% = &, = 67°(1 — 6} 7*) = 3o}
and hence
- 2

(CORFO

4(t; + 8% — 1)
Further

|t; + 63 — 1| < 62% + 5, = 52%(1 + &} 7) < 30%°.

We obtain from the last two inequalities that

G(o(t) — o(x), t; + 87* = ) = [n(t; + 6]* — )] V2 exp(— ot = (p(T))z)

4t; + 63 — 1)

v

2 (3m)™ 1% exp(—1k7) 67" = koo
for te (t; — 8;, t; + 6, (if i is sufficiently large). Thus we see that
{[o(x), 7); Te<ti = 8, t; + 80} = A(o(t:), ti + 6775 ¢)

for each 0 < ¢ < ko6; % If p is the measure in R? associated with 4 (with respect
to @) then we have

w(A(o(t), 1, +‘ 8% ¢)) 2 ALty — by, 1+ 6)) 2 ké

and so ford > 0

0 : kodi~*
J w(A(o(t), t; + 02% ¢))de 2 j kst dc = kéi(kod;* — d) =

d d
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In the end we obtain that forany d > 0

sup {J‘ w(Ao(t,), t; + 6% ¢))de; i >0 integer} = kky >0

d

which implies that the heat potential U = U, is not continuous in R? (note that if
t; = to, then the potential U{ is not continuous at the point [¢(to), t,], for instance).

Now it suffices to note that D,, = D is an uncountable compact set and thus there
are non-trivial continuous measures A with spt A = D,, (see, for example, [6], theorem
35). It follows from the first part of this example that if 1 is any measure with spt 1 <
< D, then the restriction Uﬂ k, is continuous. On the other hand, by the second part,
the potential U¢ is not continuous in R* whenever spt A = D and A is not trivial.
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