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Časopis pro pěstování matematiky, roč. 107 (1982), Praha 

ON SOME REGULARITIES OF GRAPHS I 

JERZY PLONKA, Wroclaw 

(Received March 31, 1980) 

§0 

By a graph we shall mean a simple graph, i.e. a pair G = (U; X) where U is a non
empty set of vertices (not necessarily finite) and X is a set of 2-element subsets of U, 
called the set of edges (see [1]). If w, v are two adjacent vertices, i.e. {u, v} e X, we 
shall write u <-> v. A graph G is said to be connected if for any two vertices u, v e U, 
u 4= v there exists a sequence u = ui9..., un = v such that Ui<-+ui+1 for i = 
= 1, 2,.... n — 1. A maximal connected subgraph of G is called a component of G. 
If v is a vertex we denote by F(v) the set of all vertices adjacent to v and by Q(V) the 
degree of v, i.e. Q(V) = |F(^)(. Vertices of degree zero are called isolated, those of 
degree one are pendent. The graphs G in which Q(V) = m = const, are called m-
regular (see [1]). We denote Qr(v) = £ O(u); Or(v) = 0 if F(v) = 0. In (2) we 

uer(v) 
described all graphs G satisfying the condition gr(v) = m = const, for all vertices v 
of G. For ve U let us denote Qr(v) = Qr(v) + #(v), O~(v) = £r(v) — #(v). We say 
that a vertex v 6 U has the arithmetical medium property if |F(v)| is finite and Qr(v) = 
= [Q(V)Y- Let G = (U;X) be a graph. In § 1 we prove (Theorem 1) that Qr(v) = 
= m = const, for any vertex v e U iff G is k-regular, where k2 + k = m; k, m are 
non-negative integers. Further, we prove (Theorem 2) that any vertex v of G has the 
arithemtical medium property iff any component of G is a regular subgraph of G. 
In §2 we consider m — F~-regular graphs, i.e. graphs G for which O~(v) = m = 
= const, for any v e U. The meaning of m — F~-regularity is such that we count 
all exits from the vertices of F(v) without those which lead to v. We describe (Theo
rem 3) connected m — F~-regular graphs having pendent vertices and connected 
m — F~-regular graphs G having a vertex v where Q(V) = m. Finally, we describe 
all m — F-regular graphs for 0 _- m = 5 and all m — F~-regular graphs in which 
degrees of vertices assume exactly 2 values. 

The paper does not contain a complete characterization of m — F~-regular graphs, 
which seems to be difficult, but the research in this direction is continued by Z. 
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Majcher. We (with M. M. Sysio) study also some other extensions of F and F+-
regularities. The results of these efforts will appear in forthcoming papers (II and 

in). 
Some generalizations of regular graphs are easily reconstructed, see [3], so that 

new types of regularities seem to be interesting for other aspects of graph theory. 

§ 1 

Lemma 1. If in a graph G = (U; X) we have Qr(v) = m for each veU where m 
is a non-negative integer and there exist ul9 vteU such that ux «-» vl9 0(ui) < 0(^i)> 
then there exist u2, v2eU such that u2 <-» v2 and Q(U2) < Q(ut), Q(VX) = Q(V2). 

Proof. Denote ^(ui) = k, Q(VX) = s. By the assumption we have m > 0 < k < s. 
Let s' = max {Q(U): U G F(ui)} and let v2 be a vertex from F(ui) for which Q(V2) = s'. 
By the assumption we have 

(1) m = Qr(ux) = k + k.s'. 

Since s' = s > k we get by (1) 

(2) s' + s' .k > m . 

Observe now that ux e r(v2) and Q(UX) = k. If Q(V) = k for each ve T(v2) then (2) 
yields m = Qr(v2) = s' + s'fc > m — a contradiction. Thus there exists u2 e r(v2) 
where Q(U2) = k! < k < s' and u2 <-> v2. Q.E.D. 

Theorem 1. Qr(v) = m = const, for any vertex veU iff G is k-regular, where 
k2 + k = m; k, m, are non-negative integers. 

Proof of =>. If m = 0 then Q(V) = 0 for each veU and G is 0-regular. Let m > 0 
and suppose that G is not regular. Then there exist ul9vx€U satisfying the assump
tions of Lemma 1. Using repeatedly Lemma 1 we find that un, vneU with 

(3) 1 = Q(un) < Q(vn) = sn. 

We have Q$ (un) = 1 + sn = m, Qr(v„) ^ sn + sn . 1 = 2s„. Hence 2sM = 1 + sn and 
sn ^ 1 which contradicts (3). Thus the assumption that G is not regular leads to 
a contradiction. So G is fc-regular for some k, but ifveU then o+(v) = k + k . k = 
= m. 

Proof of <= is obvious. 

Theorem 2. Every vertex v of G has the arithmetical medium property iff any 
component of G is a regular subgraph of G. 
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Proof of =>. Let C be a component of G and v a vertex of C such that Q(V) = 
= min {Q(U): U e C}. Let F(v) = {ul9..., ue(v)}. We have 

I e(w<) _ oM 

Q(V) 

We also have Q(U() ^ 0(v) for wf e F(v). If Q(U,K) > Q(V) for some uk e F(v) then we 
get a contradiction with (4). So O(wt) = Q(V) for ŵ  e F(v) and since C is connected, 
Q(U) = const, for any ueC. 

Proof of <= is obvious. 

Remark 1. We can say that veU has the geometrical medium property if \r(v)\ 
is finite and 

weT(i;) 

Then we can state a theorem similar to Theorem 2. 

§2 

A graph G is said to be a double m-star (m _ 0) if G is of the form 

({a09...9am9 b09...9bm}; {{a09 b0}} u {{a09at}; i = 1,..., m} u 

u {{b0, bt}; i = l , . . . , m}). 

Obviously a double 0-star is a single edge. 

Theorem 3. A connected graph G = (U9X) with a pendent vertex is m — F~-
regular (m _ 0) iff G is a double m-star. 

Proof of =>. Let a be a pendent vertex in G. Let b be the vertex adjacent to a. 
If m = 0 then Q(D) = 1 and b <-> a. Suppose that m ^ 1. We have Qr(a) = Q(b) — 
— Q(O) — o(b) — 1 = m. Hence @(b) = m + 1 and as m _ 1 there must exist 
c <-• b, c 4= a. We shall show that if c <-> b and 0(c) > 1 then in F(c) there exists 
a pendent vertex. In fact, otherwise we have o(x) _ 2 for any x e F(c), hence m = 
= Qr(c) _ .2(b) + 2(e(c) - 1) - Q(C) = m + 1 + Q(C) - 2 = m + e(c) - 1. Thus 
m ^t m + Q(C) — 1 — a contradiction. 

We shall show now that for any c e F(b) it must be Q(C) = 1 or Q(C) = m + 1. 
In fact, let Q(C) = k where 1 < k < m + 1. Then, as we have shown above, there 
exists deF(c) and J is a pendent vertex. So Qr(d) = k — 1 — a contradiction. 
Evidently, there exists c e F(b) with Q(C) > 1 so that Q(C) = m + 1. But there exists 
exactly one c e F(b) such that Q(C) = m + 1. Otherwise we have Qr(b) = i(m + 1) + 
+ m + 1 — i — (m + 1) = mi for some 1 < i _ m + 1, which contradicts the 
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fact that Qr(b) = m. Let 0(c) = m + 1, deF(c) and d + b, then m = f0~(d) = 
= g(c) — co(d)-= m + 1 — e(d). Thus Q(d) = 1 for any d e F(c) and d =t= b and we 
have a double m-star. 

P roof of <= is obvious. 

Theorem 4. If a connected graph G = (U; X) without pendent vertices is m — F~-
regular and possesses a vertex v with Q(V) = m > 2, then G is of the following 
form: U = UtKj U2 where Uxr\U2 4= 0, Ut 4 0 4 U2, rhe subgraph induced 
by U2 is l-regular (a join of disjoint complete graphs with two vertices), the sub
graph induced by Ux is 0-regular (any vertex is isolated); any vertex from Ux 

is adjacent exactly to m vertices from U2, any vertex from U2 is adjacent exactly 
to one vertex from Ul9 and there are no more edges in G. 

Proof. Since Q(V) = m > 2, Qr(v) = m and there are no pendent vertices in G, 
it must be Q(X) = 2 for any x e F(v). Fix x and let y e r(x), y 4 v. We have m = 

= Qr (*) = ™ + e(y) - Q(X) = m + e(y) - 2- H e n c e e(y) = 2- L e t v'e f(y)>v' * 
4 x, then we can find that Q(V') = m. Since G is connected it must be Q(Z) = m 
or Q(Z) = 2 for any zeU. Putting Ut = {u: Q(U) = m}, U2 = {u: Q(U) = 2} we 
find the required description. 

Lemma 2. If a graph G = (U;X) is m — F~-regular and has no isolated or 
pendent vertices then m = Q(V) ^ 2 for any veU. 

Proof. In fact, for any u e r(v) we have Q(U) ^ 2, hence 

m = Qr(v) = V Q(U) - Q(V) = 2 Q(V) - Q(V) = Q(V) = 2 . 
tieE(i;) 

Theorem 5- If a graph G = (U;X) is connected, 2s — F~-regular, s > 1, has 
no pendent vertices and possesses no vertices of degree k, where 2 < k < s + 1, 
but possesses a vertex v of degree s + 1, then G is of the following form: U = Ux u 
u U2 where Ut 4= 0 # 112, l ^ n U2 = 0, the subgraph induced by Ut is l-regular, 
the subgraph induced by U2 is 0-regular, any vertex from Ux is adjacent exactly 
to s vertices from U2, any vertex from U2 is adjacent to 2 vertices from Uu and there 
are no more edges in G. 

Proof. Since Q(V) = s + 1 there must exist exactly one vertex vx eT(v) with 
degree s + 1 and all other vertices from F(v) have degree equal to 2. Analogously, 
if Q(U) = 2 and ul9 u2 e F(u), ux 4 u2, then Q(UX) = Q(U2) = s + 1, since Qr(u) = 
= 2s. As G is connected, any vertex G has degree either s + 1 or 2. Putting Ux = 
= {u: Q(U) = s + 1}, U2 = {u: Q(U) = 2} we get the required result. 

In Figure 1 we have a 2s — F~ -regular graph with s = 2. 
Theorems 3,4, 5 and Lemma 2 enable us to give a full characterization of m — F~-

regular graphs for 0 g m ^ 5. 
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Corollary 1. A graph G is 0 — F -regular iff any component of G is either an 
isolated vertex or a double 0-star. 

I Ғig. 1. 

Proof of =>. Let C be a component of G. In fact, if C is a component of G where 
|C | > 1 then by Lemma 2 there exist pendent vertices in G. So by Theorem 3 G is 
a double 0-star. 

Proof of <= is obvious. 

Corollary 2. A graph G is 1 — T~-regular iff any component of G is a double 
\-star. 

P r o o f of => follows from Lemma 2 and Theorem 3. 

P r o o f of <= — obvious. 

Corollary 3. A graph G is 2 — F~-regular iff any component of G is either 
a double 2-star or a 2-regular subgraph. 

P r o o f of =>. Let C be a component of G. If there are pendent vertices in C then 
we use Theorem 3. If there are no pendent vertices then by Lemma 2 we get that 
Q(V) = 2 for any vertex from C. 

P r o o f of <= is obvious. 

Corollary 4. A graph G is 3 — T~-regular iff any component of G is either 
a double 3-star or a graph described in Theorem 4 for m = 3. 

P r o o f of ==>. Let C be a component of G. If there are pendent vertices in C then 
we use Theorem 3. If there are no pendent vertices in C then by Lemma 2 any vertex v 
of C has degree either 2 or 3. But if Q(V) = 2 and vx <-» v «-> v2, v^ =J= v2, then, since 
Qr(v) = 3, it must be g(vt) = 3 and Q(V2) = 2 or Q(VX) = 2 and Q(V2) = 3. Thus 
in C there exists always a vertex of degree 3 and we can use Theorem 4. 

P r o o f of <= is obvious. 

Corollary 5. A graph G is 4 — F"-regular iff any component of G has one of 
the following forms: 
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(5a) C is a double 4-star, 

(5b) C is a graph from Theorem 4 with m = 4, 

(5c) C is a graph from Theorem 5 with 5 = 2. 

Proof of =>. Let C be a component of G. If there are pendent vertices in C then C 
is a double 4-star by Theorem 3. If there are no pendent vertices in C and there 
exists a vertex with degree 4 then we use Theorem 4. Otherwise, by Lemma 2 any 
vertex v of C has degree either 2 or 3. But there are vertices of both kinds since if 
Q(V) = 2 and vx <-+ v «-> v2, t^ =j= v2, then as ^ ( v ) = 4 we have either £(1^) = 3 
or Q(V2) = 3. Now we can use Theorem 5. 

P roof of <= is obvious. 

Theorem 6. A graph G = (U;X) is 5 — F"-regular iff any component C of G 
has one of the following forms: 

(6a) C is a double 5-star, 

(6b) C is a graph from Theorem 4 with m = 5, 

(6c) V(C) = V(Ct) u V(C2) u V(C3) u V(C4), where V(C-), V(C2), V(C3) u 
u V(C4) are not empty and pairwise disjoint, Cl9 C2, C3 are 0-regular subgraphs, 
C4 is a 2-regular subgraph; any vertex from C t is adjacent to 3 vertices from C2 

and one vertex from C3 u C4; any vertex from C2 is adjacent to one vertex from Ct 

and to one vertex from C3 u C4; any vertex from C3 is adjacent to 2 vertices from C2 

and to one vertex from C±; any vertex from C4 is adjacent to one vertex from C2. 
No vertex of C3 is adjacent to a vertex of C4. 

Proof of =>. Let C be a component of G. If there are pendent vertices in C then 
we use Theorem 3. Otherwise, if there exists a vertex with degree 5 then we use Theo
rem 4. In the remaining case for v e C we can have Q(V) = 2, 3 or 4 by Lemma 2. 
But there are vertices in C of all kinds since if Q(V±) = 2 and v2 «-> vx <-> v3, v2 4= v3 

then Q(V2) = 4 and Q(V3) = 3 or Q(V2) = 3 and Q(V3) = 4. If Q(V) = 4 then there 
are 3 vertices in T(v) of degree 2 and one of degree 3. If Q(V) = 3, {vt, v2, v3} =•• T(v) 
and Q(VX) ~t Q(V2) jg g(i?

3), then we can have the following cases: 

(5) Q(V,) = 4 , Q(V2) = 2 , Q(V3) = 2 , 

(6) Q(V±) = 3 , Q(V2) = 3 , Q(V3) = 2 . 

Putting Ct = {v: Q(V) = 4}, C2 = {v: Q(V) = 2} and denoting C3 the set of all 
vertices for which (5) holds and by C4 the set of vertices for which (6) holds, we get 
our theorem. 

Proof of <= is obvious. 

In Figure 2 we have an example of a graph described in (6c). 
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Remark 2. It seems that an m — F -regular graph is probably a union of a com
plete n-partite graph and a graph consisting of regular subgraphs, but the greater m 

Fig. 2. 

is the more complicated becomes the description. Some other results may be obtained 
by bounding the number of degrees of vertices in a graph G = (U; X). Let us denote 
D(G) = {n: 3 Q(U) = n}. Obviously, if |D(G)| = 1 then G is fc-regular for some k 

ueU 

and (k2 — k) — F"-regular. So we start studying an m — F"-regular graph G, 
where |D(G)| = 2. We define a graph GM = (Ux u U2;X) where Ut 4= 0 4= U2, 
U1 n U2 = 0; for M G Ux we have \r(u) nUx\ = 1, \r(u) n U2)\ = fc; for veU2 

we have |F(v) n U-J = /, |F(i;) n U2| = 0; k + 1 + /; k and / are arbitrary non-
negative integers, where k = 0 <=> / = 0. Obviously Q(U) ==- fc + 1 for u e Uu Q(V) = / 
for veU2. We have 

Theorem 7. An m — r~-regular graph G satisfies \D(G)\ = 2 iff G is of the 
form Gktl where kl = m. 

Proof of <= is obvious. 

Proof of =>. Put D(G) = {p, g}. Denote U1 = {u:ue U9 Q(U) = p}9 U2 = 
= {v: v e U, Q(V) = q}. Observe that if for some M0 e Ut we have |F(M0) n Uy| = r 
then for any M G 1/J it must be |F(M) n lIj| = r. In fact, let for instance u0eUl9 

\r(u0) n Ux\ = rx and for M G Ul9 u # M0 let |F(M) n 17^ = r2. Then 0 = m - m = 
= -?r-("o) - Qr-(u) = rlP + (p - rt) q - p - [r2p + (p - r2) q - p] = 
=• (rt — r2) (p — #) and (p — g) (r1 — r2) = 0 but P 4= ̂  so that rx = r2. 
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For u eUl9 denote \r(u) n UjJ = t, \r(u) n U2\ = fc. For i; e U2 denote 
|r(») n U^ r(v) n I1i| = /, |r(w) n C/2| = s. Thus 

(7) k+t = p*q = l + s. 

We have 

(8) m = 0r-(u) = fc(Z + s) + t(fc + r) - (fc + t), 

(9) Qr-(v) = /(fc + 0 + s(l + s)-(l + s) = m. 

Hence 

kl + ks + tk - k + t2 - t = kl + It + si - I + s2 - s , 

k(s + t - 1) + t2 - t = l(s + t - 1) + s2 - s, 

(k - l)(s + t - 1) = (s + t)(s - t) - (s - t) 

and finally, [(fc + t) - (/ + s)] (s + t - 1) = 0. 
It must be [(fc + *) — (/ + s)] 4= 0 since otherwise we get fc + f = / + s which 

contradicts (7). Thus 

(10) s + t - 1 = 0. 

But s and t must be non-negative integers so (10) implies: 

(11) s = 0, t = 1 or 

(12) s = 1 , t = 0 . 

If (11) holds then by (7), p = fc + 1, q = I and fc + 1 + /. By (8) or (9), m = fc/. 
Moreover, fc = 0 <=> / = 0 since if there is an edge connecting some vertex from Ut 

with a vertex v in U2 then g(i/) > 0. So in the case (11) the proof is finished. If (12) 
holds then the proof is analogous and it is enough to substitute in the end / by fc, 
fc by /, U1 by U2 and U2 by U±. 

Remark 3. For any fc, / satisfying the assumptions of Theorem 7, a graph Gkl 

always exists. In fact, if fc = / = 0 it is enough to take a graph ({a, b, c}; {{a, b}}) 
with exactly one edge {a, b] and to denote U± = {a, b}, U2 = {c}. If fc, / > 0 put 
Ut = A u B, ( J 2 - - C u D where A = {al9 ..., a,}, B = {fe1? ..., fc,}, C = 
= {clf ..., ck}9 D = {dlf ..., dk}, r(a) = {frj u C, F(fc,) = {flj} u D, i = 
= (1 , . . . , /); r(ct) = .A, F(df) = B, i = (1 , . . . , fc); the sets .A, B, C, D are pairwise 
disjoint. 

Corollary 6. For any m > 0 there exists at least d(m) non-isomorphic m — Ir
regular graphs, where d(m) denotes the number of positive divisors of wi

ll em ark 4. Theorems 4 and 5 can be also derived from Theorem 7, but the proofs 
given above are esentially shorter. 
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If we have D(G) = 3 we obtain much more possibilities. For instance, the graphs 
in Figures 3 and 4 are 10 — F"-regular. 

Ғig. 3. Fig.4. 

Finding a representation of m — F"-regular graphs G for which |D(G)| = 3 
is difficult since two vertices with the same degree need not be adjacent to the same 
number of vertices of a given degree, as was the case with |D(G)j = 2. For example, 
the vertex b in Figure 4 is adjacent to a with O(a) = 8 and the vertex / is adjacent to 
no vertex of degree 8. 

Thus if |.0(G)| " 3 ' t h e P r o b l e m cannot be quickly reduced to finding non-negative 
solutions of some equations as in the case |D(G)| = 2. 

One can ask if the existence of an m — F"-regular graph with D(G) = {pl9..., pp} 
implies the existence of a finite graph G' with D(G') = {pl9..., pn}. The next theorem 
gives the negative answer. 

Theorem 8. If G = (U;X) is an m — F"-regular graph, m > 5 and D(G) = 
= {2, 3, m — 1}, then G is infinite. 

Proof. Let U± = {u: Q(U) = m - 1}, U2 = {v: Q(V) = 3}, U3 = [w: Q(W) = 2}. 
Let ueUx and let S be the connected component which contains w. It must be 

(13) \r(u)n 1/^ = 0 , !F (u )nU 2 i = l , \r(u) n U3\ = m - 2 . 

Otherwise we have Qr-(u) > 3 + (m - 2) 2 = m - a contradiction. Thus there 
exists exactly 1 vertex veU2 n S adjacent to w. Let v' e U2 n S. It must be |F(i/) n 
n Ux\ = 1. Otherwise, even if |F(t/) n U2\ = 3, we have Q(V') = 6 which is a con
tradiction in the case m > 6. If m = 6, |F(t/) n U2 | -^ 3, then it is easy to check 
that any vertex v" adjacent to v' satisfies \r\y") n U2\ = 3 and consequently any 
vertex in S has this property, which contradicts (13). So it must be 
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(14) IF(v') n Uj n S\ = 1, |F(v') nU2nS\ = 0, |F(t/) n U3 n S| = 2 . 

We again see that in S there exists exactly 1 vertex w' adjacent to v' with Q(U') = 
= m — 1. Now we can state 

(15) \UX n S\ = |U2 n S| . 

If w e U3 n S then it must be |F(w) n Ut n S\ = 1, |F(w) n l/2 n S| = 1, |F(w) n 
n l/3 n S\ = 0. Thus if \Ut n S\ = \U2 n S\ = k < oo then |l/3 | = k(m - 2) = 
= k . 2 by (13), (14), (15). So m - 2 = 2, m = 4 - a contradiction. 

Remark 5. There exists an infinite m — F~-regular graph G = (U;X) with 
D(G) =-{2, 3, m .— 1} for any m > 5. In fact, put U = II! u U2 u ~73, where 
UUU2,U3 are pairwise disjoint, l/t = {a1? a2,...}, L72 = {bl9 b2,...}, l/3 = 
= {ci, ci, • - } - -"(«,) = {^h C/(o+i» •••' c /(0+m-2} (f(i) = (i - 1) (m - 2)), F(bf) = 
= {fli. ^(O+i' ^(0+2} (g(0 = (« - 1) 2), F(cf) = {-d(0, beii)} where d(i) = 
= min {k: k(m — 2) ^ /}, e(i) = min (r: 2r ^ i}. 

Remark 6. If m = 5 then Theorem 8 is not true which is shown by the graph in 
Figure 2. 

From our considerations it is seen that finding a description of all F~ regular graphs 
is not simple. However, we can state some a little easier problems the solution of which 
can be perhaps helpful for answering the general question. 

Problem 1. Describe all F~-regular graphs G in which |D(G)| = 3. 
k 

Problem 2. Let m > 5, 1 < k < m, 1 < qt < m (i = 1,..., k); ]T qt = k + m. 

Find an algorithm of constructing a finite m — F~-regular graph G having a vertex u 
such that Q(U) = k, r(u) = {ut,..., uk}, Q(U() = qt (i = 1,..., fe). 
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