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Časopis pro pěstování matematiky, roč. 108 (1983), Praha 

A NOTE ON THE INVARIANCE OF BAIRE SPACES 
UNDER MAPPINGS 

JOZEF DOBOS, Kosice 

(Received January 21, 1983) 

In 1961 Z. Frolik in his paper [3] proved that iff is an almost continuous and feebly 
open mapping of a Baire space X onto a space Y, then Yis a Baire space. In 1977 
T. Neubrunn in his paper [4] proved that iff is a one-to-one feebly continuous and 
feebly open mapping of X onto Y, then X is a Baire space if and only if Y is a Baire 
space. 

In the present paper we shall give a generalization of there results, assuming more 
generally that f is a feebly continuous mapping such that for every nowhere dense 
set £ cz Ythe setf_1(F) is nowhere dense. 

For the basic properties of Baire spaces see [ l ] , Chapter 9, and [2]. 

Definition 1. A space X is said to be a Baire space if every nonempty open subset 
of X is of the second category. 

Definition 2. A mapping f from X onto Yis said to be almost continuous if 

f-\G)CCl(lnt(f-\G))) 
for any open set G cz Y. 

Definition 3. A mapping f from X onto Yis said to be feebly continuous (feebly 
open) if for any nonempty open set V cz Y(U cz X), the set Int(f_1(V)) (Int(f(U))) 
is nonempty. 

Remark . A space is a Baire space if and only if the intersection of every countable 
family of open dense sets is a dense set (see [2]). 

We shall prove the following 

Theorem. Let us suppose that f is a feebly continuous mapping of a space X onto 
a space Y such that for each E cz Y, 

(1) E is nowhere dense in Y=>f~i(E) is nowhere dense in X . 

IfX is a Baire space then Yis a Baire space. 
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Proof. Suppose that X is a Baire space. Let Un9 n -= 1, 2,..., be open dense sub
sets of Y. We shall prove that 

00 

P) Un is dense in Y. 
n = l 

Put 
Zn=-Int(f-\Un))(n = l,2,...). 

Since the sets Y — Un are nowhere dense in Y, by (1) we obtain that f~1(Y— Un) 
are nowhere dense in X. Hence 

Zn = X-C\{f-\Y-V„)) 
00 

are dense in X. Since X is a Baire space, f] Zn is dense in X. By the feeble continuity 
oo n = 1 

, of/ the set f(f] Zn) is dense in Y. Hence by 
n = l 

/ ( n z„) c n -I., 
n = l n = l 

oo 

the set H Un is dense in Y. The proof is complete. 
n = l 

Corollary 1. (See [3; Theorem 1].) Let us suppose that f is an almost continuous 
and feebly open mapping of a space X onto a space Y. If X is a Baire space then Y 
is a Baire space. 

Proof. We shall prove that / satisfies (1). Let E be a nowhere dense subset of Y. 
Hence Y— C\(E) is dense in Y. Since / i s feebly open the set/~1(Y— C1(E)) is dense 
in X. By almost continuity of/ we have 

f-\Y- C\(E)) cz a ( in t ( r - (y- C1(F)))) c C1(X - C\(f-\E))) . 

Thus the set X — C\(f"~l(Ef) is dense in X9 i.e. the set/_1(F) is nowhere dense in X. 
The proof is complete. 

Corollary 2. (See [4; Theorem].) Iff is a one-to-one feebly continuous and feebly 
open mapping ofX onto Y, thenX is a Baire space if and only if Yis a Baire space. 

Proof. First suppose that X is a Baire space. We shall prove tha t / satisfies (1). 
Let £ be a nowhere dense subset of Y. Let U be a nonempty open subset of X. Put 

V=Int(U-/-1(F)). 

Evidently Vis an open subset of U and Vnf~x(E) is empty. We shall prove that V 
is nonempty. The set Y — C\(E) is dense in Y. Since / is feebly open, Int(/(U)) is 
nonempty. Then the set 

(Y-Cl(£))nlnt( /(U)) 

410 



is nonempty. Since / is feebly continuous and one-to-one we obtain 

0 * I n t C T ^ Y - C\{E)) n Int(/(U)))) c I n t f / " 1 ^ - Cl(F))) n 

^ / ~ W O ) c IntiX-f-^CliE))) n l / c F , 

Then Vis nonempty. Thus the set/_ 1(£) is nowhere dense in X. 
The "only if" part follows from the fact that the inverse mapping/"x is also feebly 

continuous and feebly open. The proof is complete. 
In the conclusion we show that the assumption "one-to-one" in Corollary 2 cannot 

be omitted. 

Example. Put X = (— oo, oo). Let ybe a dense countable subset of the interval 
(0, l). Let g be a mapping of the set of all integer numbers onto Y. Denote by [x] 
the integer part of x. Put 

T= {xeX; x - [x]eY] . 

Define a mapping / : X -> Y as follows: 

f(x) = \x~ W if x e T> 
V ( M ) otherwise. 

Then the mapping / is feebly continuous and feebly open but X is a Baire space 
while Yis not. 

First we shall prove that / is feebly continuous. Let P c Y, Int(P) =# 0. Put 

U = g"1(P) + Int(P). 

Then U is a nonempty open subset of X and U a /_ 1(P) . Hence the set Int(/-1(P)) 
is nonempty. 

Now we shall prove that/ is feebly open. Let S c X, Int(S) 4= 0. Since Tis dense 
in X, there exist u, v e T, u < v, such that (w, v) a S, [«] = \y]. Put 

V= (u,v)n y . 

Then Vis a nonempty open set such that V c /(S). Hence Int(/(S)) is nonempty. 
Evidently, X is a Baire space but yis not a Baire space. 
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