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Časopis pro pěstování matematiky, roč. 107 (1982), Praha 

ON A CHARACTERIZATION OF QUASICONTINUOUS 
MULTIFUNCTION 

TIBOR NEUBRUNN and ONDŘEJ NÁTHER, Bratislava 

(Received March 13, 1981) 

Given a function f: X -> Y9 where X, YSLTQ topological spaces, the quasicontinuity 
off may be characterized as follows (see [1]). 

Let X, Y be first countable topological spaces and X SL Hausdorff space. Then f is 
a quasicontinuous function at a point x e X if and only if there exists a nonempty 
open set G cz X such that xeG and the restrictionf| (G u {x}) is continuous at x. 

In the literature some attempts have appeared to characterize in a similar way 
the quasicontinuity of multifunctions (see [9]). We show in this note that under the 
asumptions given in [9] such a characterization is impossible both for lower and upper 
semi-quasicontinuity of multifunctions. We show that under some further restrictions 
on the topological spaces considered such characterization for the upper semi-
quasicontinuity may be obtained. 

1. A CHARACTERIZATION OF THE UPPER SEMI-QUASICONTINUITY 

We introduce some definitions which we shall use. We also present some con­
nections to similar definitions appearing in the literature. To cover various situations 
we consider mappings from X into Y, or into the potence set of Y, where X is a topo­
logical space, but in general we do not suppose that a topology on yis given. Instead 
of a topology on Ywe suppose that a collection Sf on yis given such that \]Sf = Y. 
Given such a collection on Y we say that Y is an .^-space (compare also [8]). Evi­
dently, if a topology ^ on yis given, then taking Sf = ^ we have an example of an 
5^-space. 

If a mapping / : X -> Y is given we shall refer to / as to a function or a single-
valued mapping of X, into Y. In case a mapping F of X into the set of all nonempty 
subsets of y is given we refer to F as to a multifunction. The notation F : X -* Y 
will be used in this case as well. Usually the capital letter F is used for a multifunction 
while / stands for a function assuming as values points of the set Y. In all what 
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follows a function / may be considered without misunderstanding as a multifunction 
assuming as values the sets {f(x)} (x e X). 

If X is a topological space and yis an ,^-space then a multifunction F : X -* Y is 
said to be upper (lower) semi-continuous at a point xeX if for any set Ve^ 
containing F(x) (for any set VeSf for which F(x) n V4= 0) there exists an open 
set U containing x such that F(y) cz V(F(y) n V =f= 0) for any y e U. 

Under the same assumptions on X and Y the multifunction F : X -> y is called 
upper (lower) semi-quasicontinuous at xeX if for any Ve 5^ containing F(x) (for 
any VeSf for which F(x) n V #= 0) and any open set U containing x there exists 
and open set G c 17, G 4= 0 such that F(y) c V(F(y) n V 4= 0) for any y e G. 

The corresponding notions of upper (lower) semi-continuity or upper (lower) 
semi-quasicontinuity on X are understood as the upper (lower) semi-continuity or 
upper (lower) semi-quasicontiniiity at any xeX. 

If yis a topological space then the above definitions coincide with the definitions 
of upper and lower semi-continuity (see e.g. [4] p. 393) or upper and lower semi-
quasicontinuity (see e.g. [7], [9]). Of course the topology ^ of yis taken instead of Sf. 

If / : X -> y i s a single-valued mapping then the upper as well as the lower semi-
continuity at x give the usual continuity at x and conversely. Similarly, the upper as 
well as the lower semi-quasicontinuity in this case coincide with the quasicontinuity 
in the sense of Kempisty (see e.g. [3], [6]). 

Given an <9 -̂space Y and a collection X of subsets of Y, we say that the space Y 
is first countable at the collection X if for any Ke X there exists a sequence {S,,}^- t 

of elements of S? such that Sn => Sn + 1, Sn => K for n = 1, 2 , . . . and for any SeSf 
for which S => K there exists n0 such that Sno cz S. 

A set A cz X in a topological space is said to be quasiopen if A. cz A0. (The notion 
of the quasiopen set was introduced under a different name by Levine in [5].) 

Theorem 1. Let X be a first countable Hausdorff topological space. Let F : X -+ Y 
be a multifunction and Y an £f-space which is first countable at the collection 
X = {F(x); x eX}. Then F is upper semi-quasicontinuous at a point xeX if and 
only if there exists a quasiopen set A containing x such that F | A is upper semi-
continuous at x. 

Proof. The "sufficient" part of the theorem can be verified without difficulty. It 
may be proved without any assumptions on the space X and Y. In fact this part can 
be proved essentially in the same way as a similar theorem for single-valued functions 
is proved (see [8]). 

Let us also prove this part for the sake of completeness. So let a quasiopen set A 
exist such that F | A is upper semi-continuous at x. Let SeSf, F(x) cz S and let U 
be an open set containing x. 

The upper semi-continuity of F | A implies that an open set Ux cz 17, xeUt 

exists such that F(y) cz S for any y eUx n A. Since Ut is open and x e Ux n A0, 

295 



the set G = Ut n A0 is nonempty, open and G cz U. Hence F(y) cz S for any 
y e G and the upper semi-quasicontinuity of F at x is proved. 

Now let F be upper semi-quasicontinuous at x. If {x} is open, then the theorem is 
proved because k is sufficient to take A = {x}. Suppose {x} is not open. Let {Un}n=l 

be a non-increasing base of neighbourhoods of the point x and {Sn}r=i a non-
increasing sequence such that Sn => F(x)9 SneS9 n = 1,2,... and for any SeSf 
there is Sno with Sno cz S. Now, for the set Sx and for the neighbourhood Ut there 
exists an open set Gx cz Ul9 Gx 4= 0, such that F(y) cz St for any y e Gx. Clearly 
Gt 4= {x}. From the fact that X is HausdoriT it follows that there is n2 > 1 such that 
Gx — U„2 4= 0. Take U„2. Then again the upper semi-quasicontinuity implies that 
there exists G2 cz U„2 such that G2 4= 0, G2 is open and F(y) cz S2 for y eG2. 
Since G2 4= {*}, there exists U„3 (n3 > n2) such that G2 — U„3 4= 0. So by induction 
we can construct a sequence {U„k}k=1 such that nfc < nk+l (k = 1, 2,...) and a se­
quence {Gfc}*=1 of open sets such that Gk — U„k+1 4= 0, Gk cz L7nit and F(y) cz Sk 

if ye Gk. Evidently, the set 

A = (\J(Gk-UnkJ)u{x} 
k=l 

is quasiopen. 
Now for any St take the neighbourhood Uni of the point x. We have Uni n A cz 

oo 

cz ( (J Gk) u {x} and F(U„, n A) cz St. Thus the upper semi-continuity of F|A at x 
* = - i 

is proved. 
Using Theorem 1 we are able to prove a result for the case when yis a topological 

space and F a compact-valued multifunction. 

Theorem 2. Let X be a first countable Hausdorff space and It a second countable 
topological space. Let F : X -> Y be a compact-valued multifunction. Then F is 
upper semi-quasicontinuous at a point xeX if and only if there exists a quasiopen 
set A containing x, such that F\ A is upper semi-continuous at x. 

Proof. We shall consider the space yas an «9̂ -space where £f is the topology of Y. 
To prove our theorem it is sufficient to prove that yis first countable at any compact 
set K cz yand then to use Theorem 1. 

So let & be a countable base of open sets in Y. Let ^ be the collection of all finite 
unions of the sets from J*; ^ is countable as well. Let K be compact, let {JVfc}r-=.i 
be the sequence of all WeV9 W => K. Put Sk = Wx n W2 n ... n Wk9 fc = 1, 2 , . . . . 
Clearly, Sk z> K9 Sk are open for all k. Let S 3 K be an open set. For each zeK, 
choose Vz e &S with z e Vz cz S. The compactness of K implies that some finite union 
of Vzs covers K9 hence there is K such that 5 z> Wk z> Sk z> K. The first countability 
of S at any compact set K is proved. 

The second countability in the preceding theorem may be omitted if a compact-
valued multifunction F : X -• Y is considered and Y is supposed to be pseudo-
metric. 
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Theorem 3. Let X be a first countable Hausdorff topological space, Y a pseudo-
metric space and F:Z-> Y a compact-valued multifunction. Then F is upper 
semi-quasicontinuous at xeX if and only if there exists a quasiopen set A con­
taining x, such that F | A is upper semi-continuous at x. 

Proof. The proof of Theorem 3 immediately follows from Theorem 1, if we know 
that the collection 6? of open sets is first countable at the collection X of all compact 
sets in Y. But if K is any compact set we can take Sn = U (S(x, ljn)), where S(x, ljn) 

xeK 

is the sphere with the centre x and radius ljn. Evidently Sn z> K, Sn => Sn+1 for 
n = 1, 2, . . . . If S is any open set such that 5 •=> K, then (see [2] p. 210) there exists n0 

such that K cz Sno cz S. 
The following corollaries for single-valued functions are evident. 

Corollary 1. (See [8].) Let X be a first countable Hausdorff topological space, 
Y an £f-space which is first countable on the collection of all singletons. Then 
a single-valued function f : X -> Yis quasicontinuous at xeX if and only if there 
exists a quasiopen set A such that x e A and f\ A is continuous at x. 

Corollary 2. (See [1].) Let X be a first countable Hausdorff space, Y a first count­
able topological space. Then a single-valued function f : X -> Yis quasicontinuous 
at a point x if and only if there exists a quasiopen set A such that x e A and f\ A 
is continuous at x. 

2. COUNTEREXAMPLES 

While the sufficient part in Theorems 1, 2, 3 is true for any two topological spaces 
X, Y, the necessity, i.e., the existence of a quasiopen set A containing x such that F | A 
is semi-continuous at x is in general not true. It is not true even in the case when X 
and Y are first countable Hausdorff spaces. So Theorems 3 and 4 in [9] are not 
valid without further assumptions. 

The first of our examples (in which X, Y are separable metric spaces) shows that 
simultaneous upper and lower semi-quasicontinuity of a multifunction F : X -> Y 
at a point xeX does not imply the existence of a quasiopen set A such that xeA and 
F | A is upper semi-continuous. Examples 2 and 3 are due to referee. They show that 
neither the condition of the first countability nor the condition that X is Hasudroff 
may be omitted. Example 4 concerns the lower semi-quasicontinuity. It shows that 
for F : X -> Y (now X, Y are again separable metric spaces) the simultaneous upper 
and lower semi-quasicontinuity does not imply the existence of a quasiopen set A 
such that x e A and F | A is lower semi-continuous. 

Examp le 1. Define a multifunction F : <0,1) -> R in the following way 
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F(0)= {1,2,3,...}, 
F(x) = {1,2,..., n - 1, x + n - l/(n + 1), n + 1,...} if xe<l/(n + 1), l/n). 
1) F is upper semi-quasicontinuous at any x e <0,1). 
a) Let x e <l/(n + 1), l/n) and let U, V be open sets such that xeU, V=> F(x). 

Since V is open we can choose e > 0 such that (x + n — l/(n + 1) — 8, x + n — 
- l/(n + 1) + e) c V, further fc G Vfor fc 4= n, fc = 1, 2 , . . . . If we put G = U n 
n (x - e, x + e) n (l/(n + 1), l/n) then evidently for any j leGwe have 

F(j;) = { l , 2 , . . . , n - 1, y + n- l/(n + 1), n + 1,...}. 

Hence (l) implies that F(y) a V. 

b) Let x = 0. Let U, V be open sets such that V =) F(0) and 0 e U. Choose 
a natural n such that l/n e 17. Then F(l/n) = F(0) cz V. By a), there is an open set 
G a U such that F(y) c Vfor any yeG. 

2) F is lower semi-quasicontinuous at any x e <0,1). 
a) Let x G <l/(n + 1), l/n). Let U be any open set containing x and Vany open 

set with F(x) n V #= 0. 
If x + n - l/(n + 1) $ V, then there exists a point fc 4= n such that fc G V. Putting 

G = U n (l/(n + 1), l/n) we have F(y) => {fc} for any yeG, hence F(y) n V 4= 0. 
In the case x + n — l/(n + 1) e V we can choose e > 0 such that (x + n — 

- l/(n + 1) - a, x + n - l/(n + 1) + e) c V. Then choosing G = Un (l/(n + 1), 
l/n) n (x — e, x + e) we have F(y) n V =j= 0 for any yeG. 

b) Let x = 0. Let V be any open set such that F(0) n V 4= 0. It means fc G V for 
some positive integer fc. Let U be any open set containing 0. There exists n > fc 
such that G = (l/(n + 1), l/n) c U. Then F(j;) => {fc} for any y e G, hence F(y) n 
n V 4= 0. The lower semi-quasicontinuity of F is proved. 

3) For any quasiopen set A containing 0 the multifunction F | A is not upper 
semi-continuous at 0. 

Suppose A is quasiopen, 0G A. Put Bn = A0 n (l/(n + 1), l/n) for n = 1, 2 , . . . . 
Each Bn is open and 0 e A0 implies that Bn is non-void for infinitely many n. If 
Bn = 0, put cn = 1/2, if Bn 4= 0 choose c„ > 0 such that l/(n + 1) + cn e Bn. Finally, 

oo 

put V = (J (n - 1/2, n + c„). If U is open and 0 e U, there exists n such that 0 4= 
n = l 

4= Bn c U. Thus F(A n (/) => F(5W) =5 F(l/(n + 1) + cn 9 n + c„. But n + cn £ V. 
Hence the multifunction F | -4 is not upper semi-continuous at 0. 

Example 2. Let X be the space of all ordinal numbers less than or equal to cox 

with the usual order topology. Of course, X is a compact Hausdbrff topological 
space which is not first countable. If a is an ordinal number, there are a unique non-
negative integer n and a limit number ft such that a = /? + n. Then, put /(a) = l/n 
if a < a>i,/(a)i) = 0. Consider the single-valued mapping/: X -+ R. To prove that/ 
is upper semi-quasicontinuous at the point co1 it suffices to observe that in any neigh-
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bourhood 17 of co1 and for any s > 0 there exists a e U with 0 < f(a) < e and {a} 
is an open set. 

Now, suppose that A is a quasiopen subset of X, cot e A and f | A is upper semi-
continuous (= continuous) at cox. If i is a positive integer, there exists a neigh­
bourhood U of cou suppose that U = {A eX; I > y j , where yteX, y{ < cot such 
that f(U n A) cz {te R; t < l / i}. Therefore there is no ordinal number a = /? + i 
with a e A, a > yf. Put y = sup ?;. Again y < a>u and all a G A, a > y are limit num-

i 

bers, hence A° n{XeX; l> y} = 0, thus c^ £ A0, which is a contradiction. 

Example 3. Let X consist of all (m, n) where m, n = 1, 2 , . . . , and a further 
element x. Put Xk = {(m, rc)eX; n = k}, Qk = {{m, n)eX; m ^ fc, w = fc}. 
Define a base neighbourhoods of x as the collection of all sets {x} u (X — Qy) 
where j = 1,2, ..., and for j !eZ f t as the collection of all sets {y} u (Xk — F) 
where F is a finite set. Evidently, X becomes a topological space which is first count­
able, Tt but is not Hausdorff. The closure of any neighbourhood of x is X. 

Define a single-valued f: X -» R by f(m, n) = ljn, f(x) = 0. Let V, U be open 
sets in R or X, respectively, such that VB 0, 17 9 x. We may suppose V = {f e R; 
\t\ < e}, U = X — Qk, where c > 0 and k is an integer. Put G = Xj9 where j > 
> max (1/e, k); then G is open and f(G) cz V. 

Now, suppose .A cz X is quasiopen, x e .4 c A0 andf | A is upper semi-continuous 
at x. If i is a positive integer, put W = {t e R; \t\ < lji}. Choose h such that 
f((X - Qh) n A) c W. This implies (K - Q^) n A n Kf = 0, i.e. AnXtcz Qh> 

hence A n J f is finite for each i, thus A0 = 0, which is a contradiction. 

Example 4. Define a multifunction F : <0, 1) -> R such that 

F(0) = {1,2} 

F ^ = J^) if x e <X /2^ l/(2« - 1)) , n = 1, 2 , . . . 
w [{2} if x e <l/(2n + 1), l/2n) , /i = 1, 2 , . . . 

1) F is upper semi-quasicontinuous at any x G <0,1). 

If x 4= 0 then this is obvious from the fact that F is constant on any of the intervals 
<1/2II- l/(2n - 1)) or <l/(2n + 1), l/2w). 

If x = 0 then taking V open such that V => F(0) and U any open neighbourhood 
of 0, we can put G = U. Then F(G) c F(0) c V. The upper semi-quasicontinuity 
of F is proved. 

2) F is lower semi-quasicontinuous at any x G <0,1). 

The lower semi-quasicontinuity at x + 0 may be proved similarly as the upper 
semi-quasicontinuity at x 4= 0 was. 

If x = 0, then for any open V for which F(0) n V 4= 0 and for any open set U 
containing x, we have 1 G Vor 2 G V. Let e.g. 1 e V. Then we can choose n such that 
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G = (l/2n, l/(2/i - 1)) c U and F(y) n V * 0 for any ye G. The lower semi-
quasicontinuity of F is proved. 

3) There is no quasiopen set A containing 0 for which F | A is lower semi-con­
tinuous at 0. 

Suppose A to be such a set. Let Vx = (1/2, 3/2) and V2 = (3/2, 5/2). According 
to the assumption there exist two open sets Ul9 U2 containing 0 and such that F(y) n 
n Vx #= 0 if y e Ut n A, i = 1, 2. Taking Ut n U2 n A, which contains y 4= 0, we 
have that F(y) = {1} and simultaneously F(y) = {2}. This contradicts the definition 
of F. The multifunction F | A is not lower semi-continuous at 0. 

A question arises if a characterization of lower semi-quasicontinuity analogous 
to that given for upper semi-quasicontinuity in Theorems 1 — 3, is possible. Example 
4 gives a negative answer to this question. 
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