
Časopis pro pěstování matematiky

Elena Pavlíková
A remark on the differential equation y′′ + q(x)y = r(x)

Časopis pro pěstování matematiky, Vol. 109 (1984), No. 1, 86--92

Persistent URL: http://dml.cz/dmlcz/118198

Terms of use:
© Institute of Mathematics AS CR, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118198
http://project.dml.cz


Časopis pro pěstování matematiky, roč. 109 (1984), Praha 

A REMARK ON THE DIFFERENTIAL EQUATION / ' + q(x) y = r(x) 

ELENA PAVLIKOVA, 2ilina 

(Received January 13, 1983) 

In [4] M. Laitoch introduced the systems of knots of the 1st and 2nd kinds, cor
responding to the differential equation 

(q) y" + q(*)y = r(x), 

where q(x) e C2(J), r(x) e C0(J), q(x) > 0 for x e J, J is an open interval, and gave 
a modification of Sturm's theorem on separating zeros of solutions or zeros of the 
first derivatives of solutions of the 2nd order linear homogeneous differential equation 

(q) y" + q(x)y = 0. 

In this paper we will extend the above mentioned results from [4] by using the 
fc-th accompanying equation for (q) with regard to the basis (a l 5 . . . , ak, pi9 ..., pk), 
where a,-, Pj are real numbers such that <xj + pj > 0, j = 1, ..., k. 

1. DEFINITIONS AND NOTATION 

In this paper we consider a linear nonhomogeneous differential equation of the 
2nd order 
(1.1) y" + q(*)y = r(x), 

where q(x) > 0 for x e J, J is an open interval. 
We shall suppose the solutions of the corresponding homogeneous equation 

(1.2) / ' + q(*)y = 0 
to be oscillatory. 

Definition 1.1. Let <xi9 Pi be real numbers such that OL\ + fi\ > 0. Denote 

(1.3) eiW = ei(x,a 1 5^) = 

= v JLiPiq' 1 i Pig" 3 fa'2 

"i + Plq 2 a? + p\q 4 (a? + P\qf ' 

(1.4) Rì(x) = *i(*, «., ßl) = ,Y+JS - firq 

(«î + ßҺУ'2 («î + ß\q)3'2 
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Assume q(x) e C2(J), r(x) e Ct(J), q(x) > 0 for x e J. The differential equation 

(1.5) y" + Qi(x) y = R^x) 

is said to be the first accompanying equation for the differential equation (1.1) 
with regai d to the basis (a1? J^). 

It is easy to verify that if v(x) is a solution of (1.1), then the function 

is a solution of the differential equation (1.5). 

Remark 1.1. If we choose r(x) = 0 for x e J in the above considerations, then we 
get as a special case the situation studied in [3], concerning the first accompanying 
equation 

(1.7) y"+Qi(x)y = 0 

for the differential equation (1.2) with regard to the basis (a1? px). 
For k > 1 the k-th accompanying equation is defined inductively. 

Definition 1.2. Let ct1,..., ak, f}±,..., jSfc be real numbers such that cij + $) > 0, 
j = 1, . . . , k. Assume q(x) e C2k(J), r(x)eCk(J). The first accompanying equation 

(1.8) / + Qk(x)y = Rk(x) 

for the (k — l)st accompanying equation 

(1-9) y"+Qk-1(x)y = Rk_1(x) 

with regard to the basis (<xk, fik) is said to be the k-th accompanying equation for the 
differential equation ( l . l) with regard to the bais (ct1,..., aA, f}u ..., f$k). Functions 
Qj(x), Rj(x) are defined inductively and we assume Qj(x) > 0, j = 0 , 1 , . . . , k — 1, 
<20(x) = q(x) for x G J. 

A straightforward calculation shows that if v(x) is a solution of ( l . l j , then the 
function 
(1.10v) Vh(x) = Vk(x, a l f . . . , a„ pl9..., j?,j = 

-[4--4«'^^+fc[^^]](«i+^"''2+---]-

• («5 + /5|Qi)-1/2 + ...](«t
2-i + ^2-iet-2)-1/2]'](«2 + tfa-i)-1'2 

is a solution of the differential equation (1.8). 
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Remark 1.2. If r(x) = 0, x e J, then Rk(x) s 0 and the differential equation 

(1.11) y* + Qt(x)y = 0 

is the fc-th accompanying equation for the differential equation (1.2) with regard 
to the basis (a l5 . . , cck, pl9..., Pk). 

2. A MODIFICATION OF STURM'S THEOREM ON SEPARATING ZEROS 
OF SOLUTIONS OF A LINEAR DIFFERENTIAL EQUATION 

OF THE 2ND ORDER 

O. BoriWka. in [ l ] introduced the n-th central dispersions corresponding to the 
differential equation (1.2). 

Throughout this section we suppose that for n = 0, ± 1 , . . . ; fc = 1, 2, ... , 

<Pk,n > ^k,n 

are the w-th central dispersions of the first and second kinds corresponding to the 
fc-th accompanying equation for the diffrential equation (1.2) with regard to the basis 
(a1,...9ak,p1,...,pk). 

Lemma 2.1. Let (1.11) be the k-th accompanying equation for the differential 
equation (1.2) with regard to the basis (a1, . . , ak, / ? x , . . , Pk). Then the differential 
equation (1.11) is oscillatory if and only if the differential equation (1.2) is oscil
latory. 

The proof is quite similar to the proof of Theorem 1.2 in [2]. 

Theorem 2.1. Let xe J and let v0 be a real number. Let k ^ 1 be an integer and 
let (xl9...9ak9 Pl9.., Pk be real numbers such that a] + P] > 0, j = 1,2, ...,k. 
Let 

q(x)eC2k(J)9 r(x)eCk(J)9 

Qj(x)>09 j = 0, l , . . , f c - 1 , for xeJ9 

Qo(x) = <l(x) for xe J . 

Let vx(x)9 v2(x) be arbitrary particular solutions of (1.1), let Vkl(x)9 Vkt2(x) be 
functions defined by (1.10V1), (I.10v2), respectively. If 

yk,i(
xo) = * M ( * O ) = vo » 

then we have 

KibPkJxo)] = Vkt2[<Pktn(X0J] 

and Vktl(x) 4= Vkt2(x)for xeJ9x + (pk,n(x0)for every n = 0, ± 1 , . . . . 
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Proof. Let vlvx), v2(x) be solutions of the differential equation (l . l) . It follows 
from (1A0V1), (1.10V2) that the functions Vk j(x), Vk 2(x) are solutions of the equation 
(1.8). 

Put Uk(x) = Vk2(x) — Vkl(x), xe J. Then by Lemma 3 in [4], Uk(x) is a solution 
of (l . l 1) and by Lemma 2A, the differential equation (1.11) is oscillatory. 

At the point x0, by hypotheses, we have 

Uk(x0)= Vkt2(x0) - Vkti(x0) = 0 . 

According to Lemma 1 in [4] we have 

Uk[q>kt„(x0)] = ° 

and Uk(x) =# 0 for x G J, x 4= q>k,n(x0) for every n = 0, ± 1 , . . . . This implies 

0 = Uk[q>ktn(x0)] = Vki2[q>kt£x0)] - Vktl[(pkn(x0)] 

and 
0 * Uk(x) = Vkt2(x) - Vktl(x) 

for x e J, x 4= q>k,n(xo)- The theorem is proved. 

Theorem 2.2. Let x0e J and let v0 be a real number. Let k g 1 be an integer and 
let a1? ..., cck, Pi, ..., Pk be real numbers such that &j + Pj> 0, j = 1, 2, ..., k. 
Let 

q(x)eC2k(j), r(x)eCk(J), 

Qj(x)>0, j = 0, 1,..., k - 1, for xeJ, 

Qo(x) = <l(x) for x G J . 

Lel vi(x), ^ ( x ) ^ arbitrary particular solutions of (l.l), let Vk,i(x), Vk2(x) be func
tions defined by (1.10V|), (1A0V2), respectively. If 

Vk\x(x0)= Vk\2(x0) = v0, 
then we have 

Vk,l[Kn(Xo)] = Vk\2[lkktn(x0)] 

and Vk\i(x) 4= Vk\2(x) for x e J, x 4= ^k,n(x0) for every n ^ 0, ±1,... . 

Proof. By hypotheses, the function Uk(x) = Vkt2(x) — Vh t(x) for x e J is a solu
tion of (1.11) and by Lemma 2.1, the differential equation ( l j l ) is oscillatory. 

At the point x0 we have 

U'k(x0) = Vk\2(x0) - v;tl(x0) = 0. 

According to Lemma 1 in [4] we have 

ULl^Xoj] = 0 
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and U'k(x) + 0 for x e J, x * ^k,H(x0) for every n = 0, + 1 , . . . . Therefore 

0 = V'kfykJxoJ] = n ' , 2 ^ , ^ o ) ] - ^, i[^,n(*o)] 
and 

o * ufa) = vk\2(x) - V;fl(x) 
for every xe J, x = ^k,n{x0)' This completes the proof. 

Let x0e J and let v0, v'0 be real numbers. Let k J_ 1 be an integer and let a1? ..., ctk, 
Pl9..., Pk be real numbers such that ct) + P) > 0,j = 1, 2 , . . . , k. Let 

q(x)eC2k(J)9 r(x)eCk(J)9 

Qj(x) > 0 , j = 0, 1, ..., k - 1 , for x e J , 

Qo(x) — q(x) for XE J . 

Let i?(x) be an arbitrary particular solution of (1.1), let Vk(x) be the function defined 
by (I.10vj. Let Vk(x0) = v0 or Vk\x0) = v0. 

Definition 2.1. The set of all points {(pkt„(x0), Vk[_<pkt„(x0j]} for n = 0, + 1 , ... 
will be called the system of knots of the (2k + l)st kind corresponding to the dif
ferential equation ( l . l j , to the condition (x0, v0) and to the basis (al9..., ctk, Pl9 . . . 
..., pk). It will be denoted by 

~-»2fc+lVX09 V0> r) = $2k+ l ( X 0» V0> r> a l » • • •> afc> ^1» • • -J Pfc) • 

Remark 2.1. Let S1(x0,v09Rk) = S1(x0,v0,Rk(ct1,...,ctk, Pl9...9fik)) be the 
system of knots of the 1st kind corresponding to the differential equation (1.8) and 
to the condition (x0, v0). Then 

•Sl^O, vo> Rk) = ^ 2 * + I ( ^ 0 J VO> r) -

Definition 2.2. By the bundle of solutions of the (2k + i)st kind corresponding 
to the differential equation ( l . l) , to the condition (x0, v0) and to the basis (a l s . . . , crk, 
Pi> • • •> Pk)

 w e niean all solutions v(x) of (l . l) satisfying the condition 

*kl*o) = vo • 
It will be denoted by 

T2k+i(x0, v09 r) = T2k+1(x0, v0, r, ctl9 ..., ctk, pl9 ..., pk). 

Definition 2.3. The set of all points {\l/kf„(x0), Vk[\l/kn(x0)]} for n = 0, + 1 , . . . 
will be called the system of knots of the (2k + 2)nd kind corresponding to the 
differential equation ( l . l) , to the condition (x0,v'0) and to the basis (a1,...,ctk, 
Pi> •••> Pk)- K wiH be denoted by 

^2k+2\Xoy v0, r) = S2k+2(x0, r0, r, ctu ..., ctk, p1? ..., pk). 

Remark 2.2. Let S2(x0, v0, Rk) = S2(x0, v0, Rk(ctl9..., ctk, Pu...,Pk))9 be the 
system of knots of the 2nd kind corresponding to the differential equation (1.8) 
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and to the condition (x0, r0). Then 

S2v*0> r0> Rk) = $2k + 2(X0> ^o* r) • 

Definition 2.4. By the bundle of solutions of the (2k + 2)nd kind corresponding 
to the differential equation ( l . l) , to the condition (x09 v'0) and to the basis (<xl9..., cck9 

HA> • • •> Pk) w e mean all solutions v(x) of (1.1) satisfying the condition 

Vk(
xo) = vo • 

It will be denoted by 

T2k + 2(
x0i V0> r) = -r2fc + 2(-x:0> U0> r> a l > ••*> a*> Pl> •*•> Pk) • 

Let $2k+i(xo> vo> r) anc* ^2fc+2(̂ o> uo> r ) be the systems of knots of the (2k + l)st 
and (2k + 2)nd kinds corresponding to the differential equation (1.1), to the initial 
conditions (x0, v0), (x09 v'0)9 respectively, and to the basis (a l 9 . . . , afc, pl9...,Pk). 

Let xl9 x2 G J. Let vl9 vl9 v'l9 v2 be real numbers such that 

[xl9 vj, [xl9 v2~\ e S2k+1(x09 v09 r) 
and 

LX1> ^lj> LX2> t?2j G S2fc + 2(x0, V0> r) • 

Definition 2.5. The points [xl9 i^], [x29 v2] will be called the neighbouring knots 
of the (2k + l)st kind corresponding to the differential equation (1.1), to the con
dition (x09 v0) and to the basis (ccl9 ..., ak, pi9 ..., /?*) if the numbers xt and x2 are 
the neighbouring numbers of the 1st kind corresponding to the differential equation 
(1.2). 

Definition 2.6. The points [xl9 vi], [xl9 i?2] will be called the neighbouring knots 
of the (2k + 2)nd kind corresponding to the differential equation (1.1), to the con
dition (x09 v'0) and to the basis (<xl9 ..., ak9 Pl9..., fik) if the numbers xt and x2 are 
the neighbouring numbers of the 2nd kind corresponding to the differential equation 
(1.2). 

Theorem 2.3. Let S2k+ x(x09 v09 r) be the system of knots of the (2k + l)st kind cor
responding to the differential equation (1.1), to the condition (x0, v0) and to the 
basis (<xl9..., ak, Pl9...,Pk). Let xl9x2eJ, xt < x2. Let vl9v2 be real numbers 
such that the points [xl91^], [x2, t;2] are two neighbouring knots of the (2k + l)st 
kind from the system S2k+1(x0, v0, r). Let v(x) be a solution of(l.lj such that 

Vk(x0) = i?0 , 

where Vk(x) is defined by (1.10V). If v(x) is a solution of (1.1) such that the function 
Vk(x) defined by (1.10v) is not passing through these knots, then there exists precisely 
one number T in the interval (xl9 x2) such that 

[T,n(T)] = [T,n(T)]. 
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Proof. By Remark 1, we have 

^2ife+l(X0» vo> r) = Si(x0, v0, Rk) 

and [xl9 vx], [x2, v2] are two neighbouring knots of the 1st kind from the system 
Si(x0, v09 Rk). 

By hypotheses, the function V*(x) is the solution of the equation (1.8) for which 
Vk(x0) = v0 and the function V^(x) is the solution of the equation (1.8) not passing 
through these knots. 

It is obvious that the conditions of Theorem 3 in [4] are fulfilled. Consequently, 
there exists exactly one number T in the interval (xl9 x2) such that 

[t, V,(t)] = [t, r,(t)] 

and the theorem is proved. 

Theorem 2.4. Let S2k+2(x09 v09 r) be the system of knots of the (2k + 2)nd kind 
corresponding to the differential equation (1.1), to the condition (x0, v0) and to the 
basis (a l5 ..., ak, /Jls ..., Pk). Let xl9 x2 e J, xx < x2. Let v'l9 v2 be real numbers such 
that the points \xl9 vi], [x2, v2] are two neighbouring knots of the (2k + 2)nd 
kind from the system S2k+2(x0, v0, r). Let v(x) be a solution of ( l . l ) for which 

Vk(x0) = v0 , 

where Vk(x) is defined by (1.10v). If v(x) is a solution of (1.1) such that the function 
Vk(x), where Vk(x) is defined by (1.10V), does not pass through these knots, then there 
exists exactly one number T in the interval (x l5 x2) such that 

The proof is quite similar to the proof of Theorem 2.3. 
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