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Časopis pro p stování matematiky. roč. 106 (1981), Praha 

ON ATOMS IN TOLERANCE LATTICES OF DISTRIBUTIVE LATTICES 

JOSEF NlEDERLE, B m O 

(Received June 20, 1979) 

Notation. For an algebra 91 = (A, F), TL(9l) will denote the tolerance lattice of 91, 
CL(9l) the congruence lattice of 9(. 

For a lattice £ = (L, A , v ) , .*//(£) will denote the set of all atoms in £. 
For a compatible tolerance T on an algebra 91, #(T) will denote the transitive 

hull of T. 

It is known that %>(T) is the minimal congruence including -T([5], Thm. 1). # can 
be regarded as a mapping of TL(9I) into CL(91). # is evidently an order homo-
morphism (= isotone mapping). A little more will be shown. 

Lemma 1. Let a = x0 — xt — . . . _ xm = b and a = y0 = yx . . . _J yn = b be 
two chains, not necessarily maximal, connecting the elements a < b of a lattice 
£ = (L, A , v ) . Let S and T be compatible tolerances on £ and let [x ,-! , x j e 5 
for i = l , . . . , m and [y;_i, yy] e Tfor 7 = 1, . . . , n. Then there exists a chain z, 
a = z0 ^ zx ^ . . . ^ zk = b such that [zj_ u z j e S A Tfor I = 1, . . . , fc. 

Proof. By induction with respect to m. For m = 1 the statement holds, because 
[a, b]e S implies [y,_i, yj\ e S for j = 1, . . . , n. Put fc = n and z ; = ^ . Suppose 
the statement holds for 1, . . . , m — 1. 

Construct a chain / from x0 to xm_ t as follows: y\ = yf A xm_ t for i = 0, . . . , n. 
Clearly y0 = x0 = a, >>; = xm_x and [/;_-, y'^ e T for i = 1, . . . , n. By the as
sumption, there exists a chain z', a = z0 <; zi g . . . ^ z£, = x.,,.! such that 
[z;_ l9 zi] G 5 A T for / = 1, . . . , fc'. Denote fc = fc' + w, ẑ  = z\ for / = 0, . . . , fc' 
and Zj = xm_i v J>J_*, for / = fc',..., fc. Clearly 0 = 2 0 ^ 2 ^ , . , ^ ^ = !) and 
[ z j . ^ z J e S A Tfor / = 1, . . . , fc. Q.E.D. 

Proposition 1. For every algebra 91 the operator <€ is a complete join-homo-
morphism of 7L(9l) onto CL(9l). 

For every lattice £ the operator <& is a lattice homomorphism of TL(&) onto 
CL(2), which need not be meet-complete. 

Proof. # is a complete join-homomorphism: Let Tt e 7L(9l), iel. Then 
V(VTLTi) = %(Ti)> hence <$fyTLT) = VCL%(Ti)- Conversely, Vr iT, = VTL^(T^ 

thus <#(VTLTi) = ^(VTL ^(Td) = VCL %(Ti)- F o r a lattice, ^ is a meet-homomor-
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phism: Clearly <$(S) A #(T) ;> %(S A T) (meet-operations both in TL and CL 
coincide with the set intersection). < (̂S A T) ^ #(S) A #(T) is to be shown. Let 
[a, b] €^(S) A - ^ ( T ) , a <, b. There exist elements x0,..., x^, y 0 , . . . , y'n such that 
0 = x'0 = yo> * = x'm = yn and [x;_1? xQ e 5, for i = 1, . . . , m, [>;_!, y'j] e T for 
; = 1, . . . , n. Put xf = (x0 v ... v x't) A b for i = 0, ..., m and ys = (y'0 v ... 
... v y'j) A b for j = 0, . . . , n. Then a = x0 = xx = ... 51 xm = b, a = >>0 = 

<I j j <; .. . <: >>„ = b and [ x ^ 1 ? xf] e S for i = 1, . . . , m, [yj-u yj] e T for j = 
= 1, . . . , n. By Lemma 1 a chain a^z0<=zl

<
l...^zk = b can be constructed 

such that [z |_ l f z J e S A Tfor / = 1,. . . , fc. Thus [a, b] e <£(T A S). Q.E.D. 

Notation. Denote by 2T(0) the set of all compatible tolerances the transitive hull 
of which is 0, «T(<9) = {Te TL(2I) \ <$(T) = 0). 

Corollary. Let 0 be a congruence on a lattice £ = (L, A , V ) . Then 3T(0) is 
a convex sublattice of TL(Q) with 0 as the greatest element. 

Remark. For every algebra 21 = (A, F), TL(2t) is a disjoint union of all 9~(0), 
TL(S&) = y e e C L ( 9 l ) er(0). 

Remark. If 0 is a congruence, then the infimum of ZT(0) either belongs to 3T(0) 
or not, both cases can occur. 

Definition. A principal tolerance on the algebra 21 = (A, F) is the least compatible 
tolerance on 21 containing a given pair of elements [a, b] e A x A; it will be denoted 
by T(a, b). 

A c-principal tolerance on the lattice £ = (L, A , v ) is the least compatible 
tolerance on £ containing a given pair of elements [a, b~] e L x L, a < b. Evidently, 
every c-principal tolerance on a lattice is principal. 

As shown by Chajda and Zelinka ([3], Thm. 1), each principal tolerance T(a, b) 
on a distributive lattice is identical with the principal congruence 0(a, b). By [4] 
(Thm. 16 and Cor. 4), tolerance lattices of distributive lattices are complete, compactly 
generated and distributive. As every compactly generated lattice is upper continuous 
(cf. [1], 2.3.), they are upper continuous, and since every distributive upper continuous 
lattice is infinitely distributive (cf. [1], p. 35) they are infinitely distributive. 

Lemma 2. Let fl = (L, A , v ) be a distributive lattice, a, b, ce L, a < c < b. 
Then T(a, c) < T(a, b). 

Proof. Clearly T(a, c) <I T(a, b) . [a, b] e T(a, c) would imply that there exist 
x, y, z e L such that (x A a) v (y A C) V Z = a, and (x A C) V (y A a) v z = b. 
Hence z <* a < c, x A c <* c, y A a 51 a < c and consequently b <* c, which 
contradicts the assumptions. Q.E.D. 

Proposition 2. Let T be a compatible tolerance on the distributive lattice £ = 
- (L, A , v ) , [a, b] eT,a<b,a-Kb> Then Tis not an atom in TL(£). 
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Proof. T=t= T(a, b) implies Tis not an atom. Assume T = T(a, b). There exists 
an element c e L, a < c < b. By Lemma 2, T(a, c) < T(a, b) and therefore Tis not 
an atom. Q.E.D. 

In other words, if T is an atom in TL(2) and [a, b] e T, then a = b or a -< b 
or a > b. This follows from the fact that [x, y] e Tif and only if [x A y, x v y] e T 
([2], Thm. 1). The converse is not true. 

Proposition3. Let 2 = (L, A , V ) be a distributive lattice, Ta compatible toler
ance on 2. The following assertions are equivalent: 
(i) Tis an atom in TL(2); 

(ii) T is c-principal. 

Proof, (i) => (ii): Suppose T is an atom in TL(2), then there exist elements a, b e L, 
a <b, [a, b] e T. Then T = T(a, b), consequently Tis c-principal. 

(ii) => (i): Let T = T(a, b), a <b, and let 5 be a compatible tolerance on £, A 4= 
=t= S 51 T. [x, y] e S, x < y, implies that there exist elements p, q,re L such that 
x = (p A a) v (q A b) v r and >> = (jp A b) v (q A a) v r. But g A a 51 g A 
A b g x, r ^ x, so that x = (p A a) v x and j ; = (p A b) v x* By the assumption 
a < b, the intervals (a, by and <p A a, p A b> are transposed, consequently 
p A a < p A b. Analogously, intervals <p A a, P A b> and <x, j> are transposed 
and x -< y. Now, [x, y ] e S implies a = a v (x A (p A b)), b = a v (y A (p A b)) 
and consequently [a, b] e 5. Hence T = 5 and finally T = S. Q.E.D. 

Remark. Atoms in TL(2) are exactly the same as in CL(2). 

Proposition 4. For a distributive lattice 2 = (L, A , V ) , £/ie following assertions 
are equivalent: 

(i) £ is locally finite; 
(ii) CL(fl) is a Boolean lattice; 

(hi) every element in CL(2) is join of atoms; 
(iv) the greatest element in CL(£) is join of atoms. 

Proof, (i) <=> (ii) by Hashimoto (cf. [1], p. 80). 
(ii) <=> (iii) o (iv) by [1], Thm. 4.3, because CL(2) is always distributive, complete, 

compactly generated and upper continuous. Q.E.D. 

Proposition 5. Let 2 = (L, A , v ) be a distributive lattice. If an element x e CL(2) 
(or x e TL(2)) is join of a set A of atoms and a e s//(CL(2)) (or a e s//(TL(2))), 
then a 51 x implies ae A. In other words, the set A is uniquely determined by the 
element x, i.e. A = {a e ^/(CL(fl))) | a <; x} (or A = {a e st/(TL(2)) \ a = x}). 

Proof. Both CL(2) and TL(£) are infinitely distributive. Hence a ^ x = Vfe/a» 
implies a = a A X = a A Vie/ «i = Vie/(

fl A a 0 - If a ai-d a i a r e atoms, a 4= af 

implies a A a* = A. Thus, there exists iel, a = af. Q.E.D. 
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Denote by <^>* the partition of TL(Sl) corresponding to % : TL(VL) -> CL(W). 
Obviously <^>2i = {Sf(&) | 0 e CL(9I)}. Another natural partition can be construc
ted on the tolerance lattice TL(W). Denote by s4 : TL(2T) -> <?cc/(s/J(TL(M))) the 
mapping Th-» {a s s^/(TL(Sa)) \a£T}. Put Sf(A) = {Te TL(2t) | st{T) = A} for 
each A e ^^/(^/(TL^))). The partition corresponding to sf will be denoted by 
<y>9l. Clearly <^> a = {/^(A) | A e*a>/fa//(T^W)))}. ^ / < ^ / ( T L ( « ) ) ) can be 
regarded as a Boolean lattice. 

Proposition 6. The mapping s4 is a complete meet-homomorphism. If TL(SU) is 
distributive, then s4 is also a complete join-homomorphism. 

Proof. Obviously, sf is an order homomorphism. Consequently, AiGi^(T) ^ 
^ ^ ( V Aiei ^(Ti)) S ^(Aiei T) ^ A;e/ <d(T) for an arbitrary family of com
patible tolerances {Tj^j. The first assertion is proved. Let 7L(2l) be distributive. 
It always holds V.6/ ^(-H) .= ^(V, e / T). The tolerance lattice TL(2l) is infinitely 
distributive and a e s#(}/ieI T) implies a = a A Vie/ Tt = VieI(a A T), hence there 
is an i s 1 such that a e j/(Tf). Thus V,ej ^(T,) = ^(V, e / T). Q.E.D. 

Corollary. £ac/i b/0cfc S?(A) of (&}% contains its least element. If TL(9l) is distri
butive, all Sf(A) contain their greatest elements. 

A natural question arises, what is the relation between the two partitions of TL(2l) 
mentioned above. 

Proposition 7. Let £ = (L, A , V ) be a lattice. Then Tand #(T) include the same 
atoms in TL(2) provided Te TL(2). 

Proof. Obviously s/(T) = s/(<#(T)). By Proposition 1, a e s4(%(T)) implies 
<$(a A T) = #(a) A #(T) g a, thus a A T 4= A and consequently a g T, i.e. 
a e ^ ( T ) . Q.E.D. 

Corollary. For a lattice £, i^Qis a refinement of </S^>s. 

Proposition 8. For a distributive lattice £ = (L, A , V ) , the following assertions 
are equivalent: 

(i) £ is locally finite', 

(ii) <*">« = <^>C; 
(iii) Te TL(2)is a congruence if and only if each element of TL(2) including the 

same atoms asTis less than Tor equal to T. 

Proof, (i) => (ii): If £ is locally finite, then for any A e £&ft(s/J(TL(2))), £f(A) 
contains only a unique congruence, WCLA. Hence Te £f(A) implies #(T) = WCLA 
and consequently £T(A) -= &~(VCLA), i.e. <^> s = <^> s . 

(ii) => (iii): Let <^> s = <^>fi. If Te TL(2) is a congruence, T is the greatest 
element in ST(J) = Sf($t(J\ On the other hand, if each element of TL(2) including 
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the same atoms as T is less than T or equal to T, then T is the greatest element of 
y(jaf(T)) = ^(#(T)), hence a congruence. 

(iii) => (i): If (iii) holds, the all-relation is the only congruence on £ including the 
set of all atoms in TL(2)9 so that it is the join of all atoms in CL(£). By Proposition 
4, £ is locally finite. Q.E.D. 

It was proved that if £ = (L, A , v ) is a locally finite distributive lattice, the least 
congruence #(T) including a given element T of the tolerance lattice TL(2) can be 
found without knowing the nature of elements; it is the greatest element in TL(£) 
including the same atoms as T. 

The tolerance lattice of the four-element chain may serve as an illustration: 

Fig. 1. 

Remark. In this paper, infinitely distributive means satisfying the Join Infinite 
Distributive Identity x A Vie/ xt = Vie/ (* A *i)-
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