Časopis pro pěstování matematiky

Josef Kolomý

An approximate method for determination of eigenvalues and eigenvectors of self-adjoint operators

Časopis pro pěstování matematiky, Vol. 106 (1981), No. 3, 243--255
Persistent URL: http://dml.cz/dmlcz/118098

Terms of use:

© Institute of Mathematics AS CR, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

AN APPROXIMATE METHOD FOR DETERMINATION OF EIGENVALUES AND EIGENVECTORS OF SELF-ADJOINT OPERATORS

Josef Kolomý, Praha

(Received February 26, 1979)

1. The method (1) for the determination of eigenvalues and eigenvectors of linear self-adjoint operator A is investigated. The error estimates are derived in the following two cases: (i) λ_{1} is only an extreme value of the spectrum $\sigma(A)$ of A, (ii) λ_{1} is an isolated point of $\sigma(A)$. Moreover, it is shown that the method (1) can be used for the determination of an arbitrary eigenvalue of A and the corresponding eigenvector.

Let X be a real Hilbert space, $A: X \rightarrow X$ a linear self-adjoint and positive operator on X. By positivity of A we mean that $\langle A u, u\rangle>0$ for each $u \in X, u \neq 0$ and $\langle A u, u\rangle=0$ implies $u=0$. Let m, λ_{1} be the exact spectral bounds of the spectrum $\sigma(A)$ of A. Denote by $\sigma_{p}(A), \sigma_{c}(A)$ the point spectrum and the continuous spectrum, respectively. The symbol $\left\{E_{\lambda}\right\}$ stands for the spectral resolution of identity corresponding to the self-adjoint operator A. We shall deal with the following procedure

$$
\begin{equation*}
\mu_{n+1}=\left\langle A u_{n}, u_{n}\right\rangle \cdot\left\|u_{n}\right\|^{-2}, \quad u_{n+1}=\mu_{n+1}^{-1} A u_{n} \tag{1}
\end{equation*}
$$

for finding the eigenvalues and eigenvectors of A. In (1) it is assumed that the initial approximation $u_{0} \in X$ is different from zero. Our hypotheses on A imply that $\mu_{n}>0$ and $\mu_{n} \neq 0$ for each n. In the sequel we assume that $\left(\mu_{n}\right),\left(u_{n}\right)$ are defined by (1), and $w_{n}=u_{n}\left\|u_{n}\right\|^{-1}$ for each n. For the recent results concerning the procedure (1), its variants, relations and for the bibliography see [1]-[3]. We refer the reader for instance to [4] - [11] for further methods.
2. We start with the following

Theorem 1. Let X be a real Hilbert space, $A: X \rightarrow X$ a linear self-adjoint and positive operator. Assume that the starting approximation u_{0} of (1) is such that $E_{\lambda} u_{0} \neq u_{0}$ for each $\lambda<\lambda_{1}$.

Then $\left\|A w_{n}\right\| \nearrow \lambda_{1}$ as $n \rightarrow \infty$. Moreover,

$$
\left\|A^{2} w_{n}\right\| \cdot\left\|A w_{n}\right\|^{-1}=\left\|A w_{n+1}\right\| \leqq \mu_{n+1}^{-1} \lambda_{1} c_{n}\left\|A w_{n}\right\|,
$$

where

$$
c_{n}=\left\|u_{n}\right\| \cdot\left\|u_{n+1}\right\|^{-1} \leqq 1, \quad(n=0,1,2, \ldots) .
$$

Proof. First of all, $\mu_{n+1} \leqq\left\|A w_{n}\right\|$ and $\mu_{n} \leqq \mu_{n+1}$ for each n ([1], Lemma 1). Since A is positive and self-adjoint, $\|A u\|^{2} \leqq\|A\|\langle A u, u\rangle, u \in X$. Indeed, assuming that $\|A\|=1$, this inequality follows from

$$
\begin{gathered}
\|A u\|^{2}=\langle A u, u\rangle-\{\langle A(u-A u), u-A u\rangle+ \\
\left.+\|A u\|^{2}-\left\langle A^{2} u, A u\right\rangle\right\}
\end{gathered}
$$

the fact that A is positive and the inequality

$$
\left\langle A^{2} u, A u\right\rangle \leqq\|A u\|^{2}, \quad u \in X .
$$

Furthermore, $\lambda_{1}=\|A\|$ and

$$
\begin{gathered}
0 \leqq\left\|A w_{n}\right\|^{2}-\mu_{n+1}^{2}=\left\|A w_{n}\right\|^{2}-\left\langle A w_{n}, w_{n}\right\rangle^{2} \leqq \\
\leqq\|A\|\left\langle A w_{n}, w_{n}\right\rangle-\left\langle A w_{n}, w_{n}\right\rangle^{2}=\left\langle A w_{n}, w_{n}\right\rangle\left(\lambda_{1}-\left\langle A w_{n}, w_{n}\right\rangle\right) \rightarrow 0
\end{gathered}
$$

as $n \rightarrow \infty$ for $\mu_{n+1}=\left\langle A w_{n}, w_{n}\right\rangle \nearrow \lambda_{1}$ by Theorem 1 [1]. Hence

$$
0 \leqq \lambda_{1}^{2}-\left\|A w_{n}\right\|^{2} \leqq\left(\lambda_{1}^{2}-\mu_{n}^{2}\right)+\left|\mu_{n}^{2}-\left\|A w_{n}\right\|^{2}\right| \rightarrow 0
$$

as $n \rightarrow \infty$. We shall prove that $\left(\left\|A w_{n}\right\|\right)_{=n 1}^{\infty}$ is monotone. It follows from (1) that $w_{n+1}=\mu_{n+1}^{-1} c_{n} A w_{n}$, where $c_{n}=\left\|u_{n}\right\| /\left\|u_{n+1}\right\| \leqq 1$ for each $n \geqq 0$. Hence

$$
\left\|A w_{n+1}\right\|=c_{n} \mu_{n+1}^{-1}\left\|A^{2} w_{n}\right\|=\mu_{n+1}^{-1} \frac{\left\|u_{n}\right\| \cdot\left\|u_{n+1}\right\|}{\left\|u_{n+1}\right\|^{2}}\left\|A^{2} w_{n}\right\| .
$$

By our hypotheses $u_{n} \neq 0, A u_{n} \neq 0, A^{2} u_{n} \neq 0,(n=0,1,2, \ldots)$. In view of (1) we obtain

$$
\begin{gathered}
\left\|A w_{n+1}\right\|=\mu_{n+1}^{-1} \mu_{n+1}^{2} \frac{\left\|u_{n}\right\| \cdot\left\|u_{n+1}\right\|}{\left\langle A^{2} u_{n}, u_{n}\right\rangle}\left\|A^{2} w_{n}\right\| \geqq \\
\geqq \mu_{n+1} \frac{\left\|u_{n}\right\| \cdot\left\|u_{n+1}\right\|}{\left\|A^{2} u_{n}\right\| \cdot\left\|u_{n}\right\|}\left\|A^{2} w_{n}\right\|=\mu_{n+1} \frac{\left\|u_{n+1}\right\|}{\left\|u_{n}\right\|}=\left\|A w_{n}\right\| \cdot
\end{gathered}
$$

Hence $\left\|A w_{n}\right\| \leqq\left\|A w_{n+1}\right\|$ for each n and we have that $\left\|A w_{n}\right\| \nearrow \lambda_{1}$ as $n \rightarrow \infty$.
Put $z_{n}=A^{2} w_{n}$, then

$$
\begin{gathered}
\left\|A w_{n+1}\right\|^{2}=\mu_{n+1}^{-2} c_{n}^{2}\left\langle A^{2} w_{n}, z_{n}\right\rangle= \\
=\mu_{n+1}^{-2} c_{n}^{2} \int_{m}^{\lambda_{1}} \lambda^{2} \mathrm{~d}\left\langle E_{\lambda} w_{n}, z_{n}\right\rangle \leqq\left(\frac{\lambda_{1}}{\mu_{n+1}}\right)^{2} \cdot c_{n}^{2} \int_{m}^{\lambda_{1}} \mathrm{~d}\left\langle E_{\lambda} w_{n}, z_{n}\right\rangle= \\
=\left(\frac{\lambda_{1}}{\mu_{n+1}}\right)^{2} c_{n}^{2}\left\langle w_{n}, z_{n}\right\rangle=\left(\frac{\lambda_{1}}{\mu_{n+1}}\right)^{2} c_{n}^{2}\left\|A w_{n}\right\|^{2} .
\end{gathered}
$$

On the other hand,

$$
\begin{gathered}
\left\|A w_{n+1}\right\|=\mu_{n+1}^{-1}\left\|u_{n}\right\| \cdot\left\|u_{n+1}\right\|^{-1} \cdot\left\|A^{2} w_{n}\right\| \leqq \\
=\mu_{n+1}^{-1} \frac{\left\|u_{n}\right\|}{\mu_{n+1}^{-1}\left\|A u_{n}\right\|}\left\|A^{2} w_{n}\right\|=\left\|A^{2} w_{n}\right\| \cdot\left\|A w_{n}\right\|^{-1}
\end{gathered}
$$

for each $n(n=0,1,2, \ldots)$, which completes the proof.
Remark 1. In addition to the assumptions of Theorem 1 assume that A is positive definite (i.e. $m>0$). Then

$$
m c_{n} \mu_{n+1}^{-1}\left\|A w_{n}\right\| \leqq\left\|A w_{n+1}\right\| \leqq c_{n} \lambda_{1} \mu_{n+1}^{-1}\left\|A w_{n}\right\|
$$

for each n.
Theorem 2. Let X be a real Hilbert space, $A: X \rightarrow X$ a linear positive and selfadjoint operator on X. Assume that λ_{1} is an eigenvalue of A and that the initial approximation u_{0} of the procedure $\left(u_{n}\right)$ is not orthogonal to $\operatorname{ker}\left(A-\lambda_{1} I\right)$.

Then $\left\|A w_{n}\right\| \nearrow \lambda_{1}$ as $n \rightarrow \infty$.
Proof. Use Theorem 3 [2] and the arguments of the proof of Theorem 1.
Theorem 3. In addition to the assumptions of Theorem 1 suppose that $\left(w_{n}\right)$ contains a subsequence converging weakly to an element $w \in X, w \neq 0$.

Then λ_{1} is an eigenvalue of A and w is the corresponding eigenvector of A.
Proof. According to Theorem 1 [1] $\mu_{n} \nearrow \lambda_{1}$ and by Theorem 2 we have that $\left\|A w_{n}\right\| \nearrow \lambda_{1}$. Hence

$$
\left\|A w_{n}\right\|^{2}-\left\langle A w_{n}, w_{n}\right\rangle^{2}=\left\|A w_{n}-\mu_{n+1} w_{n}\right\|^{2} \rightarrow 0
$$

as $n \rightarrow \infty$. Without loss of generality one can assume that $w_{n} \rightarrow w$ weakly, where $w \in X, w \neq 0$. Therefore $A w_{n}-\mu_{n+1} w_{n} \rightarrow A w-\lambda_{1} w$ weakly and $A w=\lambda_{1} w$, which concludes the proof.

Corollary. In addition to the assumptions of Theorem 1 assume that the sequence $\left(w_{n}\right)$ contains a subsequence converging to an element $w \in X$.

Then λ_{1} is an eigenvalues of A and w is the corresponding eigenvector of A.
Theorem 4. Let X be a real Hilbertspace, $B: X \rightarrow X, C: X \rightarrow X$ linear selfadjoint operators on X. Assume that λ_{0} is an eigenvalue of $B, e_{0} \in \operatorname{ker}\left(B-\lambda_{0} I\right)$, $\left\|e_{0}\right\|=1$ and that $\lambda_{0} \notin \sigma(C)$. Let λ^{*} be an eigenvalue of C such that λ^{*} is nearest to λ_{0} from the both sides. If $\operatorname{dim} \operatorname{ker}\left(C-\lambda^{*} I\right)=1$ and $e_{0} \notin \operatorname{ker}\left(C-\lambda^{*} I\right)^{\perp}$, then

$$
\left|\lambda^{*}-\lambda_{0}\right| \leqq\left\|\left(C-\lambda_{0} I\right) w_{n}\right\| \leqq\left\|\left(C-\lambda_{0} I\right) w_{n-1}\right\| \leqq\|B-C\|
$$

for each $n(n=1,2, \ldots)$, where w_{n} is defined by (1) with $A=\alpha I-\left(C-\lambda_{0} I\right)^{2}$, $u_{0}=e_{0}$ and α is an arbitrary constant such that $\alpha>\left\|\left(C-\lambda_{0} I\right)^{2}\right\|$.

Proof. Since the operators B, C are linear self-adjoint and defined on X, B, C are both bounded by the closed-graph theorem. Put $A=\alpha I-\left(C-\lambda_{0} I\right)^{2}$, where $\infty>\left\|\left(C-\lambda_{0} I\right)^{2}\right\|$. Then A is linear self-adjoint bounded and positive definite with the greatest eigenvalue $\lambda_{1}=\alpha-\left(\lambda^{*}-\lambda_{0}\right)^{2}$. Put $C_{1}=C-\lambda_{0} I, \lambda=\lambda^{*}-\lambda_{0}$, $C_{2}=C-\lambda^{*} I$. We show that $\operatorname{ker}\left(C_{1}^{2}-\lambda^{2} I\right)=\operatorname{ker} C_{2}$. Suppose that $u \in \operatorname{ker} C_{2}$; this condition is equivalent to $C_{1} u=\lambda u$. But $C_{1}^{2} u=C_{1}(\lambda u)=\lambda^{2} u$. Hence $u \in$ $\in \operatorname{ker}\left(C_{1}^{2}-\lambda^{2} I\right)$ and $\operatorname{ker} C_{2} \subset \operatorname{ker}\left(C_{1}^{2}-\lambda^{2} I\right)$. Assume that there exists an element $\tilde{u} \in X$ such that $\tilde{u} \in \operatorname{ker}\left(C_{1}^{2}-\lambda^{2} I\right)$ and $\tilde{u} \notin \operatorname{ker} C_{2}$, i.e. $C_{1} \tilde{u} \neq \lambda \tilde{u}$, which contradicts the fact that $\tilde{u} \in \operatorname{ker}\left(C_{1}^{2}-\lambda_{1}^{2} I\right)$. Hence $\operatorname{ker}\left(C_{1}^{2}-\lambda_{1}^{2} I\right)=\operatorname{ker} C_{2}$ and this implies $\operatorname{ker}\left(A-\lambda_{1} I\right)=\operatorname{ker}\left(C-\lambda^{*} I\right)$. According to our hypothesis $\left\langle u_{0}, w\right\rangle \neq 0$ for each $w \in \operatorname{ker}\left(C-\lambda^{*} I\right)$. Hence $\left\langle u_{0}, w\right\rangle \neq 0$ for each $w \in \operatorname{ker}\left(A-\lambda_{1} I\right)$ and therefore $u_{0} \notin \operatorname{ker}\left(A-\lambda_{1} I\right)^{\perp}$. Thus all the assumptions of Theorem 3 [2] are satisfied. According to this theorem $\mu_{n+1}=\left\langle A w_{n}, w_{n}\right\rangle \lambda \lambda_{1}=\alpha-\left(\lambda^{*}-\lambda_{0}\right)^{2}$, where $w_{n}=$ $=u_{n} /\left\|u_{n}\right\|$ and $\left(u_{n}\right)$ is defined by $u_{n+1}=\mu_{n+1}^{-1} A u_{n}$. Hence $\left\langle\left(C-\lambda_{0} I\right) w_{n}, w_{n}\right\rangle \searrow$ $\searrow\left(\lambda^{*}-\lambda_{0}\right)^{2}$ as $n \rightarrow \infty$. This conclusion implies that

$$
\begin{aligned}
\left|\lambda^{*}-\lambda_{0}\right| & \leqq\left\langle\left(C-\lambda_{0} I\right)^{2} w_{n}, w_{n}\right\rangle^{1 / 2}=\left\|\left(C-\lambda_{0} I\right) w_{n}\right\| \leqq \\
& \leqq\left\langle\left(C-\lambda_{0} I\right) w_{n-1}, w_{n-1}\right\rangle^{1 / 2}=\left\|\left(C-\lambda_{0} I\right) w_{n-1}\right\| \leqq \\
& \leqq \ldots \leqq\left(C-\lambda_{0} I\right) w_{0}\|=\|\left(C-\lambda_{0} I\right) e_{0}=\| \\
& =\left\|(C-B) e_{0}\right\| \leqq\|C-B\|\left\|e_{0}\right\|=\|C-B\|,
\end{aligned}
$$

because $e_{0} \in \operatorname{ker}\left(B-\lambda_{0} I\right),\left\|e_{0}\right\|=1$ and $w_{0}=e_{0}$. The theorem is proved.
Remark 2. The estimate $\left|\lambda^{*}-\lambda_{0}\right| \leqq\|C-B\|$ for completely continuous linear operators C, B was derived by H. Weyl [10]. This estimate can be obtained in a more general setting also in the following way. Compare also [7], [11].

Proposition 1. Let X be a real Hilbert space, $B: X \rightarrow X, C: X \rightarrow X$ linear selfadjoint operators. Assume that $\sigma_{c}(C)=\emptyset$ and that $\lambda_{0} \nsubseteq \sigma(C)$ is an eigenvalue of B. If λ^{*} is an eigenvalue of C such that λ^{*} is nearest to λ_{0} from the both sides, then $\left|\lambda^{*}-\lambda_{0}\right| \leqq\|B-C\|$.

Proof. First of all, B, C are bounded by the closed-graph theorem. Since $\lambda_{0} \notin \sigma(C)$, there exists a bounded linear operator $R_{\lambda_{0}}=\left(C-\lambda_{0} I\right)^{-1}$ and $R_{\lambda_{0}}$ is defined on the whole space X. Moreover, $R_{\lambda_{0}}$ is self-adjoint. Since the function $f(\lambda)=1 /\left|\lambda-\lambda_{0}\right|$ is continuous on the compact set $\sigma(C)$, the spectral mapping theorem implies that

$$
\left\|R_{\lambda_{0}}\right\|=\max _{\lambda \in \sigma(C)} \frac{1}{\left|\lambda-\lambda_{0}\right|}=\max _{\lambda \in \sigma_{P}(C)} \frac{1}{\left|\lambda-\lambda_{0}\right|}=\frac{1}{\mid \lambda^{*}} \frac{1}{-\lambda_{0} \mid} .
$$

Let $e_{0} \in \operatorname{ker}\left(B-\lambda_{0} I\right),\left\|e_{0}\right\|=1$. As $\lambda_{0} \notin \sigma(C)$, we have $\left\|\left(C-\lambda_{0} I\right) e_{0}\right\|>0$ and

$$
\begin{gathered}
\left|\lambda^{*}-\lambda_{0}\right|=\frac{1}{\left\|R_{\lambda_{0}}\right\|} \frac{\left\|\left(C-\lambda_{0} I\right) e_{0}\right\|}{\left\|\left(C-\lambda_{0} I\right) e_{0}\right\|}, \\
1=\left\|e_{0}\right\|=\left\|R_{\lambda_{0}}\left(C-\lambda_{0} I\right) e_{0}\right\| \leqq\left\|R_{\lambda_{0}}\right\| \cdot\left\|\left(C-\lambda_{0} I\right) e_{0}\right\| .
\end{gathered}
$$

From the above relations we conclude that $\left|\lambda^{*}-\lambda_{0}\right| \leqq\left\|\left(C-\lambda_{0}\right) e_{0}\right\|$. Since $e_{0} \in \operatorname{ker}\left(B-\lambda_{0} I\right)$ and $\left\|e_{0}\right\|=1$, we have

$$
\left|\lambda^{*}-\lambda_{0}\right| \leqq\left\|C e_{0}-B e_{0}\right\| \leqq\|C-B\|\left\|e_{0}\right\|=\|C-B\|
$$

as required.
Theorem 5. Let X be a real Hilbert space, $B: X \rightarrow X$ a linear self-adjoint operator, λ^{*} an eigenvalue of B. Let λ_{0} be a real number, $\lambda_{0} \notin \sigma(B)$, and λ^{*} be nearest to λ_{0} from the both sides. Suppose that the initial approximation u_{0} of $\left(u_{n}\right)$, where $\left(u_{n}\right)$ is defined by (1) with $A=\alpha I-\left(B-\lambda_{0} I\right)^{2}, \alpha>\left\|\left(B-\lambda_{0} I\right)^{2}\right\|$ is not orthogonal to $\operatorname{ker}\left(B-\lambda^{*} I\right)$.

Then $\left\|\left(B-\lambda_{0} I\right) w_{n}\right\| \searrow\left|\lambda^{*}-\lambda_{0}\right|,\left\|u_{n}-N e_{0}\right\| \rightarrow 0,\left\|w_{n}-e_{0}\right\| \rightarrow 0$ as $n \rightarrow \infty$, where

$$
N=\sup _{n}\left\|u_{n}\right\|, \quad e_{0} \in \operatorname{ker}\left(B-\lambda^{*} I\right), \quad\left\|e_{0}\right\|=1
$$

Proof. Put $A=\alpha I-\left(B-\lambda_{0} I\right)^{2}$, where α is an arbitrary positive number such that $\alpha>\left\|\left(B-\lambda_{0} I\right)^{2}\right\|$. Then A is a linear positive definite self-adjoint operator with the greatest eigenvalue $\lambda_{1}=\alpha-\left(\lambda^{*}-\lambda_{0}\right)^{2}$, while $\operatorname{ker}\left(A-\lambda_{1} I\right)=$ $=\operatorname{ker}\left(B-\lambda^{*} I\right)$. Since $u_{0} \notin \operatorname{ker}\left(B-\lambda^{*} I\right)^{\perp}$, we have $u_{0} \notin \operatorname{ker}\left(A-\lambda_{1} I\right)^{\perp}$. According to Theorem 3[2] we have $\left\langle A w_{n}, w_{n}\right\rangle \nearrow \lambda_{1}$ and $\left\|u_{n}-N e_{0}\right\| \rightarrow 0$ as $n \rightarrow \infty$, where $e_{0} \in \operatorname{ker}\left(A-\lambda_{1} I\right), \quad\left\|e_{0}\right\|=1, \quad N=\sup _{n}\left\|u_{n}\right\|<\infty$. Hence $\left\|\left(B-\lambda_{0} I\right) w_{n}\right\| \downarrow$ $\searrow\left|\lambda^{*}-\lambda_{0}\right|,\left\|w_{n}-e_{0}\right\| \rightarrow 0$ as $n \rightarrow \infty$, while $e_{0} \in \operatorname{ker}\left(B-\lambda^{*} I\right),\left\|e_{0}\right\|=1$.
Indeed, since $\left(u_{n}\right)$ is bounded monotone increasing ([1]), $\left\|u_{n}\right\| \rightarrow N$ as $n \rightarrow \infty$ and $u_{0} \neq 0$, we have the

$$
\begin{gathered}
\left\|w_{n}-e_{0}\right\|=\frac{\left\|u_{n}-\right\| u_{n}\left\|e_{0}\right\|}{\left\|u_{n}\right\|} \leqq \\
\leqq\left\|u_{0}\right\|^{-1}\left(\left\|u_{n}-N e_{0}\right\|+\left\|N e_{0}-\right\| u_{n}\left\|e_{0}\right\|\right) \rightarrow 0
\end{gathered}
$$

as $n \rightarrow \infty$, which concludes the proof.
Theorem 6. In addition to the assumptions of Theorem 2 assume that λ_{1} is an isolated point of the spectrum $\sigma(A)$ of A (i.e. there exists a constant $M>0$ such that $\left.\sigma(A)-\left\{\lambda_{1}\right\} \subset[m, M]\right)$.

Then there exists an integer n_{0} such that

$$
\mu_{n+1} \leqq \lambda_{1} \leqq \mu_{n+1}+\left(\left\|A w_{n}\right\|^{2}-\mu_{n+1}^{2}\right)^{1 / 2}
$$

holds for each $n \geqq n_{0}$.
Proof. Since λ_{1} is an isolated point of $\sigma(A)$, then λ_{1} is an eigenvalue of A. By Theorem 3 [2] and Theorem 2 we have that $\mu_{n} \nearrow \lambda_{1}$ and $\left\|A w_{n}\right\|^{2}-\mu_{n+1}^{2} \rightarrow 0$ as $n \rightarrow \infty$. Furthermore,

$$
\begin{gathered}
\left\|A w_{n}\right\|^{2}=\left\langle A^{2} w_{n}, w_{n}\right\rangle=\int_{m}^{\lambda_{1}} \lambda^{2} \mathrm{~d}\left\langle E_{\lambda} w_{n}, w_{n}\right\rangle \\
\mu_{n+1}=\left\langle A w_{n}, w_{n}\right\rangle=\int_{m}^{\lambda_{1}} \lambda \mathrm{~d}\left\langle E_{\lambda} w_{n}, w_{n}\right\rangle \\
\left\|w_{n}\right\|^{2}=\int_{m}^{\lambda_{1}} \mathrm{~d}\left\langle E_{\lambda} w_{n}, w_{n}\right\rangle .
\end{gathered}
$$

Hence

$$
\begin{gathered}
\left\|A w_{n}\right\|^{2}-\mu_{n+1}^{2}=\left\|A w_{n}-\mu_{n+1} w_{n}\right\|^{2}=\int_{m}^{\lambda_{1}} \lambda^{2} \mathrm{~d}\left\|E_{\lambda} w_{n}\right\|^{2}- \\
-2 \mu_{n+1} \int_{m}^{\lambda_{1}} \lambda \mathrm{~d}\left\|E_{\lambda} w_{n}\right\|^{2}+\mu_{\tau+n}^{2} \int_{m}^{\lambda_{1}} \mathrm{~d}\left\|E_{\lambda} w_{n}\right\|^{2}=\int_{m}^{\lambda_{1}}\left(\lambda-\mu_{n+1}\right)^{2} \mathrm{~d}\left\|E_{\lambda} w_{n}\right\|^{2} .
\end{gathered}
$$

Since λ_{1} is an isolated point of $\sigma(A)$ and $\mu_{n} \nearrow \lambda_{1}$, there exists an integer n_{0} such that $\mu_{n} \in\left[\frac{1}{2}\left(M+\lambda_{1}\right), \lambda_{1}\right]$ for each $n \geqq n_{0}$. Hence we have for each fixed $n \geqq n_{0}$

$$
\begin{gathered}
\left\|A w_{n}\right\|^{2}-\mu_{n+1}^{2}=\int_{m}^{\lambda_{1}}\left(\lambda-\mu_{n+1}\right)^{2} \mathrm{~d}\left\langle E_{\lambda} w_{n}, w_{n}\right\rangle \geqq \\
\geqq \inf _{\lambda \in \sigma(A)}\left|\lambda-\mu_{n+1}\right|^{2} \int_{m}^{\lambda_{1}} \mathrm{~d}\left\langle E_{\lambda} w_{n}, w_{n}\right\rangle= \\
=\inf _{\lambda \in \sigma(A)}\left|\lambda-\mu_{n+1}\right|^{2} \geqq \\
\geqq \inf \left\{\left(\lambda_{1}-\mu_{n+1}\right)^{2},\left|M-\mu_{n+1}\right|^{2}\right\}=\left(\lambda_{1}-\mu_{n+1}\right)^{2}
\end{gathered}
$$

The desired inequalities follow at once from the fact that $\mu_{n} \lambda \lambda_{1}$ and the last relation. The theorem is proved.

Proposition 2. Let X be a real Hilbert space, $A: X \rightarrow X$ a linear positive definite and self-adjoint operator. Assume that the starting approximation u_{0} of (1) is such that $E_{\lambda} u_{0} \neq u_{0}$ for each $\lambda<\lambda_{1}$. If ε is such that $0<\varepsilon<\lambda_{1}-m$, then

$$
\lambda_{1} \geqq m^{3 / 2} \frac{\left\|E_{\lambda_{1}-\varepsilon} u_{n-1}\right\|}{\left\langle A u_{n}, u_{n}\right\rangle^{1 / 2}}, \quad n=1,2, \ldots
$$

Moreover, there exists an integer n_{0} such that

$$
\lambda_{1}<a_{0}^{-2} m^{-2 n}\left\langle A u_{n}, u_{n}\right\rangle \prod_{k=1}^{n} \mu_{k}^{2}
$$

holds for each $n \geqq n_{0}$, where $a_{0}^{2}=\left\|u_{0}\right\|^{2}-\left\|E_{\lambda_{1}-\varepsilon} u_{0}\right\|^{2}>0$.
Proof. Assume that $0<\varepsilon<\lambda_{1}-m$. Then according to our hypothesis $E_{\lambda_{1}-\varepsilon} u_{0} \neq u_{0}$. Applying the projector $E_{\lambda_{1}-\varepsilon}$ to the equality (1) we obtain that

$$
\left\|E_{\lambda_{1}-\varepsilon} u_{n}\right\|^{2}=\mu_{n}^{-2}\left\|E_{\lambda_{1}-\varepsilon} A u_{n-1}\right\|^{2}=\mu_{n}^{-2}\left\|A E_{\lambda_{1}-\varepsilon} u_{n-1}\right\|^{2} .
$$

Since

$$
\begin{aligned}
& \left\|A E_{\lambda_{1}-\varepsilon} u_{n-1}\right\|^{2}=\left\langle A^{2} E_{\lambda_{1}-\varepsilon} u_{n-1}, u_{n-1}\right\rangle= \\
& =\int_{m}^{\lambda_{1}} \lambda^{2} \mathrm{~d}\left\langle E_{\lambda} E_{\lambda_{1}-\varepsilon} u_{n-1}, u_{n-1}\right\rangle= \\
& =\int_{m}^{\lambda_{1}-\varepsilon} \lambda^{2} \mathrm{~d}\left\|E_{\lambda} u_{n-1}\right\|^{2} \geqq m^{2}\left\|E_{\lambda_{1}-\varepsilon} u_{n-1}\right\|^{2},
\end{aligned}
$$

we obtain that

$$
\begin{equation*}
\left\|E_{\lambda_{1}-\varepsilon} u_{n}\right\| \geqq \frac{m}{\lambda_{1}}\left\|E_{\lambda_{1}-\varepsilon} u_{n-1}\right\| . \tag{2}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\left\|E_{\lambda_{1}-\varepsilon} u_{n}\right\| \leqq\left\|u_{n}\right\| \leqq m^{-1 / 2}\left\langle A u_{n}, u_{n}\right\rangle^{1 / 2} . \tag{3}
\end{equation*}
$$

The relations (2), (3) immediately yield the first assertion.
We prove the second estimate in our theorem. Let $R\left(E_{\lambda_{1}-\varepsilon}\right)$ be the range of $E_{\lambda_{1}-\varepsilon}$, where $0<\varepsilon<\lambda_{1}-m$. Since $E_{\lambda_{1}-\varepsilon}$ is a continuous projector, $R\left(E_{\lambda_{1}-\varepsilon}\right)$ is a closed subspace of X. Denote by $R\left(E_{\lambda_{1}-\varepsilon}\right)^{\perp}$ the orthogonal complement to $R\left(E_{\lambda_{1}-\varepsilon}\right)$. Put $P_{\varepsilon}=I-E_{\lambda_{1}-\varepsilon}$, i.e. $P_{\varepsilon}=E_{\lambda_{1}}-E_{\lambda_{1}-\varepsilon}, w_{n}=u_{n}\| \| u_{n} \|$. We shall show that

$$
\begin{equation*}
\lambda_{1} \leqq\left\langle A u_{n}, u_{n}\right\rangle\left\|P_{\varepsilon} u_{n}\right\|^{-2}+\varepsilon \tag{4}
\end{equation*}
$$

for sufficiently large n and a fixed ε satisfying the inequality $0<\varepsilon<\lambda_{1}-m$. Each element w_{n} of the sequence $\left(w_{n}\right)$ can be uniquely expressed in the form $w_{n}=a_{n}^{(\varepsilon)} g_{n}+$ $+b_{n}^{(\varepsilon)} \tilde{z}_{n}$, where $g_{n} \in R\left(E_{\lambda_{1}-\varepsilon}\right)^{\perp}, \tilde{z}_{n} \in R\left(E_{\lambda_{1}-\varepsilon}\right)$ and $\left\|g_{n}\right\|=\left\|\tilde{z}_{n}\right\|=1,\left(a_{n}^{(\varepsilon)}\right)^{2}+\left(b_{n}^{(\varepsilon)}\right)^{2}=$ $=1$. Then $P_{\varepsilon} w_{n}=a_{n}^{(\varepsilon)} g_{n}$ and $\left\|P_{\varepsilon} w_{n}\right\|^{2}=\left(a_{n}^{(\varepsilon)}\right)^{2}$ and

$$
\begin{gathered}
\lambda_{1} \geqq \mu_{n}=\left\langle A w_{n}, w_{n}\right\rangle=\left(a_{n}^{(\varepsilon)}\right)^{2}\left\langle A g_{n}, g_{n}\right\rangle+\left(b_{n}^{(\varepsilon)}\right)^{2}\left\langle A \tilde{z}_{n}, \tilde{z}_{n}\right\rangle \geqq \\
\geqq\left(a_{n}^{(\varepsilon)}\right)^{2}\left\langle A g_{n}, g_{n}\right\rangle \geqq\left\|P_{\varepsilon} w_{n}\right\|^{2}\left(\lambda_{1}-\varepsilon\right) .
\end{gathered}
$$

(See the proof of Theorem 6 [2].) Moreover, it has been shown [2] that $\lim _{n \rightarrow \infty}\left(b_{n}^{(\varepsilon)}\right)^{2}=$ $=0$ for each fixed $\varepsilon, 0<\varepsilon<\lambda_{1}-m$. Therefore $\left(a_{n}^{(\varepsilon)}\right)^{2}=\left\|P_{\varepsilon} w_{n}\right\|^{2} \rightarrow 1$ as $n \rightarrow \infty$
and therefore there exists an integer n_{0} such that $\left\|P_{\varepsilon} w_{n}\right\|>0$ for each $n \geqq n_{0}$. Hence (4) is valid for each $n \geqq n_{0}$.

Now we estimate $\left\|P_{\varepsilon} u_{n}\right\|$. By the definition of P_{ε} we have

$$
\left\|P_{\varepsilon} u_{n}\right\|^{2}=\left\|u_{n}-E_{\lambda_{1}-\varepsilon} u_{n}\right\|^{2}=\left\|u_{n}\right\|^{2}-\left\|E_{\lambda_{1}-\varepsilon} u_{n}\right\|^{2} .
$$

By (1) we get $\left\|u_{n}\right\|^{2}=\mu_{n}^{-2}\left\|A u_{n-1}\right\|^{2}$ and

$$
\begin{equation*}
\left\|E_{\lambda_{1}-\varepsilon} u_{n}\right\|^{2}=\mu_{n}^{-2}\left\|A E_{\lambda_{1}-\varepsilon} u_{n-1}\right\|^{2} \tag{5}
\end{equation*}
$$

Now

$$
\begin{gather*}
\left\|A E_{\lambda_{1}-\varepsilon} u_{n-1}\right\|^{2}=\left\langle A^{2} E_{\lambda_{1}-\varepsilon} u_{n-1}, u_{n-1}\right\rangle= \tag{6}\\
=\int_{m}^{\lambda_{1}-\varepsilon} \lambda^{2} \mathrm{~d}\left\langle E_{\lambda} u_{n-1}, u_{n-1}\right\rangle
\end{gather*}
$$

Hence

$$
\begin{gathered}
\left\|u_{n}\right\|^{2}-\left\|E_{\lambda_{1}-\varepsilon} u_{n}\right\|^{2}=\mu_{n}^{-2}\left(\left\langle A^{2} u_{n-1}, u_{n-1}\right\rangle-\left\langle A^{2} E_{\lambda_{1}-\varepsilon} u_{n-1}, u_{n-1}\right\rangle\right)= \\
=\mu_{n}^{-2} \int_{\lambda_{1}-\varepsilon}^{\lambda_{1}} \lambda^{2} \mathrm{~d}\left\langle E_{\lambda} u_{n-1}, u_{n-1}\right\rangle \geqq \\
\geqq\left(\lambda_{1}-\varepsilon\right)^{2} \mu_{n}^{-2}\left(\left\|u_{n-1}\right\|^{2}-\left\|E_{\lambda_{1}-\varepsilon} u_{n-1}\right\|^{2}\right)>m^{2} \mu_{n}^{-2}\left\|P_{\varepsilon} u_{n-1}\right\|^{2} .
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& \left\|P_{\varepsilon} u_{n}\right\|^{2}>m^{2} \mu_{n}^{-2}\left\|P_{\varepsilon} u_{n-1}\right\|^{2}>\ldots>m^{2 n} \mu_{n}^{-2} \mu_{n-1}^{-2} \ldots \mu_{1}^{-2}\left\|P_{\varepsilon} u_{0}\right\|^{2}= \\
= & m^{2 n}\left\|u_{0}-E_{\lambda_{1}-\varepsilon} u_{0}\right\|^{2} \prod_{k=1}^{n} \mu_{k}^{-2}=m^{2 n}\left(\left\|u_{0}\right\|^{2}-\left\|E_{\lambda_{1}-\varepsilon} u_{0}\right\|^{2}\right) \prod_{k=1}^{n} \mu_{k}^{-2}>0,
\end{aligned}
$$

for $\left\|\left(I-E_{\lambda_{1}-\varepsilon}\right) u_{0}\right\|>0$. This inequality together with the relation (4) give our estimate.

Remark 3. Let us point out that the asymptotic estimates corresponding to that of Proposition 2 are not efficient. Under the conditions of Proposition 2 the estimate

$$
m^{1+1 / 2 n} \frac{\left\|E_{\lambda_{1}-\varepsilon} u_{0}\right\|^{1 / n}}{\left\langle A u_{n} ; u_{n}\right\rangle} \leqq \lambda_{1}
$$

is valid for each $n(n=0,1,2, \ldots)$. Indeed, (2) implies that

$$
\left\|E_{\lambda_{1}-\varepsilon} u_{n}\right\| \geqq \frac{m}{\lambda_{1}}\left\|E_{\lambda_{1}-\varepsilon} u_{n-1}\right\| \geqq \ldots \geqq\left(\frac{m}{\lambda_{1}}\right)^{n}\left\|E_{\lambda_{1}-\varepsilon} u_{0}\right\|
$$

Hence the last inequalities and (3) give the desired result. Moreover, there exists an integer n_{0} such that $\left\|E_{\lambda_{1}-\varepsilon} u_{n+1}\right\| \leqq\left\|E_{\lambda_{1}-\varepsilon} u_{n}\right\|$ for each $n \geqq n_{0}$. Indeed, from (6) we have that

$$
\left\|A E_{\lambda_{1}-\varepsilon} u_{n+1}\right\| \leqq\left(\lambda_{1}-\varepsilon\right)\left\|E_{\lambda_{1}-\varepsilon} u_{n}\right\|, \quad n=0,1,2, \ldots
$$

According to (5),

$$
\left\|E_{\lambda_{1}-\varepsilon} u_{n+1}\right\| \leqq \frac{\lambda_{1}-\varepsilon}{\mu_{n+1}}\left\|E_{\lambda_{1}-\varepsilon} u_{n}\right\|
$$

for each $n(n=0,1,2, \ldots)$. By Theorem $1[1], \mu_{n} \nearrow \lambda_{1}$. Therefore there exists an integer n_{0} such that $\left(\lambda_{1}-\varepsilon\right) \mu_{n}^{-1} \leqq 1$ for each $n \geqq n_{0}$. Hence $\left\|E_{\lambda 1-\varepsilon} u_{n+1}\right\| \leqq$ $\leqq\left\|E_{\lambda_{1}-\varepsilon} u_{n}\right\|$ for each $n \geqq n_{0}$.

To establish further estimates we use Lemma 1 [2] which reads if the initial approximation u_{0} of (1) is not orthogonal to $\operatorname{ker}\left(A-\lambda_{1} I\right) \neq(0)$, then each element u_{n} of the sequence $\left(u_{n}\right)$ defined by (1) is of the form $u_{n}=a_{n} e_{0}+z_{n}$, where $z_{n} \in$ $\in \operatorname{ker}\left(A-\lambda_{1} I\right)^{\perp}$ and $a_{n}>0$ for each $n(n=0,1,2, \ldots), e_{0} \in \operatorname{ker}\left(A-\lambda_{1} I\right)$, $\left\|e_{0}\right\|=1$.

Theorem 7. Let X be a real Hilbert space, $A: X \rightarrow X$ a linear positive and selfadjoint operator such that λ_{1} is an isolated point of $\sigma(A)$ (i.e. there exists a constant $M>0$ such that $\left.\sigma(A)-\left\{\lambda_{1}\right\} \subset[m, M]\right)$. Assume that the starting approximation u_{0} of the procedure (1) is not orthogonal to $\operatorname{ker}\left(A-\lambda_{1} I\right)$.

Then
(8) $\left(\lambda_{1}-M\right) m \mu_{n+1}^{-2}\left\|z_{n-1}\right\|^{2} \leqq \lambda_{1}-\mu_{n+1} \leqq \alpha_{n}^{2} \alpha_{n-1}^{2} \ldots \alpha_{0}^{2}\left(\lambda_{1}-m\right)\left\|z_{0}\right\|^{2}\left\|u_{0}\right\|^{-2}$,

$$
\begin{equation*}
\left\|w_{n+1}-\left\langle w_{n+1}, e_{0}\right\rangle e_{0}\right\|\left\langle\alpha_{n} \alpha_{n-1} \ldots \alpha_{0}\left\|w_{0}-\left\langle w_{0}, e_{0}\right\rangle e_{0}\right\|\right. \tag{9}
\end{equation*}
$$

for each n, where

$$
\alpha_{n}=\left[1-\frac{a_{n}^{2}}{\left\|u_{n}\right\|^{2}}\left(1-\frac{M}{\lambda_{1}}\right)\right]^{1 / 2},
$$

$0<\alpha_{n}<\alpha_{n-1}<\ldots<\alpha_{0}<1, a_{n}, z_{n}$ are elements from the representation of u_{n}, $e_{0} \in \operatorname{ker}\left(A-\lambda_{1} I\right),\left\|e_{0}\right\|=1$ and $\alpha_{n} \leqq\left[1-\left(1-\left(M / \mu_{n}\right)^{2}\right)\left(1-M / \lambda_{1}\right)\right]^{1 / 2}$ for sufficiently large n.

Proof. First of all we derive (9). Since λ_{1} is an isolated point of $\sigma(A), \lambda_{1}$ is an eigenvalue of A. According to Lemma 1 [2] each element u_{n} defined by (1) can be represented in the form $u_{n}=a_{n} e_{0}+z_{n}$, where $\left\|e_{0}\right\|=1, e_{0} \in \operatorname{ker}\left(A-\lambda_{1} I\right), z_{n} \in$ $\in \operatorname{ker}\left(A-\lambda_{1} I\right)^{\perp}$ and the constants a_{n} are positive. Put

$$
v_{n}=z_{n} /\left\|u_{n}\right\|, \quad c_{n}=a_{n} /\left\|u_{n}\right\|, \quad u_{n+1}^{(1)}=u_{n+1} /\left\|u_{n}\right\|
$$

Then $w_{n}=c_{n} e_{0}+v_{n}, \mu_{n+1}=\left\langle A w_{n}, w_{n}\right\rangle$ and

$$
u_{n+1}^{(1)}=\mu_{n+1}^{-1} A w_{n}=\mu_{n+1}^{-1}\left(\lambda_{1} c_{n} e_{0}+A v_{n}\right)
$$

Set $\beta_{n+1}=\mu_{n+1}^{-1} \lambda_{1}, h_{n+1}=\mu_{n+1}^{-1} A v_{n}$. Then $u_{n+1}^{(1)}=\beta_{n+1} c_{n} e_{0}+h_{n+1}$ and $a_{n+1}=$ $=\beta_{n+1} c_{n}\left\|u_{n}\right\|, z_{n+1}=\left\|u_{n}\right\| h_{n+1}$. Since $c_{n}^{2}=1-\left\|v_{n}\right\|^{2}$, we have

$$
\mu_{n+1}=c_{n}^{2} \lambda_{1}+\left\langle A v_{n}, v_{n}\right\rangle=\lambda_{1}-r_{n}
$$

where $\quad r_{n}=\left\langle\left(\lambda_{1} I-A\right) v_{n}, v_{n}\right\rangle, \quad(n=0,1,2, \ldots)$. Hence $\beta_{n+1}=\lambda_{1}\left(\lambda_{1}-r_{n}\right)^{-1}$, $h_{n+1}=\left(\lambda_{1}-r_{n}\right)^{-1} A v_{n}$ for each $n(n=0,1,2, \ldots)$. We shall estimate the quantity

$$
\begin{equation*}
J=\frac{\left\|h_{n+1}\right\|^{2}}{\left\|u_{n+1}^{(1)}\right\|^{2}\left\|v_{n}\right\|^{2}}=1-\frac{\left\|u_{n+1}^{(1)}\right\|^{2}\left\|v_{n}\right\|^{2}-\left\|h_{n+1}\right\|^{2}}{\left\|u_{n+1}^{(1)}\right\|^{2}\left\|v_{n}\right\|^{2}} \tag{10}
\end{equation*}
$$

where $\left\|u_{n+1}^{(1)}\right\|^{2}=\beta_{n+1}^{2} c_{n}^{2}+\left\|h_{n+1}\right\|^{2}$. Using again $c_{n}^{2}=1-\left\|v_{n}\right\|^{2}$ and simple calculations, we get that

$$
\begin{equation*}
J=1-\frac{b_{n+1} c_{n}^{2}}{\left(\beta_{n+1}^{2}-b_{n+1}\right)\left\|v_{n}\right\|^{2}}, \tag{11}
\end{equation*}
$$

where $b_{n+1}=\beta_{n+1}^{2}\left\|v_{n}\right\|^{2}-\left\|h_{n+1}\right\|^{2}$. On the other hand, $\lambda_{1}=\|A\|,\left\|A v_{n}\right\|^{2} \leqq$ $\leqq \lambda_{1}\left\langle A v_{n} ; v_{n}\right\rangle$ imply that

$$
\begin{gathered}
b_{n+1}=\frac{1}{\left(\lambda_{1}-r_{n}\right)^{2}}\left(\lambda_{1}^{2}\left\|v_{n}\right\|^{2}-\left\|A v_{n}\right\|^{2}\right) \geqq \\
\geqq \frac{\lambda_{1}}{\left(\lambda_{1}-r_{n}\right)^{2}}\left\langle\left(\lambda_{1} I-A\right) v_{n}, v_{n}\right\rangle=\frac{\lambda_{1} r_{n}}{\left(\lambda_{1}-r_{n}\right)^{2}} .
\end{gathered}
$$

By our hypothesis λ_{1} is an isolated point of $\sigma(A)$. Therefore the segment $\left(M, \lambda_{1}\right)$ belongs to the resolvent set of A and thus the spectral family $\left\{E_{\lambda}\right\}$ is constant on (M, λ_{1}). Hence

$$
\begin{aligned}
r_{n} & =\left\langle\left(\lambda_{1} I-A\right) v_{n}, v_{n}\right\rangle=\int_{m}^{\lambda_{1}}\left(\lambda_{1}-\lambda\right) \mathrm{d}\left\langle E_{\lambda} v_{n}, v_{n}\right\rangle= \\
& =\int_{m}^{M}\left(\lambda_{1}-\lambda\right) \mathrm{d}\left\langle E_{\lambda} v_{n}, v_{n}\right\rangle \geqq\left(\lambda_{1}-M\right)\left\|v_{n}\right\|^{2} .
\end{aligned}
$$

Furthermore, $\beta_{n+1}^{2}-b_{n+1} \leqq \lambda_{1}\left(\lambda_{1}-r_{n}\right)^{-1}$ and hence

$$
\begin{equation*}
\frac{b_{n+1}}{\beta_{n+1}^{2}-b_{n+1}} \geqq r_{n} \frac{1}{\lambda_{1}-r_{n}}>\frac{r_{n}}{\lambda_{1}} \geqq \frac{\lambda_{1}-M}{\lambda_{1}}\left\|v_{n}\right\|^{2} . \tag{12}
\end{equation*}
$$

Hence according to (10), (11), (12) and

$$
\begin{gather*}
\frac{\left\|z_{n+1}\right\|}{\left\|u_{n+1}\right\|}<\alpha_{n} \frac{\left\|z_{n}\right\|}{\left\|u_{n}\right\|}, \tag{13}\\
\frac{\left\|z_{n+1}\right\|}{\left\|u_{n+1}\right\|}=\left\|w_{n+1}-\left\langle w_{n+1}, e_{0}\right\rangle e_{0}\right\|,
\end{gather*}
$$

we obtain (9) with $\alpha_{k}=\left[1-\left(a_{k}\left\|u_{k}\right\|^{-1}\right)^{2}\left(1-M \lambda_{1}^{-1}\right)\right]^{1 / 2}$ for each $k(k=$ $=0,1,2, \ldots, n)$. Clearly, $0<\alpha_{k}<1$ for $\left\|z_{k}\right\| \leqq\left\|u_{k}\right\|$ and $M<\lambda_{1}$. We have that $\left\|z_{k+1}\right\| /\left\|u_{k+1}\right\|<\left\|z_{k}\right\| /\left\|u_{k}\right\|$ and moreover, $c_{k}^{2}+\left\|v_{k}\right\|^{2}=c_{k+1}^{2}+\left\|v_{k+1}\right\|^{2}=1$ for each k. Hence $a_{k+1}^{2} /\left\|u_{k+1}\right\|^{2}>a_{k}^{2} /\left\|u_{k}\right\|^{2}$ and therefore $\alpha_{k+1}<\alpha_{k}<1$ for each k, for $a_{k}^{2}=\left\|u_{k}\right\|^{2}-\left\|z_{k}\right\|^{2}$.

We shall prove (8). Again, one can express each element u_{n} of $\left(u_{n}\right)$ in the form $u_{n}=a_{n} e_{0}+z_{n}$, where $e_{0} \in \operatorname{ker}\left(A-\lambda_{1} I\right),\left\|e_{0}\right\|=1, z_{n} \in \operatorname{ker}\left(A-\lambda_{1} I\right)^{\perp}$ and $a_{n}>0$. We have

$$
\begin{gather*}
\lambda_{1}-\mu_{n+1}=\left(\lambda_{1}\left\|u_{n}\right\|^{2}-\left\langle A u_{n}, u_{n}\right\rangle\right)\left\|u_{n}\right\|^{-2}= \tag{14}\\
=\left(\lambda_{1}\left\|z_{n}\right\|^{2}-\left\langle A z_{n}, z_{n}\right\rangle\right)\left\|u_{n}\right\|^{-2}=\left\langle\left(\lambda_{1} I-A\right) z_{n}, z_{n}\right\rangle\left\|u_{n}\right\|^{-2} .
\end{gather*}
$$

Now

$$
\begin{equation*}
\left\langle\left(\lambda_{1} I-A\right) z_{n}, z_{n}\right\rangle \geqq\left(\lambda_{1}-M\right)\left\|z_{n}\right\|^{2} . \tag{15}
\end{equation*}
$$

Moreover, the orthogonal projection of $u_{n+1}=\mu_{n+1}^{-1} A u_{n}$ onto $\operatorname{ker}\left(A-\lambda_{1} I\right)^{\perp}$ is equal to z_{n+1}, where $z_{n+1}=\mu_{n+1}^{-1} A z_{n}$. Then

$$
\begin{equation*}
\left\|z_{n+1}\right\|^{2}=\mu_{n+1}^{-2}\left\langle A^{2} z_{n}, z_{n}\right\rangle= \tag{16}
\end{equation*}
$$

$$
=\mu_{n+1}^{-2} \int_{m}^{\lambda_{1}} \lambda^{2} \mathrm{~d}\left\langle E_{\lambda} z_{n}, z_{n}\right\rangle \geqq\left(\frac{m}{\mu_{n+1}}\right)^{2} \int_{m}^{\lambda_{1}} \mathrm{~d}\left\langle E_{\lambda} z_{n}, z_{n}\right\rangle=\left(\frac{m}{\mu_{n+1}}\right)^{2}\left\|z_{n}\right\|^{2} .
$$

Now (14), (15), (16) give the first estimate in (8). Since $\sigma\left(\lambda_{1} I-A\right)$ lies on the segment $\left[\lambda_{1}-M, \lambda_{1}-m\right]$ we have that

$$
\lambda_{1}-\mu_{n+1} \leqq\left(\lambda_{1}-m\right)\left\|z_{n}\right\|^{2} \cdot\left\|u_{n}\right\|^{-2} .
$$

Using (13) we obtain the other part of (8). The estimate of α_{n} follows at once from the expression for α_{n} and the inequality $a_{n} \geqq\left(1-\left(M / \mu_{n}\right)^{2}\right)\left\|u_{n}\right\|^{2}$, which holds for sufficiently large n [3]. The theorem is proved.

Remark 4. The estimates (8), (9) show that the convergence of μ_{n} to λ_{1} and the so called directional convergence of w_{n} to e_{0} are better than the rate of convergence of the geometric sequence with quotient $\alpha_{0}<1$. Let us point out that under more general conditions on A and X, quite different estimates for (1) have been obtained by Marek [5] and Petryshyn [6].

Now assume that $A: X \rightarrow X$ is self-adjoint and positive definite. Put

$$
u_{n}^{(\alpha)}=\int_{m}^{\lambda_{1}} \lambda^{-\alpha / 2} \mathrm{~d} E_{\lambda} u_{n}=A^{-\alpha / 2} u_{n}
$$

$(\alpha=0, \pm 1, \pm 2, \ldots)$ and substitute $A^{\alpha / 2} u_{n}^{(\alpha)}$ for u_{n} in (1). Then we obtain the procedures

$$
\begin{align*}
& \mu_{n+1}^{(\alpha)}=\left\langle A^{\alpha+1} u_{n}^{(\alpha)}, u_{u}^{(\alpha)}\right\rangle \cdot\left\|A^{\alpha / 2} u_{n}^{(\alpha)}\right\|^{-2}, \tag{17}\\
& u_{n+1}^{(\alpha)}=\left(\mu_{n+1}^{(\alpha)}\right)^{-1} A u_{n}^{(\alpha)}, \\
& \left(u_{0}^{(\alpha)} \neq 0, u_{n}^{(0)}=u_{n}, \mu_{n+1}^{(0)}=\mu_{n+1}\right),
\end{align*}
$$

where $n=0,1,2, \ldots ; \alpha=0, \pm 1, \pm 2, \ldots$. For these procedures one can derive results similar to those of Theorems 1, 2, 3 [2], [1].

Put

$$
u_{n}^{(\alpha)}=\frac{u_{n}^{(\alpha)}}{\left\|n_{n}^{(\alpha)}\right\|}
$$

where $\alpha=0, \pm 1, \pm 2, \ldots, n=0,1,2, \ldots, u_{n}^{(0)}=u_{n}, w_{n}=w_{n}^{(0)}, u_{n}^{(\alpha)}=A^{-\alpha / 2} u_{n}$ and $\left(u_{n}\right)$ is defined by (1). Then

$$
\begin{gather*}
\left\langle A w_{n}^{(\alpha)}, w_{n}^{(\alpha)}\right\rangle=\frac{\left\langle A^{1-\alpha} u_{n}, u_{n}\right\rangle}{\left\langle A^{-\alpha} u_{n}, u_{n}\right\rangle} \tag{18}\\
(\alpha=0, \pm 1, \pm 2, \ldots, n=0,1,2, \ldots) .
\end{gather*}
$$

Theorem 9. Let X be a real Hilbert space, $A: X \rightarrow X$ a linear positive definite and self-adjoint operator on X. Assume that λ_{1} (not necessarily an isolated point of $\sigma(A)$ with finite multiplicity) is an eigenvalue of A and that the starting approximation $u_{0}^{(\alpha)}$ of (17) is not orthogonal to $\operatorname{ker}\left(A-\lambda_{1} I\right)$.

Then $\left\langle A w_{n}^{(\alpha)}, w_{n}^{(\alpha)}\right\rangle \rightarrow \lambda_{1}$. If λ_{1} is an isolated point of $\sigma(A)$, then $\left\|w_{n}^{(\alpha)}-e_{0}\right\| \rightarrow 0$ as $n \rightarrow \infty$, where $e_{0} \in \operatorname{ker}\left(A-\lambda_{1} I\right),\left\|e_{0}\right\|=1, \alpha=0, \pm 1, \pm 2, \ldots$.

Proof. The first part of our theorem follows at once from (18) and Theorem 3 [2]. Furthermore, by Theorem 3 [2] we have that $\left\|u_{n}-N e_{0}\right\| \rightarrow 0$ as $n \rightarrow \infty$, where $N=\sup \left\|u_{n}\right\|<+\infty$.

Since

$$
A^{-\alpha / 2} e_{0}=\int_{m}^{\lambda_{1}} \lambda^{-\alpha / 2} \mathrm{~d} E_{\lambda} e_{0}=\lambda_{1}^{-\alpha / 2} e_{0}
$$

and $A^{-\alpha / 2}$ is bounded, we obtain

$$
\begin{gathered}
\left\|u_{n}^{(\alpha)}-N \lambda_{1}^{-\alpha / 2} e_{0}\right\|=\left\|A^{-\alpha / 2} u_{n}-N A^{-\alpha / 2} e_{0}\right\| \leqq \\
\leqq\left\|A^{-\alpha / 2}\right\|\left\|u_{n}-N e_{0}\right\| \rightarrow 0
\end{gathered}
$$

as $n \rightarrow \infty$. By Lemma $1,2[1]$ the sequence $\left(\left\|u_{n}\right\|\right)_{n=1}^{\infty}$ is bounded monotone increasing with $u_{0} \neq 0$. Hence $\left(\left\|A^{-\alpha / 2} u_{n}\right\|\right)_{n=1}^{\infty}$ is bounded and $\left\|A^{-\alpha / 2} u_{n}\right\| \geqq m^{-\alpha / 2}\left\|u_{n}\right\| \geqq$ $\geqq m^{-\alpha / 2}\left\|u_{0}\right\|>0$ for each n. From $u_{n}^{(\alpha)}=A^{-\alpha / 2} u_{n} \rightarrow N A^{-\alpha / 2} e_{0}=\lambda_{1}^{-\alpha / 2} N e_{0}, n \rightarrow \infty$ we get that $\left\|u_{n}^{(\alpha)}\right\| \rightarrow N \lambda_{1}^{-\alpha / 2}$ and $\left\|u_{n}^{(\alpha)}\right\| e_{0} \rightarrow \lambda_{1}^{-\alpha / 2} N e_{0}$ as $n \rightarrow \infty$.

Since

$$
\begin{gathered}
\left\|w_{n}^{(\alpha)}-e_{0}\right\|=\left\|\frac{u_{n}^{(\alpha)}}{\left\|u_{n}^{(\alpha)}\right\|}-e_{0}\right\|=\frac{\left\|u_{n}^{(\alpha)}-\right\| u_{n}^{(\alpha)}\left\|e_{0}\right\|}{\left\|u_{n}^{(\alpha)}\right\|} \leqq \\
\leqq m^{\alpha / 2}\left\|u_{0}\right\|^{-1}\left(\left\|u_{n}^{(\alpha)}-N \lambda_{1}^{-\alpha / 2} e_{0}\right\|+\left\|N \lambda_{1}^{-\alpha / 2} e_{0}-\right\| u_{n}^{(\alpha)}\left\|e_{0}\right\|\right),
\end{gathered}
$$

$\left\|w_{n}^{(\alpha)}-e_{0}\right\| \rightarrow 0$ as desired.
We shall show that the rate of convergence of the sequences $\left(\left\langle A w_{n}^{(\alpha)}, w_{n}^{(\alpha)}\right\rangle\right)_{n=1}^{\infty}$ $(\alpha=-1,-2, \ldots)$ is not worse than the convergence of $\left(\left\langle A w_{n}, w_{n}\right\rangle\right)_{n=1}^{\infty}$. Indeed, the generalized Schwarz inequality gives

$$
\begin{gathered}
\left\langle A^{-\alpha} u_{n}, u_{n}\right\rangle^{2}=\left\langle A A^{-\alpha / 2} u_{n}, A^{-(\alpha / 2)-1} u_{m}\right\rangle^{2} \leqq \\
\leqq\left\langle A A^{-\alpha / 2} u_{n}, A^{-\alpha / 2} u_{n}\right\rangle\left\langle A A^{-(\alpha / 2)-1} u_{n}, A^{-\alpha / 2-1} u_{n}\right\rangle= \\
=\left\langle A^{1-\alpha} u_{n}, u_{n}\right\rangle\left\langle A^{-\alpha-1} u_{n}, u_{n}\right\rangle .
\end{gathered}
$$

Dividing this inequality by $\left\langle A^{-\alpha} u_{n}, u_{n}\right\rangle\left\langle A^{-x-1} u_{n}, u_{n}\right\rangle$, we obtain that

$$
\left\langle A w_{n}^{(\alpha+1)}, w_{n}^{(\alpha+1)}\right\rangle \leqq\left\langle A w_{n}^{(\alpha)}, w_{n}^{(\alpha)}\right\rangle
$$

for each n and $\alpha(\alpha=0, \pm 1, \pm 2, \ldots)$. Hence

$$
\begin{aligned}
& \lambda_{1} \geqq \ldots \geqq\left\langle A w_{n}^{(-2)}, w_{n}^{(-2)}\right\rangle \geqq\left\langle A w_{n}^{(-1)}, w_{n}^{(-1)}\right\rangle \geqq \\
& \geqq\left\langle A w_{n}, w_{n}\right\rangle \geqq\left\langle A w_{n}^{(1)}, w_{n}^{(1)}\right\rangle \geqq\left\langle A w_{n}^{(2)}, w_{n}^{(2)}\right\rangle \geqq \ldots
\end{aligned}
$$

Let us remark that the assumption of the positive definiteness of A in Theorem 8 is not essential. Indeed, if $A: X \rightarrow X$ is in general a self-adjoint operator on X, then $B=a I \pm A$, where a is a constant such that $a>\|A\|$, is positive definite and self-adjoint on X. Using the above results one can obtain the extreme value λ_{1} of $\sigma(A)$ and the eigenvectors corresponding to λ_{1} of course provided λ_{1} is an eigenvalue of A). If in general A is only linear and bounded, then the derived theorems can be applied to the operator $T=A^{*} A$, which is self-adjoint and nonnegative, i.e. $T \geqq 0$.

Acknowledgement. The author thanks the referee for pointing out the reference [7] and for his comments.

References

[1] J. Kolomý: Approximate determination of eigenvalues and eigenvectors of self-adjoint operators. Ann. Pol. Math. 38 (1980), 153-158.
[2] J. Kolomy: On determination of eigenvalues and eigenvectors of self-adjoint operators Apl. mat. 26 (1981), 161-170.
[3] J. Kolomý: Determination of eigenvalues and eigenvectors of self-adjoint operators. Mathematica 22 (1980), 53-58.
[4] М. А. Красносельский и другие: Приближенное решение операторных уравнений. Изд. Наука, Москва, 1969.
[5] I. Marek: Iterations of linear bounded operators in nonself-adjoint eigenvalue problems and Kellog's iteration process. Czech. Math. J. 12 (1962), 536-554.
[6] W. V. Petryshyn: On the eigenvalue problem $T(u)-\lambda S(u)=0$ with unbounded and symmetric operators T and S. Phil. Trans. Royal Soc. London Ser. A, Math. Phys. Sci., No 1130, Vol. 262 (1968), 413-458.
[7] V. Pták - J. Zemánek: Continuité Lipschitzienne du spectre comme function d'un opérateur normal. Comment. Math. Univ. Carolinae 17 (1976), 507-512.
[8] В. П. Пугачев: О двух приёмах приближенного вычисления собственных значений и собственных векторов. Докл. акад. СССР, 110 (1956), 334-337.
[9] Б. П. Пугачев: Исследование одного метода приближенного вычисления собственных чисел и векторов. Труды сем. по функц. анал. Воронеж, Т. 4 (1960), 81-97.
[10] F. Riesz, B. Sz.-Nagy: Leaons d'analyse fonctionnelle, Ac. Sci. de Hongrif, Budapest, 1953.
[11] Wang Jin-ru: A gradient method for finding the eigenvalues and eigenvectors of a self-adjoint operator. Acta Math. Sinica 13 (1963), 23-28 (Chinese Math. Acta 4 (1963), 24-30).
[12] K. Yosida: Functional Analysis. Springer-Verlag, Berlin, 1965.
Author's address: 18600 Praha 8, Sokolovská 83 (Matematicko-fyzikální fakulta KU).

