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Časopis pro pěstování matematiky, roč. 106 (1981), Praha 

ON 1-FACTORS IN THE CUBE OF A GRAPH 

LADISLAV NEBESKÝ, Praha 

(Received October 2, 1978) 

Let G be a graph (in the sense of [1] or [3]) with the vertex set V(G) and the edge 
set E(G). The number |V(G)j is referred to as the order of G. A spanning subgraph F 
of G is called a 1-factor of G if F is a regular graph of degree one. By the cube G3 

of G we mean the graph with the properties that V(G3) = V(G) and that two vertices u 
and v are adjacent in G3 if and only if the distance between u and v in G does not 
exceed three (the square G2 of G is defined analogously). A set M _ £(G) is called 
a matching in G if no two edges in M are incident with the same vertex. Obviously, 
M is a matching in G if and only if either M = 0 or M is the edge set of a 1-factor 
of a subgraph of G. We shall say that a matching M in G is cohesive if either M = 0 
or there exist a connected subgraph H of G and a 1-factor F of H such that M = F(F). 

The following theorem is the main result of this note: 

Theorem. Let G be a connected graph of an even order P _ 4, and let M be 
a cohesive matching in G. Then G3 — M contains a 1-factor. 

We first prove one lemma: 

Lemma. Let Tbe a tree of an even order p = 4, and let M be a cohesive matching 
in T Then T3 — M contains a 1-factor. 

Proof. We denote by Z the set of vertices in T which are incident with an edge 
in M. 

If p = 4, then T3 is complete, and the statement of the lemma holds. 
Let p = 6. If T contains a pair of vertices u, v <£ Z such that T — u ~ v is a tree 

and 1 ^ d(u, v) ^ 3, then T3 — M — u — v contains a 1-factor, and thus T3 — M 
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contains a 1-factor (d(u, v) denotes the distance between u and v in T). Otherwise, 
T and M belong to one of the cases given in Fig. 1 (the edges of M are marked by 
thick lines); obviously, the edges w1w4, w2w5, and w3w6 induce a 1-factor in T3 — M. 

Let p ^ 8. Assume that for every tree V of an even order p', where 4 ^ p' = p — 
— 2, and for every cohesive matching M' in T', it is proved that (T')3 — M' contains 
a 1-factor. We distinguish two cases: 

I. Assume that Tand M fulfil at least one of the following conditions: 

(1) there exist vl9 wx e V(T) — Z such that vxwx e£(T) — M, deg v1 = 1, and 
deg wx = 2 (deg u denotes the degree of a vertex u in T); 

(2) there exist v2, w2 e V(T) — Z such that deg i;2 = deg w2 = 1, and 2 _ 
= d(i>2, w2) = 3; 

(3) there exist v3, w3, w3 e V(T) such that v3 $ Z, v3w3 e E(T), w3w'3 e M, deg v3 = 
= 1, and deg w3 = deg w3 = 2; 

(4) there exist v4, w4, w4 e V(T) such that v4 £ Z, w4w4 e M, deg v4 = deg w4 = 1, 
deg w4 = 2, and d(v4, w4) = 3; 

(5) there exist v5, v5, w5, w5 e V(T) such that v5v'5, w5w'5 e M, v'5w5 e E(T), 
deg v5 = 1, and deg v'5 = deg w5 = deg w5 = 2; 

(6) there exist v6, v'6, w6, w'6 e V(T) such that v6v6, w6w'6 e M, deg v6 = deg w6 = 
= 1, deg v'6 = deg w6 = 2, and d(v6, w6) = 4. 

Denote 

T1 = T - v 1 - w 1 , M,=M, A1={v1w1}; 

T2 = T - v2 - w2 , M2 = M , A2 = {v2w2} ; 

T3 = T - v3 - w3 , M3 = M - {w3w'3} , A3 = {v3w3} ; 

T4 = T — v4 — w4 , M4 = M — {w4w4} , A4 = {v4w4} ; 

T5 = T - v5 - v'5 - w5 - w'5 , M5 = M - {v5v5, w5w5} , 

A5 = {u5w5, v5w5} ; 

T6 = T - v6 - v'6 - w6 - w'6 , M6 = M - {t;6v6, w6w6} , 

-46 = Kw 6 , t;6w6} . 

There exists i e{ l , ..., 6} such that Tand M fulfil the condition (i). It is clear 
that Tt is a tree of an even order = 4 , and that Mf is a cohesive matching in Tt. Ac
cording to the induction assumption, (Tf)

3 — Mt contains a 1-factor, say Ft. Hence, 
the subgraph of T induced by the set of edges E(Ft) u i j is a 1-factor of T. 

II. Assume that T and M fulfil none of the conditions (1) —(6). Then T is not 
a path. 

By a terminal path in T we mean such a path P of a length n ^ 1 in Tthat one of 
the end-vertices of P has degree one in T, the other end-vertex of P has a degree at 
least three in T, and n — 1 vertices of P have degree two in T. Let P be a terminal 
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path in T, s the end-vertex of P such that deg 5 _ 3, and let t be the vertex adjacent, 
to s in P; we shall say that P is strong or weak if st e M or st $ M, respectively. 

Since Tand M-fulfil none of the conditions (1) —(6), we have that every strong 
terminal path in T has a length at most three; and every weak terminal path in T 
has a length one or two. Moreover, no two weak terminal paths have the same end-
vertex. This implies that Tcontains at least two vertices of a degree ^ 3 . It is easy to 
see that T contains a vertex r of degree three which is the end-vertex of exactly two 
terminal paths, say Pt and P2. Clearly, exactly one of the terminal paths Px and P2 

is strong. Since T contains a vertex of a degree = 3 different from r, we have that 
T — (V(Pi) u V(P2)) is a tree of an order = 3 . Obviously, the subtree of T induced 
by V(Pi) u V(P2) belongs to exactly one of the cases (7) —(11) given in Fig. 2 (the 
edges belonging to M are marked by thick lines). 

*\/* *\/" *\X" 

Fig. 2. 

Denote 

T7 = T - v7 - w7 , M7 = M - {rw7} , A7 = {v7w7} ; 

T8 =T-r-s-v8-w8, M8 = M - {rw8, sv8} , 

A8 = {rs, v8w8} ; 

T9 — T — v9 — v9 — w9 — w9 , M9 = M—- {rv9, w9w'9} , 

A9 = {v9w9, v9w9} ; 

Tl0= T- vl0 - v[0 - w10 - wi0 , M10 = M - {rvf
10, w10w'10} , 

^10 = Ko^io, îoH>10} ; 
Tu = T- r - t -vit - v[x - w u - w'lt , 

M n = M - {rt, vnvu, WnwiJ , Axl = {rwli9 tvlx, vi^ij . 

There exists i e {7,..., 11} such that Tand M fulfil (i). Since Tt is a tree of an even 
order = 4 and M( is a cohesive matching in Ti9 we have that (Tf)

3 — Mt contains 
a 1-factor, say Ft. The subgraph of T induced by the set of edges E(Ft) u At is a 1-
factor of T, which completes the proof of the lemma. 
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Proof of Theorem. First, let M = 0. Since G is connected, there exists a spanning 
tree Tof G. According to the lemma, T3, and therefore G3, contains a 1-factor. 

Next, let M =t= 0. Then there exist a connected subgraph H of G and a 1-factor F 
of H such that M = K(F). It is clear that there exists a spanning tree T0 of H such 
that F is a 1-factor of T0. Moreover, there exists a spanning tree Tof G such that T0 

is a subtree of T. This means that M is a cohesive matching in T. According to the 
lemma, T3 — M, and therefore G3 — M, contains a 1-factor, which completes the 
proof of the theorem. 

Corollary. Let G be a connected grahh of an order —4, and let G contain a 1-
factor F. Then there exists a 1-factor F' of G3 such that E(F) n F(F') = 0. 

Remark 1. In our theorem the word "cohesive" cannot be omitted. Consider the 
tree T(1) given in Fig. 3 and the matching M(1) formed by the strong edges. Obviously, 
M(1) is not cohesive. It is clear that (T(1))

3 — M(1) contains no 1-factor. 

Fig. 3. Fig. 4. 

Remark 2. Chartrand, Polimeni and Stewart [2] and Sumner [6] have proved 
that if G is a connected graph of an even order, then G2 contains a 1-factor. But in 
our theorem the power cannot be decreased. Consider the tree T(2) given in Fig. 4 
and the cohesive matching M(2) formed by the strong edges. Then (T(2))

2 - M(2) 

contains no 1-factor. 

Remark 3. Sekanina [5] has proved that if G is a connected graph, then G3 is 
hamiltonian-connected. This implies that if G is a connected graph of an even order 
p ^ 4, then G3 contains a 1-factor which is a subgraph of a hamiltonian cycle in G3. 
Consider the tree T(3) in Fig. 5. It is easy to see that T(3) contains exactly one 1-factor, 
say F, and that F is a subgraph of none of the hamiltonian cycles in (T(3))

3. 

Fig. 5. 
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