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Časopis pro pěstování matematiky, roČ. 107 (1982), Praha 

TWO PROBLEMS CONCERNING INVERSE ANALYTIC FUNCTIONS 

IUA CERN*, Praha 

(Received on October 15, 1980) 

One of the main problems is the validity of the identity (gF_ i ) _ l = £F for a given 
analytic function 3F in an arbitrary region Q. (If only analytic functions in the whole 
(extended) Gaussian plane S are admitted, there is, of course, no such problem; 
the identity holds for every non-constant analytic function in S x).) One of the main 
practical problems is the question whether £F_t admits unrestricted continuation 
(e.g. in its "natural region"1)). The well-applicable Theorem 3 answers these questions. 

1. Denote by S and £ the closed (extended) and open Gaussian plane, respectively. 
For each z e E, A e (0, oo>, let U(z, A) = \z' e E; \z' — z\ < A) be the A-neigh-
bourhood of z; further, let U(oo, A) = Id_1(U(0, A)) (for each A e ((0, oo>; Id is the 
identical mapping, Id" 1 = 1/Id). 

An analytic element is every pair [F, a] where a e S and where F is meromorphic 
at the point a; two such pairs [F, a], [G, b] are considered equal, iff a = b and 
F =: G in a neighbourhood U(a) of a1). $ = [F, a] being an (analytic) element put 

(1) s(<f) = a , h(g) = F(a) . 

For every non-empty region J Q C S denote by Q(Q) the set of all elements £ with 
s(&) 6 Q. For every £0 e (£(Q) with s(S0) = a and for every A e (0, oo> with U(a, A) a 
c Q let 

(2) O(£0, A) = {£ e Q(Q); s(<f) e U(a, A), $ is a direct continuation1) of S0}. 

These neighbourhoods define a topology in &(Q); the topological space (&(Q) is 
locally connected. Denote by $l(Q) the system of all components of &(Q). Then, as 
is well known1), 

(3) &W e 21(12) means £F is an analytic function in Q, 

(4) each £F e 2l(.G) is an arcwise connected open subspace of (&(Q) with a countable 
basis2). 

x) See Saks-Zygmund: Analytic Functions, 1952. 
2) The famous PoincarS-Volterra Theorem. 
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We easily see that 

(5) the mappings s : (£(S) -» S, h : (£(S) -> S are continuous, 

(6') s(j^) 3) is a region for each & e 91(0), 

(6") h(ZF) 4) is a region for each non-constant $F e 9J(;Q). 

2. F being a meromorphic function in a (non-empty) region Q cz S, the set of 
all elements gx = [F, z] , z e O, is an analytic function &T e 9l(fi). ^ e 9l(&) 
being a single-valued analytic function, the function F'*? : $(£*) -> S defined by the 
condition 

(7) F^(z) = h(Sz) where i z e ^ is the (only) element with s(<fz) = z 

is meromorphic in s(gF). 

We identify the functions F, .#>, and ^", F^-, respectively. 

Remark . Xet 3F e 91(D) and let Q* be a region containing Q. It may occur that 
the extension :W* of £F onto .Q* (i.e. the analytic function in Q* containing all 
elements 6D e £F) contains exactly the same elements as 3F. Then, of course, gF* — 3F\ 
there is no difference between £F and 3F*. 

As a consequence, sin, e.g., is a (single-valued) analytic function both in E and S; 
logarithm is an analytic function in Sy E, S — {0}, and £ — {0}. 

3. Denote by (£inv the set of all invertible1) analytic elements. By well known 
theorems, for each non-constant function 3F e 91(0), 

(8) the set 3F — (£inv is isolated in ^ , 

(9) the set & n (£inv is a region. 

Hence, 

(10) for each two elements 6% S* e ,#" n (Sinv there is a curve <p in &F n (£inv con
necting S with #*. 

For each $ e Csinv, denote by g _1 the inverse element of g. As is easily seen, the 
function x : ®inv -* ®inv defined by /(<f) = <^_! is continuous, hence (in virtue of 
the identity X-i — x) a homeomorphism. Thus, 

(11) for each curve q> in (£inv, X ° 9 a - s ° 1s a curve. 

Definition. Let ^ e ^(Q) be a non-constant analytic function and let Q* be any 
region containing h( ,^ n 6 inv). An analytic function 3F* e 91(0*) is called the 
inverse of £F in Q*, iff £F* contains at least one element of the form g_x where 
l e F n (£inv. 

3) s(^") is the "natural region" (or "definition domain") of « "̂. 
4) h(^) is the range (of values) of &. 
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By (10) and (11), 

(12) for each region^Q* .3 h(& n (£inv) there is one and only one inverse analytic 
function 2F* of 3F in Q*; it contains all elements of the form S_x where 
Se&r n(£ i n ^inv 

Definition. Let 2F* e SH(Q*) be the inverse of 2F e <&(Q) in Q* and 2F the inverse 
of 3F* in Q. Then we say that the functions £F, £F* are mutually inverse and write 
&* = J^-i-5) 

Example 1. If &* e 9l(S) is the inverse of & e 2I(S), then ^ , <F* are mutually 
inverse. (Hence, exp and log, Id* and the n-th root are mutually inverse.) 

Example 2. The (only) branch1) &* of logarithm in P(0,1) = U(0, 1) - {0} 
is the inverse of £F = exp | {z e E; Re z < 0, |lm z\ < In), but £F, 3F* are not 
mutually inverse. Denoting by 2F** the inverse of 3F* in the half-plane h(2F* n 
n g inv) = h(&*) = {zeE; Re z < 0} we have &** = exp | {z e £; Re z < 0} * 
+ SF. 3F* and &?** are mutually inverse. 

4. Definition. We say that 3F e 9I(Q) is univalent1), iff h \ 3F is one-one. 

As is easily seen, 

(13) the univalence of £F e 21(0) implies 2F c: (£inv. 

Theorem 1. If 3F G SH(.Q) is univalent, then the inverse function ZF* of 3F in h(2F) 
is meromorphic and contains exactly all elements of the form S-i where S e &*\ 
further, £F, $F* are mutually inverse. 

If a non-constant function 2F e 9I(iQ) is not univalent, then the inverse function ,F* 
of 3F in h(3F) is not single-valued. 

Proof. 1. Let !F eS&(Q) be univalent. Then for each w e h($F) there is exactly 
one element Sw e i F with h(Sw) = w. Denoting 

(14) H(w) = s(Sw) for each w G h(_F), 

we define a mapping H of h(3F) onto s(«^); letus see that H is meromorphic in h(&). 

Choose w e h(3F) arbitrarily and denote z = s(Sw); then there is a A > 0 such 
that U = U(z, A) a Q, and a conformal mapping F :U -* S such that <̂ w = 
= [F, z] . F(U) is a region contained in h($F) and containing F(z) = h(Sw) = w. 
For each w' G F(U) there is a Z'GLT with F(z) = w'. As [F, z] G £F, we have [F, z'] = 
= Sw' and if(w') = z' = F-i(w'). Therefore,H = f_, in F(U) and [if, w] = (Sw)-X. 

Hence, H is meromorphic at the (arbitrary) point w G / - (^ ) . Moreover, £F* = H 
is the inverse of ^ in h ^ ) (containing, of course, only elements of the form \H, w], 
w G / i ( ^ ) , hence, only elements of the form S_t where S e 2F). We easily see that, 

5) The condition being symmetrical we have («-^-i)_i == «-F, of course. 
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reversely, _F is the inverse function of H. Thus, _F and JF* = H are mutually 
inverse. 

2. Now let us suppose that the non-constant function _F e 2l(_2) is not univalent. 
Then there are two distinct elements _* ;e_F (j = 1,2) with h(_*_) = h(<f2). In
vestigating separately two situations: 1. s(gt) = s(g2), 2. s(_*_) -# s(_*2), in each case 
we easily find (in any neighbourhood of _*_.) two distinct invertible elements Sj e _F 
with h(^) = h(g2). Then g* = («f)__ e _F* for ; = 1, 2, <f J * (T_, and s(<f?) = 

r1) =. h(S2) = s(^?J); therefore, _F* is not single-valued. 

Theorem 2. Let _F e 3l((2), _F* e $l(_2*) be mutually inverse functions, _F being 
single-valued (i.e., meromorphic in s(_F)); put 

(15) _2_ = s(.F n C i nv). 

Then _F* is univalent, contains exactly all elements of the form _?__ where 
( f e F n Ginv, and 

(16) i(_F*) = _F(_2_) , h(.jF*) = _2_ . 

Proof. _F* being the inverse of _F, it contains all elements of the form $__ 
where _*e_F n Ginv. For each _?* e _F* n (ginv, the element ^ = (^*)-i belongs 
to _F (as _F is the inverse of _F*), and _** = _?__. In order to see that „F* contains 
exactly all elements of the form _"__ where S e .F r\ (£inv, it remains prove that _F* 
contains no non-invertible elements. 

Suppose, on the contrary, that there is an _?0 e _F* - (_inv. The set _F* - (£inv 

being isolated in „F*, there is a <5 > 0 such that each element £ e O(S0, 5), $ + S0, 
is invertible. Writting _?0 = [F, a], F is not conformal at the point a and, therefore, 
there are two distinct points z_, z2 e U(a, 5), z_ 4= a 4= z2, such that F(z_) = P(Z2). 
Then _*_• = [F, z_], j = 1, 2, are distinct invertible elements of _F*, and gi = 
= ( ^ ) - i e _F are two distinct elements with s(gl) = s(<f2). Hence, _F is not single-
valued — a contradiction. 

,<F* containing exactly all elements of the form _?__ where 8 e _F n (£inv, the 
identities (16) hold. 

Suppose now that _F* is not univalent; then, by Theorem 1, the inverse function 
,SF** of _tF* in h($F*) = _2_ is not single-valued. As evidently _F** = _F | _2_, we 
obtain a contradiction. 

5. Theorem 3. Let _Fe9l(_2) be a single-valued function and let _F* e 9l(__*) 
be fhe inverse function of _F in _2*. _2_ being fhe sef (15), let _2* c: _F(_2_) be a non
empty region. Further, suppose the following condition holds: 

(17) For each w e Q*, there is a region G c _2* containing w, and further, there 
are disjoint regions Hz, z e _F___(w), such that _F__(G) 6) is a subset of the 

6) tSF_ _(w), _F_ _(G) are the inverse-images of the point w and the set G, respectively, under 
(the meromorphic function) _F. 
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union of all regions H2, that G is a subset of the intersection of all regions 
£F(HZ), Z G SW^^w), and moreover, z e H2 and 3F | Hz is one-one for each 
Z 6 ^ . i ( w ) . * 

Then the following assertions hold: 

1. Each branch1) £F* of 2F* in Q* containing some element of the form £-x 

where $ e £F n (£inv, s($) e Ql9 admits unrestricted continuation in Q* and contains 
only elements of the above form. 

2. If Q* = h(^), if & c ginv, and if the condition (17) holds for Q* = Q*, 
then 3F, 2F* are mutually inverse. 

3. If SF9SF* are mutually inverse functions, then &* admits unrestricted con
tinuation in Q*. 

4. The condition (17) holds, if 

(18) there is a set S of regions the union of which is Q* such that for each G e S 
the function £F is one-one on each component of the set 3F_Y(G) and maps 
it onto G. 

Proof. 1. Let the assumptions of part 1 of the theorem hold and let &* be a branch 
of &F* in Q* containing an element S* = S_Y where S = [F, z] e _¥ n <ginv, 
z G Qv It is sufficient to prove that the element £ * = [F*, a] admits a dontinuation 
along every curve1) (p : <a, /?> -* Q* with (p(<x) = a, and this continuation is an ele
ment of the same form as $*. 

Denote by M the set of all T G (a, /?> for which the element S* admits a continuation 
along the restricted curve q> | <a, T>, the respective chain1) containing only inverse 
elements of invertible elements of 3F. 

If T > a is sufficiently close to a, the elements of the form [F*, (p(t)], a g t ^ T, 
form such a chain. Hence M 4= 0 and c = sup M e (a, /?>; put N = F-t((p(c)). 

As (p(c) G Q*, by (17) there is a region G a Q* containing q>(c), and a system of 
regions Hz, zeN, such that ze H2 and F | H2 is one-one for each z e N , and 

(19) G c = n ^ ( H , ) , ^ - i ( G ) c U H , . 
zeN zeN 

Choose y G M n (a, c) so that <p(<y, c>) c G, and let {y*}a^-gy be the chain of 
elements along q> | <a, y> starting with S* = <?*, each element of the chain being the 
inverse of an (invertible) element of _Wm Let £ * = [*P, <p(y)], where !P : U(<p(y)) -> S 
is a conformal mapping, U(q>(y)) c G. Then !F is the inverse-function of 
SF | ¥(U((p(y))), and the connected set Y(U((p(y))) is contained in & _^(G). By the 
second inclusion in (19) and by the disjointness of the regions Hz, ¥(U((p(y))) CL HZ 

for some z EN. £F | HZ is one-one and equal to _9_l in ¥(U((p(y))). It follows that 
the meromorphic function (& | H2)_1 is an extension of W onto the region ^(H2) 
which contains, by the first inclusion in (19), the region G. 

{[(&? | i/x)-!, <p(t)]}y£t_cis a chain along the curve (p | <y, c> starting with <f* 
(which is a continuation of <̂ * along the curve q> | <a, y}). Therefore, ceM; supposing 
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c < P we could (by means of elements of the form [ ( ^ | Hz)-l9 (p(t)J) continuate 
further, beyond c, which would be a contradiction with the definition of c. Hence, 
c = P; _f * admits a continuation along cp and all elements of the respective chain 
have the required form. 

2. By the assumption of part 2 of the theorem, _F* has in h(_F) = Q* only one 
branch (identical with &F*) and contains all elements of the form $__ where *_f = 
= [F, z] , z e Qx = s(_F). By part 1 of the theorem, it does not contain any other 

elements. This implies that s(_^*) = h(&\ h(_F*) = s(3F); therefore the function 
,_F, _F* are mutually inverse. 

3. If _F, _F* are mutually inverse functions, each brach _F* of iW* in Q* contains 
inverse elements of invertible elements of 3F> for it contains invertible elements S* 
and for such elements ($*)-\ e _F. By part 1 of the theorem, each branch _F* 
admits unrestricted continuation in Q*; the same holds for _F*. 

4. Now suppose the validity of (18) and let w e Q*; let G e S be a region con
taining w. By assumption, £F(H) = G for any component H of ,^__(G). Therefore, 
H contains a point z with ,^(z) = w\ i.e., a point z e _F__(w). As _F | H is one-one 
by assumption, H contains only one such point. This implies that there is a one-one 
correspondence between the components of the set _F__(G) and the points z from 
_^__(w) such that each z is contained in the corresponding component of <_F_1(G). 
Not only inclusions (19), where N = _F__(w), but equalities hold. 

Example 3. arcsin being the inverse analytic function of sine2l(S) in S, the 
functions sin and arcsin are mutually inverse. By Theorem 2, arcsin is univalent and 
contains exactly all elements <_f__ where 6° = [sin, z], zeE, z 4= \(2k + 1) 7c 
(k being an integer). Hence, for instance, 

(20) s(arcsin) = £ - { - 1 , +1} . 

Denote 

(21) G = £ - ( ( - o o , - 1 > U < 1 , oo)), G ' = £ - ( - c o , 1>, G" = £ - < - l , oo) 

and 

(22) H„ = {z e £; i(2n - 1) n < Re z < i(2n + 1) TT} , 

(22') Hn = {ze £; |(2« - 1) n < Re z < J(2« + 3) TT, Im z > 0} , 

(22") tf„ = { z e £ ; i(2n - 1) n < Re z < _(2n + 3) n, Im z < 0} , 

where n is an integer. Then sin is one-one in each of the regions H„, H'„, -f„ and 

(23) s in_ . . (G) - J Hn, s in_ 1 (G ' )= J (H_. u if_.) , 
n = — oo n = — oo 

sin_1(G")= J (i-.B+1u^B+1) , 
« = — oo 
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(24) sin (Hn) = G , sin (H'2n) = sin (H"2n) = G', 

* sin(H2 n + 1) = s in (H^ + 1 ) = G". 

The system S = {G, G', G"} satisfies all conditions of part 4 of Theorem 3 with 
Q* = s(arcsin); by part 3 of Theorem 3, 

(25) arcsin admits unrestricted continuation in s(arcsin) . 

Example 4. Let 3F* e 2l(S) be the inverse analytic function of a (non-constant) 
rational function SF\ then 3F> SF* are mutually inverse. 

Denoting QY = s(^ n C£inv), Q2 = %(3F — (Sinv), the set Q2 is finite. Let us prove 
that 

(26) &F* admits unrestricted continuation in S — 3F(Q2) . 

(Corollary: If £F(Q^) n .̂ ~(.Q2) = 0, then &?* admits unrestricted continuation 
in s ( ^ * ) . It may be proved that the condition is not only sufficient, but also neces
sary.) 

Let w e S — £F(Q2) be an arbitrary point; let ^ _ x ( w ) = \al9 ..., ap}9 where aj 
are distinct points. All points aj belong to Qx\ hence, there is a A > 0 such that 
U(aj9 A) are disjoint neighbourhoods and that each restriction SF | U(aj9 A) is one-
one. As we easily see, 

(27) ^-!(U(^S))<z()U(aj9A) 
1=i 

for each sufficiently small b > 0. 
Each of the open sets tF(U(aj9 A)) contains the point w = 3F(aj)\ hence there is 

a b > 0 such that (27) holds and moreover, 

(28) U(w, b) <z 0 ^ ( l / f o , zl)) . 
1=1 

Denoting ,&* = S - ^(Q2) we see that the condition (17) holds; by part 3 of 
Theorem 3, (26) holds. . 

Author's address: 186 00 Praha 8, Sokolovska 83 (MFF UK). 
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