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Časopis pro pěstování matematiky, roč. 106 (1981), Praha 

AN APPROXIMATE METHOD FOR DETERMINATION OF EIGENVALUES 
AND EIGENVECTORS OF SELF-ADJOINT OPERATORS 

JOSEF KOLOMtf, Praha 

(Received February 26, 1979) 

1. The method (l) for the determination of eigenvalues and eigenvectors of linear 
self-adjoint operator A is investigated. The error estimates are derived in the following 
two cases: (i) XY is only an extreme value of the spectrum a(A) of A, (ii) X1 is an iso
lated point of <T(A). Moreover, it is shown that the method (1) can be used for the 
determination of an arbitrary eigenvalue of A and the corresponding eigenvector. 

Let X be a real Hilbert space, A : X -> X a linear self-adjoint and positive opera
tor on X. By positivity of A we mean that <AU/, u) > 0 for each ueX, u + 0 and 
(Au, u> = 0 implies u = 0. Let m, X1 be the exact spectral bounds of the spectrum 
o(A) of A. Denote by <rp(A), <rc(A) the point spectrum and the continuous spectrum, 
respectively. The symbol {£A} stands for the spectral resolution of identity cor
responding to the self-adjoint operator A. We shall deal with the following procedure 

(1) fin+1 = <Aw„, uny . \un\~'2 , un+1 = fin+\Aun 

for finding the eigenvalues and eigenvectors of A. In (1) it is assumed that the initial 
approximation u0 e X is different from zero. Our hypotheses on A imply that \in > 0 
and \xn + 0 for each n. In the sequel we assume that (iin), (un) are defined by (1), 
and wn = u„|un||

_1 for each n. For the recent results concerning the procedure (1), 
its variants, relations and for the bibliography see [1] —[3]. We refer the reader 
for instance to [4] —[11] for further methods. 

2. We start with the following 

Theorem 1. Let X be a real Hilbert space, A :X -> X a linear self-adjoint and 
positive operator. Assume that the starting approximation u0 of (l) is such that 
Exu0 =f= u0for each X < Xx. 

Then \Awn\ /* X1 as n -> oo. Moreover, 

\A2wn\\ . l ^ U - 1 = ||-4wn+1| S AC+iVjAwJ > 
where 

cn= \un\. lun+ill"1 g 1 , (n = 0 , 1 , 2 , . . . ) . 
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Proof. First of all, fin+1 ^ ||-4w„|| and //„ <£ Mn+i f ° r e a c h n ([!]> Lemma l). 
Since A is positive and self-adjoint, ||-4w|2 ^ | A | <Aw, w>, w e l . Indeed, assuming 
that I A | = 1, this inequality follows from 

|.4w|2 = <Aw, w> - {<A(w - Aw), w - Aw> + 

+ ||Aw|2 - <A.2w,Aw>} , 

the fact that A is positive and the inequality 

(A2u,Au> = \\Au\\2, ueX . 

Furthermore, k1 = | A | and 

0 = ||AwB||2 - fi2
n+1 = ||Awn||2 - <Aw„, w„>2

 = 

= UAH <AW„, w„> - <Awn, w„>2 = <Awn, ww> ( ^ - <AW„, w.,» -> 0 

as n -> oo for ^M+1 = <v4wn, w,,> /* Xx by Theorem 1 [1]. Hence 

O ^ i ? - ||AwB||2 g (I2 - £) + \nl - \\Awnf\ -> 0 

as n -+ oo. We shall prove that (||-4wII||).f Bl is monotone. It follows from (1) that 

ww+i = .wn""+iCnAwrt, where cn = ||w,.||/||wn+1|| = 1 for each n ^ 0. Hence 

IAww+1|= cn^1 | |A2w / l | = ^ i ^ - | | M ; ; l i M2wn | . 
\\un+l\\ 

By our hypotheses un =t= 0, Aw„ 4= 0, A2w„ 4= 0, (n = 0, 1, 2 , . . . ) . In view of (1) we 

obtain 

\\Awn+1\\ = jtfirf+i W J : ^ 1 ||A2wB|| = 
<A Z M„, MB> 

M «»i • i«.i i«»i 
Hence \\Aw„l ^ | ^w n + i | | for each n and we have that ||AwB|| /" Ax as « -> oo. 

Put zB = -42w„, then 

| ^ w B + i | | 2 = ^~+
2iC2<A2wn, z„> = 

= ftT+icJ f \ 2 d<J- iW., z„> g ( A _ \ .c\ fAld<£,wn, zB> = 
Jm V-n+1/ Jm 

- f - ^ - Y cB
2<»vB, z„> = ( - A Y cB

2||^wB||2 . 
\ju»+i/ V*»+i/ 
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On the other hand, 

\\AWn+1\\=fi;Mun\\.\\utt+1\\-
l.\\A2

Wn\\Z 

= ft-1! -J,,"" ,, ]A*w.l = \\A2
Wn\\ . UAw^l"1 , 

lxn+ l\AUn II 

for each n (n = 0, 1, 2, . . . ) , which completes the proof. 

R e m a r k l . I n addition to the assumptions of Theorem 1 assume that A is positive 
definite (i.e. m > 0). Then 

mcnfx;+\\\Awn\\ = 11-4^+4 ;= cBA1/iir+
1
1||i4wII|| 

for each n. 

Theorem 2. Let X be a real Hilbert space, A :X -> X a linear positive and self-
adjoint operator on X. Assume that At is an eigenvalue of A and that the initial 
approximation u0 of the procedure (un) is not orthogonal to ker (A — XJ). 

Then \\Awn\\ S Xx as n -» oo. 

Proof. Use Theorem 3 [2] and the arguments of the proof of Theorem 1. 

Theorem 3. In addition to the assumptions of Theorem 1 suppose that (wn) contains 
a subsequence converging weakly to an element WGX, W =f= 0. 

Then Xx is an eigenvalue of A and w is the corresponding eigenvector of A. 

Proof. According to Theorem 1 [1] \in J* Xx and by Theorem 2 we have that 
||-4wn|| /* Ax. Hence 

UAwJ2 - <ALw„, wM>2 = ||Aw„ - fin+lwn\\
2 -> 0 

as n -> oo. Without loss of generality one can assume that wn-^ w weakly, where 
w e l , w + 0. Therefore Awn — jUf,+1w/l -> Aw — Xtw weakly and Aw = Atw, 
which concludes the proof. 

Corollary. In addition to the assumptions of Theorem 1 assume that the sequence 
(wn) contains a subsequence converging to an element weX. 

Then Xt is an eigenvalues of A and w is the corresponding eigenvector of A. 

Theorem 4. Let X be a real Hilbertspace, B :X -+ X, C :X -* X linear self-
adjoint operators on X. Assume that X0 is an eigenvalue of B9 e0 e ker (B — X0I), 
\\e01| = 1 and that X0 $ a(C). Let A* be an eigenvalue of C such that X* is nearest 
to X0 from the both sides. If dim ker (C — X*I) = 1 and e0 $ ker (C — A*/)1, 
then 

|A* - *„| S \\(C - V ) wn| ^ ||(C - .V)w.-.|| ^ P - c|| 
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for each n (n = 1, 2, . . . ) , where wn is defined by (1) with A = aI — (C — A0I)
2, 

u0 = e0 and a is an arbitrary constant such that a > ||(C — ^o^)2.!-

Proof. Since tfie operators B, C are linear self-adjoint and defined on X, B, C are 
both bounded by the closed-graph theorem. Put A = aI — (C — A0I)

2, where 
» > ||(C — A0I)

2||. Then A is linear self-adjoint bounded and positive definite with 
the greatest eigenvalue Ax = a — (A* — A0)

2. Put Cx = C — A0I, X — X* — X0, 
C2 = C - A*I. We show that ker (C2 - A2I) = ker C2. Suppose that u e ker C2; 
this condition is equivalent to Cxu = Aw. But C2w = Cx(Xu) = A2w. Hence w e 
e ker (CJ — A2I) and ker C2 <= ker (C2 — A2I). Assume that there exists an element 
u E X such that u e ker (C2 — A2I) and w §_ ker C2, i.e. Ctu 4= Aw, which contradicts 
the fact that w e ker (C2 — A2I). Hence ker (C2 — A2I) = ker C2 and this implies 
ker (A — XJ) = ker (C — A*I). According to our hypothesis <w0, vv> + 0 for each 
w e ker (C — A*I). Hence <w0, vv> -# 0 for each w e ker (A — XtI) and therefore 
w0 $ ker (A — AjI)1. Thus all the assumptions of Theorem 3 [2] are satisfied. Ac
cording to this theorem fin+l = (Awn, wn} S Xx = a — (A* — A0)

2, where wn = 
= Mn/||w„|| and (w„) is defined by un+1 = iin+1Aun. Hence <(C - X0I)wn,wn} \ 
\ (A* — A0)

2 as n -> oo. This conclusion implies that 

|A* - A0| _; <(c - x0if wn, Wny
2 = ||(c - V ) w„|| _i 

_; <(c - A0/) w^,, w^!)1'2 = ||(c - v ) w„_.| _i 

sg... =g ||(c - v)w0 | | = | | (c- V)e0=|| 

= | | ( C - B ) e 0 | _ _ ||C - B|| ||e0|| = ||C - B\\ , 

because e0 e ker (JE? — X0I), \e0\ = 1 and w0 = e0. The theorem is proved. 

Remark 2. The estimate \X* — A0| _§ \\C — B\\ for completely continuous linear 
operators C, B was derived by H. Weyl [10]. This estimate can be obtained in a more 
general setting also in the following way. Compare also [7], [11]. 

Proposition 1. Let X be a real Hilbert space, B :X -+ X, C :X -> X linear self-
adjoint operators. Assume that ac(C) = 0 and that X0 $ a(C) is an eigenvalue 
of B. If X* is an eigenvalue of C such thai X* is nearest to X0from the both sides, 
then \X* - A0| g ||fi - C||. 

Proof. First of all, B, C are bounded by the closed-graph theorem. Since A0 £ c(C), 
there exists a bounded linear operator RkQ = (C — A0I)_1 and RXo is defined on 
the whole space X. Moreover, RXa is self-adjoint. Since the function f(X) = 1/|A — A0| 
is continuous on the compact set <r(C), the spectral mapping theorem implies that 

l lD (, 1 1 1 
||_RAo|| = max- 1 = max = . 

Ae<r(C) \X — A 0 j Xe<rp(C) \X — A 0 | |A* — A 0 | 
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Let e0 e ker (B - k0I), \e0\ = 1. As A0 £ a(C), we have |(C - A0I) e0\\ > 0 and 

h* x I = l 11 (c "" V)goll 
^ iwi(c~v)^ir 

1 = Ikol = I * J C - A0I)e0|| S. \\RJ . \\(C - A0I)e0|| • 

From the above relations we conclude that |A* - k0\ = ||(C - A0) e0\\. Since 

e0 e ker (B — k0I) and |e0 | | = 1, we have 

|A* ~ A0| = ||Ce0 - lfe0|| = J c - B|| ||e0|| = IC - B|| 

as required. 

Theorem 5. Let X be a real Hilbert space, B : X -> X a linear self-adjoint opera
tor, A* an eigenvalue of B. Let k0 be a real number, A0 <£ a(B), and A* be nearest to 
k0from the both sides. Suppose that the initial approximation u0 of (un), where 
(un) is defined by (1) with A = aI — (B — A0I)

2, a > \\(B — A0I)
2|| is not orthogonal 

to ker (B - A*I). 

Then \\(B — k0l) wn\\ \ |A* — A0|, ||M„ — Ne0|| -* 0, ||w„ — e0|| -> 0 as n -» oo, 

where 

N = sup ||WJ , e0 e ker (B - A*I) , ||e0|| = 1 . 

Proof. Put 4̂ = aI — (B — A0I)
2, where a is an arbitrary positive number such 

that a > ||(B — A0I)
2||. Then i is a linear positive definite self-adjoint operator 

with the greatest eigenvalue kx = a — (A* — A0)
2, while ker (A — kj) = 

= ker (B — A*I). Since M0 £ ker (B — A*I)X, we have M0 £ ker (A. — kj)1. According 
to Theorem 3 [2] we have (Awn, w„> / kl and ||M„ — Ne0|| -> 0 as n -» oo, where 
e0 e ker (A - AXI), ||e0|| = 1, N = sup \un\ < oo. Hence ||(B - k0l) w„|| \ 

n 

\ |A* — k0\, \\wn — e0|| -» 0 as n -» oo, while e0 e ker (B — A*/), ||e0|| = 1. 
Indeed, since (un) is bounded monotone increasing ([l]), ||Mn|| -* N as n -> oo 

and M0 =# 0, we have the 

k - e0\\ = -"- - " ""I'60" ^ 
IWI 

^ I N I " 1 (||«- ~ Ne0\\ + \\Ne0 - || «,|e0 | |) -> 0 

as n -* oo, which concludes the proof. 

Theorem 6. In addition to the assumptions of Theorem 2 assume that Aj is an 
isolated point of the spectrum a(A) of A (i.e. there exists a constant M > 0 such 
that a(A) - {Aj} <= [m, M]). 
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Then there exists an integer n0 such that 

fin+1 = A , = iin+1 + (||AwM||2 - fi2

n+iy'2 

holds for each n = n0. 

Proof. Since A1 is an isolated point of o(A)9 then At is an eigenvalue of A. By 
Theorem 3 [2] and Theorem 2 we have that \xn /" Ax and ||-4wn||

2 — fin+1 -• 0 as 
n -> oo. Furthermore, 

||Лw„|2 = <Л2w„, wи> = (* *Л2 d<£яw„, w„> , 
J m 

/iя + 1 = < Л w я , w я > = A d < £ я w я , w я > 

J m 

•Ai 

= I d<£ я w я , wя> нľ - f1 

J m 
Hence 

IMw„||2 - n2
n+l = ||Aw„ - tin+1wnf = r 'A2d|£,w„| |2 -

J m 

- 2 ^ „ + 1 p A d l ^ w , ! 2 + n2
+n r'd||£Aw„||2 = t(X - fin+1)

2d\\Exwn\\
2 . 

J m J m J m 

Since Ax is an isolated point of a(A) and \in /* Al5 there exists an integer n0 such that 
\in e [i(M + Ai), Aj for each n = n0. Hence we have for each fixed n ;> n0 

H-4w„||2 - /i2
+1 = (A - /in+1)2 d<£Aw„, ww> = 

J m 

d ^ w , , w„> = 

= inf |A - iin + 1\
2
 = 

Ae<r(,4) 

= inf {(A, - /irt+1)2, |M -ixn+1\
2} = (A, - /xw+1)

2 . 

The desired inequalities follow at once from the fact that \in /* X1 and the last relation. 
The theorem is proved. 

Proposition 2. Let X be a real Hilbert space, A:X-+Xa linear positive definite 
and self-adjoint operator. Assume that the starting- approximation u0 0/(1) is such 
that Exu0 =f= u0 for each A < A-_. If e is such that 0 < e < X1 — m, then 

^ m 3 / 2 ^ - . - - M , „ = 1,2,.... 
(Aun, uny

2 
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Moreover, there exists an integer n0 such that 

X1 < a0
2m-2\Aun,un}Y[fi 

2 
k 

k=ì 

holds for each n ^ n0, where a0 = ||wo||2 "" ||^Ai-£wo||2 > 0-

Proof. Assume that 0 < e < Ax — m. Then according to our hypothesis 
EXl-Eu0 =t= w0. Applying the projector FAl-£ to the equality (1) we obtain that 

Since 

K i - r f = ^-2||FAl_£Au„_1||2 = /C l^Ai - s^ -x l l 2 . 

l^F^-A-iH 2 = <A2EAl-A-!, un_!> = 

X2 d(ExEXl_eun„l9 «„_!> = 
J m 

= p V d||£Au„_.||2 ^ m2!!^..^.,!2 , 
J m 

we obtain that 

(2) ||__Al_£«n||S^||£Al_£«„_1||. 

On the other hand, 

(3) \\EXl-AH ^ ||u„|| ^ m " 1 ' 2 ^ . , tO 1 ' 2 . 

The relations (2), (3) immediately yield the first assertion. 

We prove the second estimate in our theorem. Let P(FAl_e) be the range of FAl_£, 
where 0 < e < Xx — m. Since FAl_£ is a continuous projector, P(FAl_£) is a closed 
subspace of X. Denote by jR(FAl_£)

x the orthogonal complement to P(_EAl_e). Put 
Pe = / - £Al_£, i.e. P£ = EAl - £Al_£, wn = unl\\un\\. We shall show that 

(4) A ^ ^ ^ O U P A l ^ + e 

for sufficiently large n and a fixed e satisfying the inequality 0 < e < A_ — m. Each 
element w„ of the sequence (w„) can be uniquely expressed in the form w„ = a(^g„ + 
+ i><£)__, where a„ e R(£,__£)\ zn £*(__,,_.) and ||an|| = flf-fl = l,(a_£))2 + (_.„£))2 = 
= 1. Then Pcw„ = a^gn and ||P£wn||

2 = (a<£))2 and 

A. ^ Hn = <Awn, w„> = (a„£))2 <Agn, a„> + (f»i£))2 <A_n, z„> £ 

_5 (an
£))2 <-4a„, a„> £ ||P8wn|

2 (A_ - e). 

(See the proof of Theorem 6 [2].) Moreover, it has been shown [2] that lim (bn
e))2 = 

n->co 

= 0 for each fixed e, 0 < e < A 1 - m . Therefore (an
e))2 = ||-P_wn|

2 -> 1 as n -> co 
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and therefore there exists an integer n0 such that ||P_w,.|| > 0 for each n ^ n0. 
Hence (4) is valid for each n ^ n0. 

Now we estimate ||PewM|. By the definition of Pe we have 

||Pe«„||2 = | | « „ - £ , 1 _ £ « n | | 2 = | | « „ | | 2 - | | £ , 1 _ £ « B | | 2 . 

By (1) we get ||«„||2 = ^lAu^^2 and 

(5) ||£Al_£«B||2 = /iB-2 | |A£Al_£«„_1 | |2. 

Now 

(6) HA^,_,«„_!||2 = {A2E!Ll^tu„.u MB_t> = 

X2d(Exun.l9u„.iy . • f 
J m Hence 

||ww||2 - ||FAl__w,.||2 = fin
 2«A2uw_!, u„__> - (A2EXi„Bun-.u W„__» = 

rA i 

= Pn | A2 d<i_,„ll„_ !,!!„_!> __! 
J-li-e 

= {h - e)2^-^flii^.H2 - ||£„1.,tin-1||2) > m ^ l ^ - i l 2 • 

Therefore 

||P£«B|2 > m 2 ^ 2 ! ^ ^ . , . ! 2 > ... > m2"/.;2^-2! ...Mr2 | |P£«0 | |2 = 

- m2"||«0 - £ A l _ £ « 0 | | 2 n^ 2 - m2"(||«0||
2 - | |£„,_^i0 | |2)n f t-

2 > 0, 
k = l fc=l 

for ||(/ — 7_Al_e)u0|| > 0. This inequality together with the relation (4) give our 
estimate. 

Remark 3. Let us point out that the asymptotic estimates corresponding to that 
of Proposition 2 are not efficient. Under the conditions of Proposition 2 the estimate 

II F u II l'n 

m i + i/2„ ||*;t,-.tto|| ^ A i 

<Au„, w„> 

is valid for each n (n = 0, 1, 2, . . . ) . Indeed, (2) implies that 

||£Al_£«B| £ £ K-A-.l -- - -- ( 0 K--«o|| • 

Hence the last inequalities and (3) give the desired result. Moreover, there exists an 
integer n0 such that ||JSJll_.aiill+1|| S ||£„_._..a-1| for each n ^ n0. Indeed, from (6) 
we have that 

\\AEAl^un+l\\ g ( V e ) 1^-cWnl , n = 0, 1, 2 , . . . . 
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According to (5), 

^ i ~~ e п г II 

Џn+l 

for each n (n = 0, 1, 2,...). By Theorem 1 [1], fin /* A^ Therefore there exists an 
integer n0 such that (kx — e)^1 = 1 for each n = n0. Hence ||FA1_£uM + 1|| fg 

= ||EAl_£u,.|| for each n = n0. 
To establish further estimates we use Lemma 1 [2] which reads if the initial ap

proximation w0 of (1) is not orthogonal to ker (A — ktI) =t= (0), then each element un 

of the sequence (un) defined by (l) is of the form un = ane0 + zn, where zn e 
e ker (A — .^I)1 and an > 0 for each n (n = 0,1,2, ...), e0 e ker (A — kj), 

IWI = i. 

Theorem 7. Let X be a real Hilbert space, A : X -+ X a linear positive and self-
adjoint operator such that kt is an isolated point of a(A) (i.e. there exists a constant 
M > 0 such that o(A) — {Aj c [m, M]). Assume that the starting approximation 
u0 of the procedure (1) is not orthogonal to ker (A — kj). 

Then 

(8) (k, - M) m/w-,2 HZ,,.,!2
 = A , - ^ + 1 £ aX 2 - i ... a j ^ - m) | |z0 | |2 | |«0 | | -2 , 

(9) | K + 1 - <w„+1, e0> e0|| < a ^ . j . . . a0||w0 - <w0, e0> e0|| 

for each n, where 

L ||"n||2 V VJ 
0 < a„ < a^.j < .. . < a0 < 1, an, zn are elements from the representation of un, 
e0 e ker (A - kj), \\e0\\ = 1 and a„ ^ [1 - (1 - (Mjpin)

2) (1 - M / ^ ) ] 1 ' 2 for suf-
ficiently large n. 

Proof. First of all we derive (9). Since k1 is an isolated point of <r(A), kx is an eigen
value of A. According to Lemma 1 [2] each element un defined by (1) can be re
presented in the form un = ane0 + zn, where |e0 | | = 1, e 0 e k e r ( A — kj), zne 
e ker (A — kj)1 and the constants an are positive. Put 

»n = Z n / | M ' Cn = fl»/IM > Un+\ = " » + l / | M • 
Then wn = cne0 + vn, nn+1 = <Aw„, w„> and 

Un+\ = Pn~+lAwH = Hn~+\(t>lCne0 + Avn) • 

Set pn+1 = fin+1kl9 hn + 1 = p~+1Avn. Then un\\ = Pn + 1cne0 + hn + 1 and an + 1 = 

= k+iCn\un\, zn+1 = \un\ hn+1. Since c2 = 1 - ||vw||2, we have 

Mif+l = Clh + <^»> O = K - rn > 
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where rn = ((XJ - .A) vn, vn}, (n = 0,1, 2,...). Hence Pn+1 = A ^ - rn) \ 
K+i = (^i ~~ rn)_1 ̂ n f° r e a c ^ n (n = 0, 1, 2,...). We shall estimate the quantity 

(10) /-„fd | 2„,-i KVf JH!r!Ha. 
KVíPkl2 IRV.INkl2 

where ||«„+i||2 = ^ + 1 ^ + ||^„+i||2-Using again c2 = 1 - ||i;n||
2 and simple calcula

tions, we get that 
h c2 

(\\\ J = 1 °n+l<<n  
1 ' {^-K+1)\\vn\

2' 

where bn+1 = p2
+1\\vn\\

2 - \\hn+1\\
2. On the other hand, A. = \\A\\, \\AV„\\2 < 

= ^Avn; v„} imply that 

0*1 - rn) 

- Al i{k1I-A)vn,vn>= V " 
- (A, - rnf

 NV " " " ' (*. - r„)2 * 

By our hypothesis A x is an isolated point of o(A). Therefore the segment (M, Ax) 
belongs to the resolvent set of A and thus the spectral family {Ex} is constant on 
(M, A-}. Hence 

r„ = < t V - A) vn, vn} = (Ax - A) d<FAv„, v„> = 
J m 

= f (Ax - A)d<EAt>„, O ^ (A. - M) ||p,|- . 
J m 

Furthermore, /?2
+1 — bn+1 ^ A^Ai — r„)_1 and hence 

(12) 2 »•+' ^ r n ^ — > ^ ^ h ^ J i 
Pn+i ~~ bn+1 Ax — rn Ax Ax 

Hence according to (10), (11), (12) and 

(n\ K+il < ' Nl 
v i ; v 11. 11 ^ a « 11. II ' 

\v. 
112 

ь » + l K + i ~ <wя+1,eo>^o|| , 

we obtain (9) with afc = [1 - ( a j u j - 1 ) 2 (1 - .MAr 1 )] 1 ' 2 for each k (k = 
= 0,1, 2,..., «). Clearly, 0 < ak < 1 for \\zk\\ = \\uk\\ and M < At. We have that 
| | -*+i |/ | | "*+i | < I N I / N I and moreover, c2 + [p4 | |

2 = c 2

+ 1 + | | ^ + 1 | 2 = 1 for 
each k. Hence a2

+i/|«jt+ 1 | |
2 > a2/||«*||2 a n d therefore ak+1 < cck < 1 for each k, 

for a2 - H | 2 - |K«2. 
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We shall prove (8). Again, one can express each element un of (u„) in the form 
un = ane0 -f zn, where e0 e ker (A — XJ), \e0\ = 1, zn e ker (A — AJ)1 and an > 0. 
We have 

(14) h - nn+1 = (A.||«,i2 - <AuB, MB» ||MB||-2 = 

= (Ajz.ll2 - <Az„, zB» ||uB||-2 = <(V - A) z„, z„> ||u„||-2 . 
Now 

(15) ((X1l-A)zn,zny^{Xl-M)\\zn\
2. 

Moreover, the orthogonal projection of MB+1 = fi~+1Au„ onto ker (A — XJ)X is 
equal to zB+1, where zB+1 = /i„"+1AzB. Then 

(16) ||zB + 1||2 = ^ + i < ^ „ , z B > = 

= JC 2 . f > d<£AzB, z„> £ ( - ^ - Y td(E,zn, z„> = ( -2LY ||znp . 
Jm V̂ /i + 1/ Jm XAi+l/ 

Now (14), (15), (16) give the first estimate in (8). Since aflj — A) lies on the segment 
[Xx — M, X1 — m] we have that 

Using (13) we obtain the other part of (8). The estimate of ocn follows at once from 
the expression for a„ and the inequality an _ (1 — (Mjfin)

2) ||w„|2, which holds for 
sufficiently large n [3]. The theorem is proved. 

Remark 4. The estimates (8), (9) show that the convergence of fin to At and the 
so called directional convergence of wn to e0 are better than the rate of convergence 
of the geometric sequence with quotient a0 < 1. Let us point out that under more 
general conditions on A and X, quite different estimates for (1) have been obtained 
by Marek [5] and Petryshyn [6]. 

Now assume that A : X -> X is self-adjoint and positive definite. Put 

u<"> = I 
J m 

/Гя / 2 dF,uи = A~a/2un 

(a = 0, ± 1 , ±2, ...) and substitute Aa/2w^a) for un in (l). Then we obtain the pro
cedures 

(17) n*?. = 04- + 1 u« u?>>.||A''2u<«>||-2, 

utu^wuy'Au?, 
(M<a>#0, «<°> = u„, ^ = ^ 0 , 

where n = 0, 1, 2, ...; a = 0, + 1 , ±2, ... . For these procedures one can derive 
results similar to those of Theorems 1, 2, 3 [2], [1], 

Put 

U<«> 

Ҝ1 
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where a = 0, ± 1 , ± 2 , . . . , n = 0, 1, 2 , . . . , w(0) = wrt, wn = >v(0), w(a) = A a/2un and 

(w„) is defined by (1). Then 

h*\ ' <Aw(a) w(a)> = < y 4 l " g ^' u n> 
( 1 8 ) < ^ . . w . > < A - x > W n > J 

(a = 0, ± 1 , ± 2 , . . . , n = 0 , 1 , 2 , . . . ) . 

Theorem 9. Let X be a real Hilbert space, A:X-+Xa linear positive definite 
and self-adjoint operator on X. Assume that X1 (not necessarily an isolated point 
of a(A) with finite multiplicity) is an eigenvalue of A and that the starting ap
proximation u0

a) of (17) is not orthogonal to ker (A — XJ). 
Then <-4w(a), wn

a)> -> kx. If X^ is an isolated point of c(A\ then ||w(
n
a) - e0|| -> 0 

as n -> oo, where e 0 eker (A — XXI), \\e0\\ = 1, a = 0, ± 1 , ± 2 , . . . . 

Proof. The first part of our theorem follows at once from (18) and Theorem 3 
[2]. Furthermore, by Theorem 3 [2] we have that [|w„ — Ne0|| -> 0 as n -> oo, 
where N = sup \\un\\ < +oo. 

n 

Since 

A~a/2e0 = [k\~a/2AExe0 = X'a,2e0 

J m 

and A~a/1 is bounded, we obtain 

fl«?> - NX["2e0\ = \A~"2un - NA~"2e0\ = 

= \A~"2\ ||«„ - .V«0|| -> 0 

as n -* oo. By Lemma 1, 2 [ l ] the sequence (fluB||)B!°1 is bounded monotone increasing 
with «0 * 0. Hence (||/l-"/2«n[|)n?1 is bounded and |M"a/2«Bfl = m-"/2fl«„|| = 

= m-a/2JJM0([ > 0 for each n. From un
x) = A~"2un -• NA~"2e0 = Xl"2Ne0, n-+ao 

we get that ||uB
4>|| -> NXl"2 and ||«B

a>|| e0 -* X^"2Ne0 as n -* oo. 
Since 

Ҝ )-C 0 t t = lìІ$|-Є 0 

и и 

u w - lиřҶeo 

llиiя)ll 

= m'/2fl«0||-i(fl«<"> - iVAra / 2e0 | + 1 ^ % - | R a ) | | e 0 | | ) , 

i^iS0 — e0 | | -* 0 as desired. 
We shall show that the"rate of convergence of the sequences (</lwB'*>, ww>)„2i 

(a = — 1, — 2,...) is not worse than the convergence of ((,Awn, wHy)ҷ=1. Indeed, the 
generalized Schwarz inequality gives 

(A-u„ «„>2 = <AA~"2u„, A-i"2)~ ^y2

 = 

= (AA-"2uni A~"2uny < A 4 " W 2 ) - 1 « B , A-"2-^ = 

= <A.1-X.«„><A-='-1«B,« ) I>. 
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Dividing this inequality by <A *un, un) <A * 1un, un), we obtain that 

<Aw<a+1),w<a+1)>^<^vv<a),w<a)> 

for each n and a (a = 0, ± 1 , ±2 , . . . ) . Hence 

^ = . . . = <Aw<"2 ) , w<"2)> = <^w<- 1 } , w<-1>> = 

= <Aw„, wn> = <Aw<1), w<'>> = <Alw<2), w<2>> = . . . 

Let us remark that the assumption of the positive definiteness of A in Theorem 8 

is not essential. Indeed, if A : X -> X is in general a self-adjoint operator on X, 

then B = al ± A, where a is a constant such that a > ||A||, is positive definite and 

self-adjoint on X. Using the above results one can obtain the extreme value Xt of G{A) 

and the eigenvectors corresponding to ^ of course provided X x is an eigenvalue 

of A). If in general A is only linear and bounded, then the derived theorems can be 

applied to the operator T = A*A, which is self-adjoint and nonnegative, i.e. T = 0. 

Acknowledgement. The author thanks the referee for pointing out the reference 

[7] and for his comments. 
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