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Časopis pro pěstování matematiky, roč. 107 (1982), Praha 

INDEPENDENCE IN A SET WITH ORTHOGONALITY 

JAN HAVRDA, Praha 

(Received February 21, 1981) 

1. This paper is devoted to a study of independent sets in a set with an ortho
gonality relation (Q, J_). It is assumed that the induced complete orthomodular 
lattice S? = (S, c , J_, Q, {^}) satisfies the axioms A and V given below. The in
dependence is considered from different points of view and attention is also payd to 
their interrelations. 

2. Let us restate here, for the convenience of the reader, some equivalent conditions 
on a lattice with an orthogonality relation & = (P, _>, ± , 1, 0): 

2.1. & is orthomodular. 

2.2. If a, b e P, a ^ b, then b = a v (a1 A b). 

2.3. If a, b e P, a = b, a1 A b = 0, then a = b. 

2.4. If a, b, c e P, a = c, b = c1, then (a v b) A C = a. 

If (Q, _L) is a set with an orthogonality relation and Sf — (S, c=, _1_, Q, {#}) is 
the corresponding complete lattice with orthogonality, we shall assume that Sf 
satisfies the following axioms. 

2.5. Axiom A. For every x e Q, x 4= <?, {x}11 is an atom in Sf. 

2.6. Lemma. If Axiom A is satisfied and if x, y e Q, x 4= o 4= y, x $ {y}1, then 
{x}11 v {y}1 = O = {x}1 v { j} 1 1 . 

Proof. If x e {y}1 1, then {x} 1 1 = {y} 1 1 and the statement is true. Let us suppose 
that x 4 {y}1 1. If {x}1 n {j;}11 * {J}, then {y} 1 1 cz {x}1, hence {x} 1 1 c {y}1 -
a contradiction. Hence {x}1 n {y} 1 1 -- {̂ } and we have {x} 1 1 v {y}1 = Q. 
If x £ {y}1, then j §.? {x}1 and therefore {y}1 1 v {x}1 = Q. Lemma is proved. 

2.7. Axiom V. If x e Q, A e S, x$A, x $ A1, then there exist an atom Al cz A 
and an atom A2 <= A1 such that x e At v A2. 
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2.8. Lemma. If the lattice & is orthomodular then the atoms Ax and A2 from 
Axiom V are unique and the following equations are satisfied: 

A, =- ({x}11 v A1) n A , A2 = ({x}1 1 v A) n A1. 

Proof. If x e .41 v A2 then, according to Statement 2.4, we have ({x}1 1 v A1) n 
n i c ^ v ^ v A1) n A = Av It is true that A1 c {x} 1 1 v A1. If ({x}1 1 v 
v A1) n A = {̂ } then, according to Statement 2.3, we have {x}1 1 v .A1 = A1, 

hence x e . 4 1 — a contradiction. Therefore, ({x}1 1 v A1) n A — A^ The second 
assertion is proved analogously. 

2.9. Definition. A set A, 0 4= A c O, A 4= {<?}, is said to be independent if and 
only if 

*£ V {y}J 

5 1 1 , AL±. for all x G A. We say that the set A is independent if and only if B11 4= A11 for every 
subset B cz ,4, 0 4= f? 4= A. We say that the set A[ is L-independent if and only if 
every nonempty finite subset B cz A is independent. 

Throughout, we shall assume that the lattice &> is orthomodular and it satisfies 
Axioms A and V. 

We can conclude, from Lemma 2.8 in [1], that a set A is independent if and only 
if it is /-independent. We can also immediately conclude, from Lemma 2.9 in [1], 
that every independent set is L-independent. 

The following theorem is a generalization of Theorem 2.11 in [1]. 

2.10. Theorem. Let A a Q be an independent set, a e Q, a$\/ {x}11. Then 
A u {a} is an independent set as well. xeA 

Proof. If the set A is a singleton, the assertion of the theorem is clear. Thus, we 
shall assume that the set A contains at least two points. Let us suppose that 
z e {a}11 v V {x}11 = {a}1 1 v (A - {z})11 for some z e A. Since a $ 

xeA-{z) 

$(A — {--})11, according to Lemma 2.1 in [1] there exists b e Q, b ± A — {z}, 
such that {a}1 1 v (A - {z})11 = {b}1 1 v (A - {z})11. It is true, by our assump
tion, that {z}11 cz {a}11 v(A- {z})11, hence A11 == {z} 1 1 v (A - {z})11 c 
cz {a}11 v (A - {z})11. Let us notice that A1 n [{a} 1 1 v (A - {z})11] = {z}1 n 
n (A - {z})1 n [{a} 1 1 v (A - {z})11] = {z}1 n (A - {z})1 n [{b} 1 1 v (A -
— {z})11] = {z}1 n {fc}11, where the last identity follows from the relation {6} 1 1 cz 
c= (A — {z})1 and from Statement 2.4. However, 

r 11 f t m „ / W i f a n d ? n l v i f & # {Z)X 

1 2 j n W ^ { b } 1 1 if and only if b e { z } 1 . 

If {z}1 n {b} 1 1 = {*} then, by Statement 2.3, we have A11 = { a } 1 1 v (A - {z})11, 
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hence a eA11, contrary to our hypothesis If {z}1 n {b}11 = {b}11 then {b}11 cz 
cz {z}1 and, since {b}11 cz (A - {z})1, it follows that {b}11 cz {z}1 n (AL - {z})1 = 
= A1 as well. Since z$(A - {z})11 in accordance with Lemma 2.1 in [1], there 
exists a ceQ, c 4= o, c 1 A - {z} such that .411 = {z}11 v (A - {z})11 = 
= {c}11 v (A - {z})11; hence, by Statement 2.4, we have A11 n {c}1 = (A -
- {z})11. Since 6 1 / 1 - {z}, b 1 z, it follows that 6 1 .A11 = {c}11 v (A - {z})11, 
hence {b}11 cz {c}1. Now, we have ze{a}1L v (A - {z})11 = {6}11 v (A -
- {z})11

 = {&}-»- v (A11 n {c}1) cz ({&}11 v zl11) n ({b}11 v {c}1) = ({b}11 v 
v Al11) n {c}\ Next, z e {z}11 = {z}11 n ^l11 cz ({b}11 v A11) n {c}1 n ^ X 1 = 
= A11 n {c}1 = (.4 - {z})11, contrary to the hypothesis. Thus, {z}1 n {b}11 is 
equal neither to {#} nor to {b}11. Hence, the set A u {a} is, in fact, independent. 
Theorem is proved. 

2.11. Theorem. Let A cz Q be an L-independent set, ae Q, and let us suppose 
that, for every nonempty finite set B cz A, a $ V {x}11 ' Then A u {a} is also an 
L-independent set. xeB 

Proof. The statement is true for a singleton set A. Thus, we shall assume that the 
set A contains at least two points. If the set A u {a} is not L-independent then there 
is a nonempty finite set B cz A such that the set B u {a} is not independent. This is 
only possible if there is an element zeB such that ze{a}L1 v V {X}1L = 

xeB-{z) 
= {a}11 v (B — {z})11. And now, we can follow the proof of Theorem 2.10 
replacing the set .A by the set B. The proof is concluded. 

2.12. Theorem. Let us suppose that A, B cz Q, let B be a finite set with A n B = 0, 
A 4= 0 =# B and let A u B be an independent set. Then 

(](AuB - {x})11 = A ±j_ 

xeB 

Proof. Let xit x2 e B, xx # x2. Let us denote C = B — {xu x2}. Since x. £ 
f (A u c)xx, x2 £ (/I u C)11, according to Lemma 2.1 in [1] there are yu y2 e £3, 
j ! 1 (A u C)xx, >>2 J. (A u C)11 such that L4 u B - {x2})xx = (4 u C u {x.})xx = 
= (A u C)11 v {x,}xx = (^ u C)1X v {^}--, ( A u B - {x.})xx = (A u C u 
u{x2})xx = ( ^ u C)xx v {x2}xx = ( ^ u C)xx v {>>2}

xx. Since (Au c)xx <= {yi}\ 
(A \J c)xx <= {>>2}

x, by Statement 2.2 we have {y^ = (A u C)X1 v [(4 u c)1 n 
^ {J ' I}1] , W 1 =(Au c)xx v [(yl u C)x n {>>2}

x], hence (,4 u CY n ({,-J1 v 
v {>>2}

x) = ( i u C)x n {(Au C)xx v [(A u C)x n {y:}1] v [(Au c)x n {.v2}
x]} = 

= ((A u C)xx v {(A u C)x n ((A u C)xx v fy.}11] n [(^ u C)xx v {^2}
xx]}) = 

= {[(A u C)xx v {yj-1-1] n [(_4 u C)xx v {>-2}
xx]}x, where the last identity fol

lows from Statement 2.2 and from the fact that (A u C)xx c [(A u C)xx v 
v {>>i}lx] n [(4 u C)xx v {^j11]. Thus, we have proved the identity (A u C)xx v 
v ({y,}11 n {>>2}

xx) = [(.4 u C)xx v {*}--] n [(A u C)xx v {,>2}
xx]. However, 
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{yi}11 n {y2}1J" = {*} because otherwise we have {yi}11 = {yi}11- Therefore, 
xie(AuC)11 v { x j 1 1 - (AuC)11 v {y,}11 = (^uC) 1 1 v {v2}x l = (AuC)1 1 v 
v {X2}11 = ( i u . B - {^l})11* which contradicts the independence of the set AuB. 
Now, f| (A u B - {x})11 = 0 (A u B - {x j ) 1 1 n (A u B - {x})11 = 

JC€B * JC€ .4uB-{xi ) 

= n (-4 u B — {xj — {x}) for all xt e B. The statement of the theorem can 
xeAuB-{Xi) 

be proved by induction. 

3. Let si = {At: iel} be a chain of L-independent sets in Q. Let us denote 
A = U A{. Let B be a finite set with 0 4= B c A. Then there exists an i0 e I such 

that B cz y4,v Therefore, B is an independent set. In accordance with Zorn's lemma, 
there exist maximal L-independent sets in Q with respect to the set-theoretical inclu
sion. 

If A cz Q is a maximal L-independent set, then V {x}11 = -2- Indeed, otherwise 
xeA 

we have yeQ such that y £ V {x}11. It follows, in this case, that y $ V {x}11 f° r 

xeA, xeB 

every non-empty finite subset B cz A. According to Theorem 2.11, the set A u {y} 
is L-independent, consequently, the set A is not a maximal L-independent set. This 
contradiction concludes the proof of our assertion. 

3.1. Corollary. Let A cz Q be a maximal L-independent set. Then for every 
x e Q there is a finite set Bx cz A such that 

xeBi 1 = V { y } l x . 
yeBx 

Proof. If x ^ B 1 1 for every finite B cz A then, according to Theorem 2.11, the 
set A u {x} is L-independent, which contradicts the maximality of the set A. 

3.2. Lemma. If A cz Q is a maximal L-independent set, then for every xeQ, 
x =t= x>> there exists a smallest set Bx cz A, with respect to the inclusion, such that 

x e B 1 1 = V { y } l x . 
yeBx 

Proof. If x e B11, x e C11, Bx cz A, Cx cz A and both Bx and Cx are finite, then 
Bxn Cx 3= 0. If this is not true, i.e., if Bx n Cx = 0 then, according to Theorem 
2.12, we have B 1 1 = f) (Bx u Cx - {y})11, CL

X
L = f\ (Bx u Cx - {z})11 and B 1 1 n 

yeCx> zeB* 

n ci1 = (Bx u Cx - .{v})lx n f| (BxuCx- {y})^ = (Bx u C, - {»})-- a 

n {y}11 = {*} for an element v e Bx u C*. Thus, we have B 1 1 n C11 = {*} -
a contradiction. Let us denote Bx n Cx = D^ and let us express Bx and Cx as the 
following disjoint unions: BX — DXKJ EX, CX = DXKJ FX. According to Theorem 
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2.12, we have Bxx = (){DxuExv F , - {y})xx, Cxx = (\(Dxv EXKJ Fx -
yeFx zeEx 

- {z})11; hence B11 n Cxx = ft (->* u Ex u F* - {j?})11 = At 1 , which yields 
yeExuFx 

xeD11. 

3.3. Theorem. Let M,N cz Q be maximal L-independent sets. Then cardM = 
= card N. 

Proof. We can assume, without loss of generality, that M n N = 0. 

a) To each element xeM assign an element y = (p(x)eN such that the set 
{x} u (N — {y}) is L-indepcndent. We shall prove that such an element y exists. 
In accordance with Lemma 3.2, there exists a minimal finite set Bx cz N such that 
xeB11 = V {y}11- Let us choose any element y e Bx. If B cz N - {y}, B #= 0 

yeBx 

is a finite set then x £ J511 because otherwise we have Bx cz B9 hence J G B - a con
tradiction. It follows from Theorem 2.11 that {x} u (N — {y}) is L-independent. 

b) Let $F be a family of functions such that the following assertions hold for each 
fe&: 

(i) Df cz M, Rf cz N, where Df is the domain of/ and Rf is the range of/; 
(ii) / : D / -» _Ry is a bijective mapping; 

(iii) Df v (N — Rf) is an L-independent set. 

We shall order the family 3F as follows: / _ a if and only if Df cz Dg and / (x) = 
= g(x) for all x G Df. 

There is a nonempty chain «^0 cz SF containing the function cp which we have 
constructed in part a) of this proof. Every nonempty chain 3FQ cz <F has an upper 
bound/ 0 in &. Indeed, put Dfo = \J Df and/0(x) = f(x) for each xe Df and each 

fe^Q. The function / 0 satisfies the conditions (i) and (ii), where Rfo = (J Rf. 

We shall prove that it satisfies the condition (iii) as well; therefore,/0 e &. For every 
fe^0 the set Df u (N - fly) is L-independent, consequently, for every / e «F0, 
the set DfKj(N— \J Rg) = Dfu(N - # / o ) is L-independent as well. Now, the 

family {Df u (N — jR/o) : / e ^ 0 } is a chain of L-independent sets. As is shown at 
the beginning of part 3, the set (J {Dfu(N- Rfo)} = Dfo u (N - Rfo) is 

L-independent. Therefore, in accordance with Zorn's lemma, there is a maximal 
element h in 3F. 

c) We shall prove that Rh = N. If not, then Rh 4= N. It follows that Dh * M 
because otherwise the set Dhu (N — Rh) = M u (N — £/;) is L-independent, which 
is not true. Choose u e M — Dh and veN — Rh- If w ^-B 1 1 for every finite B cz 
a Dh\j(N - Rh) we put h'(w) = t; and h'(x) = h(x) for all x e Dh. The extension h' 
of the function h satisfies the conditions (i) and (ii). According to Theorem 2.11, 
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the set Dh u {«} u (N — Rh) is L-independent, hence, the set Dh u {u} u (N — Rh — 
— {v}) is also L-independent. Consequently, the extension h' satisfies the condition 

(iii), therefore the function h is not the maximal element in !F. If u e B11 for a finite 
set B c Dh u (N — Rk) then, by the same argument as in the proof of Lemma 3.2, 
we can see that there is a smallest set Bu<~ B such that u e BU

L. Of course, Bu n 
n (N — Rh) 4= 0. Indeed, otherwise we have Bu c Dh c M, therefore the set M is 
not L-independent. We chose t e Bu n (N - JR,,) and put ft"(w) = t. The extension 
ft" of the function ft satisfies the conditions (i) and (ii). Let C c Dh\j (N - Rh — {t}) 
be a finite set, C 4= 0. Then w £ C11, because otherwise we have Bu a C, hence 
f e C - a contradiction. According to Theorem 2.11 the set Dh u {«} u (N — Rh — 
— {t}) is L-independent. Thus, the extension ft" satisfies the condition (iii) as well, 
which implies that the function ft is not the maximal element in IF. We can conclude 
that Rh = N. 

d) The inverse mapping \J/ = ft-1 : N -> Dh c M is a one-to-one mapping of N 
to M. In view of the symmetry of the sets M and N, there is a one-to-one mapping 
of M to N as well. According to the well known Cantor-Bernstein Theorem, we 
have card M -= card N. The theorem is proved. 
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