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A REMARK ON THE DIFFERENTIAL EQUATION )" + g(x)y = r(x)

ELENA PavLfkov4, Zilina

(Received January 13, 1983)

In [4] M. Laitoch introduced the systems of knots of the 1st and 2nd kinds, cor-
responding to the differential equation

@ ¥+ q(x)y = r(x),

where g(x) € Cy(J), r(x) € Co(J), g(x) > 0 for x € J, J is an open interval, and gave
a modification of Sturm’s theorem on separating zeros of solutions or zeros of the
first derivatives of solutions of the 2nd order linear homogeneous differential equation

(a) ¥y +4q(x)y=0.

In this paper we will extend the above mentioned results from [4] by using the
k-th accompanying equation for (q) with regard to the basis («y, ..., &%, By, -+ Bi)s
where a;, B; are real numbers such that oc,z- + ﬂf- >0,j=1,...,k.

1. DEFINITIONS AND NOTATION

In this paper we consider a linear nonhomogeneous differential equation of the
2nd order

(1.1) ' +q(x)y = r(x),
where g(x) > 0 for x € J, J is an open interval.
We shall suppose the solutions of the corresponding homogeneous equation

(1.2) V' +4q(x)y=0
to be oscillatory.

Definition 1.1. Let a4, f; be real numbers such that «? + p7 > 0. Denote

(1.3) Q1(x) = Q1(x: ®q5 ﬂl) =
b 1 Blg" 3 Big?

=q+ 5 2 2 2. 172 2 12°
@i+ Big 2af +Piq 4 (“1 + B19)

’ 3
1.4 Ry(x) = Ri(x, 0y, ) = 7+ Bir’ e
4 ‘ v h) (o2 + B2a)2 (o2 + Big)?
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Assume g(x) € C,(J), r(x) € Cy(J), g(x) > 0 for x € J. The differential equation
(1.5) Y+ 01(x) y = Ry(x)

is said to be the first accompanying equation for the differential equation (1.1)
with regard to the basis (o, By).
It is easy to verify that if v(x) is a solution of (1.1), then the function

o0 + By’
(1.6) Vi(x) = 22T P
J(@i + Bla)
is a solution of the differential equation (1.5).
Remark 1.1. If we choose r(x) = 0 for x € J in the above considerations, then we

get as a special case the situation studied in [3], concerning the first accompanying
equation

(1.7) V' + Qx)y=0

for the differential equation (1.2) with regard to the basis («;, B,).
For k > 1 the k-th accompanying equation is defined inductively.

Definition 1.2. Let ay, ..., %, By, ..., B be real numbers such that ajz + ﬁf > 0,
j=1,...,k Assume g(x)e Cy(J), r(x) € C(J). The first accompanying equation

(1.8) Y+ (%) y = Ry(x)
for the (k — 1)st accompanying equation
(1.9) V' 4+ Quoi(x) y = Re_y(x)

with regard to the basis (o, ;) is said to be the k-th accompanying equation for the
differential equation (1.1) with regard to the bais (ay, ..., %, By, ..., Bi). Functions
Q,(x), R{(x) are defined inductively and we assume Q(x) >0, j=0,1,....,k — 1,
Qo(x) = g(x) for x e J.

A straightforward calculation shows that if v(x) is a solution of (1.1), then the
function

(1.10,) Vi(x) = Vilx, oty eoes @y By oons Be) =
- o , o0 + Byv aw + B 1,2 20 )12 4 ]
[ [ S [ ] + e

2 2 -1/2 av + By’ av + By :I:]
e i [ o[ Gl [ G

(0 + B30, + ] (o1 + ﬂ:—le—z)_I/Z] ] (o + BEQu—y)™V?
is a solution of the differential equation (1.8).
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Remark 1.2. If r(x) = 0, x € J, then R,(x) = 0 and the differential equation

(1.11) V' + Qx)y =0

is the k-th accompanying equation for the differential equation (1.2) with regard‘
to the basis (g, ..., %, By -+o> Br)-

2. A MODIFICATION OF STURM’S THEOREM ON SEPARATING ZEROS
OF SOLUTIONS OF A LINEAR DIFFERENTIAL EQUATION
OF THE 2ND ORDER

O. Boriivka. in [1] introduced the n-th central dispersions corresponding to the
differential equation (1.2).
Throughout this section we suppose that forn =0, +1,...; k= 1,2, ..

‘s
(Pk,n H ‘l/k,n

are the n-th central dispersions of the first and second kinds corresponding to the
k-th accompanying equation for the diffrential equation (1.2) with regard to the basis

(0tgs +evs @y Bys - vvs Br)-

Lemma 2.1. Let (1.11) be the k-th accompanying equation for the differential
equation (1.2) with regard to the basis (a, ..., %, By, ..., Bi). Then the differential
equation (1.11) is oscillatory if and only if the differential equation (1.2) is oscil-
latory.

The proof is quite similar to the proof of Theorem 1.2 in [2].

Theorem 2.1. Let x € J and let vy be a real number. Let k = 1 be an integer and
let oy, ..., %, By, ..., By be real numbers such that of + 7 >0, j=1,2,..., k.
Let :

g(x)e Cu(J), r(x)eC(J),
Qj(x)>0, j=0,1,...,k—-1, for xeJ,
Qo(x) = q(x) for xelJ.

Let v,(x), bz(x) be arbitrary particular solutions of (1.1), let V; 4(x), Vi .(x) be
functions defined by (1.10,,), (1.10,;), respectively. If

Vk,l(xo) = Vk,z(xo) =10,
then we have

I/k,l[(Pk,n(xo)] = I/;¢,2[‘Pk,n(xo)] |

and V, 1(x) + Vi 2(x) for xe J, x + ¢, ,(xo) for every n = 0, +1,....
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Proof. Let vy(x), v,(x) be solutions of the differential equation (1.1). It follows
from (1.10,,), (1.10,,) that the functions V; (x), ¥, 2(x) are solutions of the equation

(1.8).
Put U,(x) = ¥ 5(x) — V;.1(x), x € J. Then by Lemma 3 in [4], U,(x) is a solution
of (1.11) and by Lemma 2.1, the differential equation (1.11) is oscillatory.
" At the point x,, by hypotheses, we have

Uk(xo) = Vk,Z(xO) - Vk,l(xO) =0.
According to Lemma 1 in [4] we have

Uk[(pk,n(xo)} =0
and U,(x) + 0 for x e J, x # ¢ ,(x,) for every n = 0, +1, .... This implies

0= Uk[(pk,n(xo)] = Vk,z[‘Pk,n(xo)] - Vk,l[‘Pk,n(Xo)]
and

0 # Uyx) = ¥ o(x) = Vi1(x)
for x € J, x # ¢, ,(xo)- The theorem is proved.
Theorem 2.2. Let xo € J and let vy be a real number. Let k = 1 be an integer and

let ay,..., 0, By, ..., By be real numbers such that ocf + [3]2 >0,j=12,...,k.
Let

g(x)e Cp(J), r(x)eC(J),
Qj(x)>0, j=0,l,...,k—1, for xelJ,
Qo(x) = g(x) for xelJ.

Let vy(x), v5(x) be arbitrary particular solutions of (1.1), let ¥, 1(x), Vi 2(x) be func-
tions defined by (1.10,,), (1.10,,), respectively. If

Vk',l(xo) = Vk',z(xo) =1,

Vk,,l[wk,n(xo)] = Vk',z[‘//k,n(xo)]
and Vy 1(x) + Vi2(x) for xe J, x £y, ,(x,) for every n ~ 0, +1,....

then we have

Proof. By hypotheses, the function Uy(x) = V; 2(x) — ¥ ,(x) for x € J is a solu-
tion of (1.11) and by Lemma 2.1, the differential equation (1,11) is oscillatory.

At the point x, we have

Ui(xo) = Vi 2(x0) — Wialx0) = 0.

According to Lemma 1 in [4] we have
g U::['ﬁk,n(xo)] =0
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and Uy(x) # O for x€ J, X * Yin(Xo) for every n = 0, +1, .... Therefore
0 = Ul’c[ll’k.n(x())] = I/k'.z[l//k,n(x())] - Vk’,l[ll/k,n(xo)]

0 # Uy(x) = Vis(x) = Vi)
for every xe J, x = Wk,n(xo)- This completes the proof.
Let x, € J and let vy, vp be real numbers. Let k = 1 be an integer and let ay, ..., o,
Bi, .- By be real numbers such that af + Bf- >0,j=1,2,..., k. Let
aeCald), e c),
Q{(x)>0, j=0,1,....k -1, for xelJ,
Qo(x) = g(x) for xeJ.

Let v(x) be an arbitrary particular solution of (1.1), let ¥(x) be the function defined
by (1.10,). Let V;(xo) = vo or ¥(x,) = vg-

and

Definition 2.1. The set of all points {@ ,(xo), Vi[@x.a(x0)]} for n =0, +1,...
will be called the system of knots of the (2k + 1)st kind corresponding to the dif-
ferential equation (1.1), to the condition (xo, vo) and to the basis (0ty, ..., & By, +--
-+, Bx)- It will be denoted by

Sok+ 1(3‘0’ Vg, ) = S2k+1(x07 Vos T's Ogy +nvy Ok Brsvvns ﬂk) .

Remark 2.1. Let S;(xo, vo, Ri) = S1(x0, vo» Retys s % By, ..., Be)) be the
system of knots of the 1st kind corresponding to the differential equation (1.8) and
to the condition (xo, vy). Then

Sl(x09 Vo, Rk) = SZh+l(x0’ Vo, ") .

Definition 2.2. By the bundle of solutions of the (2k + 1)st kind corresponding

to the differential equation (1.1), to the condition (x,, v,) and to the basis (, ..., o,
By, --., Bi) we mean all solutions v(x) of (1.1) satisfying the condition
Vilxo) = vg -

Tt will be denoted by

Tk +1(*0s Vos ") = Tous 1(xo, Vos 5 Oty vnes Oks By ey i) -

Definition 2.3. The set of all points {Y; .(Xo), Vi[Via(*0)]} for n =0, £1,...
will be called the system of knots of the (2k + 2)nd kind corresponding to the
differential equation (1.1), to the condition (x,, vo) and to the basis (ay, ..., 0.
Bis -+, By)- It will be denoted by

SZk+2(x0: Vo, ") = S2k+2(x0’ o> Ty Ogsneny Oy Brsoees ﬂk) .

Remark 2.2. Let Sy(xo, 0o, Ri) = Sa(Xo> 00 Ri(®ts, -+ %> Bis --vs Bi)) be the
system of knots of the 2nd kind corresponding to the differential equation (1.8)
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and to the condition (x,, tg). Then
Sa(xo» o5 Ry) = S2k+2(x0’ o, T) -

Definition 2.4. By the bundle of solutions of the (2k + 2)nd kind corresponding
to the differential equation (1.1), to the condition (x,, vo) and to the basis (a4, ..., o,
B1s .-, B) we mean all solutions v(x) of (1.1) satisfying the condition

Vi(xo) = v5 .
It will be denoted by

T2k+2(x0’ Vos r) = T2k+2(xo, Vs Ty Qs evny Oy Pysvens ﬂk) .

Let S+ 1 (X0, Vo, ) and Sy,.45(xo, v5, r) be the systems of knots of the (2k + 1)st
and (2k + 2)nd kinds corresponding to the differential equation (1.1), to the initial
conditions (X, vo), (X0, U0), Tespectively, and to the basis (¢, ..., 0 By, ---» Br)-

Let x,, x, € J. Let vy, v, v3, 03 be real numbers such that

[xb U1], [xz, Uz] € Syi+ 1(xo, Vo, r)
and

[xls U,l]a [xzy U'Z] € S2k+2(x0: U;); 7') .

Definition 2.5. The points [x,, v;], [X3, v2] Will be called the neighbouring knots
of the (2k + 1)st kind corresponding to the differential equation (1.1), to the con-
dition (xo, vo) and to the basis (ay, ..., &, By, ..., fi) if the numbers x; and x, are
the neighbouring numbers of the 1st kind corresponding to the differential equation

(1.2).

Definition 2.6. The points [x,, v}], [x, v3] will be called the neighbouring knots
of the (2k + 2)nd kind corresponding to the differential equation (1.1), to the con-
dition (xo, vy) and to the basis (ay, ..., o, Py, ..., fi) if the numbers x, and x, are
the neighbouring numbers of the 2nd kind corresponding to the differential equation

(1.2).

Theorem 2.3. Let S, +1(Xo, Vo, ) be the system of knots of the (2k + 1)st kind cor-
responding to the differential equation (1.1), to the condition (X,, vo) and to the
basis (g, .+.s 0y Pys--vr Bi)- Let Xy, x,€J, X3 < X,. Let vy, v, be real numbers
such that the points [%y, v;], [X,, v5] are two neighbouring knots of the (2k + 1)st
kind from the system S+ 1(Xo, Vo, r). Let v(x) be a solution of (1.1) such that

I/k(xo) = UO 1)

where Vi(x) is defined by (1.10,). If #(x) is a solution of (1.1) such that the function
Vi(x) defined by (1.10;) is not passing through these knots, then there exists precisely
one number T in the interval (x,, x,) such that

[= Vi) = [« V(@] -
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Proof. By Remark 1, we have

Sak+ 1(x0, Vo, ") = Sl(xO’ Vo, Rk)

and [xg, v;], [x2, v2] are two neighbouring knots of the Ist kind from the system °
S1(x05 vo, Ry)-

By hypotheses, the function ¥(x) is the solution of the equation (1.8) for which
Vi(xo) = vo and the function ¥;(x) is the solution of the equation (1.8) not passing
through these knots.

It is obvious that the conditions of Theorem 3 in [4] are fulfilled. Consequently,
there exists exactly one number t in the interval (x;, x,) such that

[z ¥i(%)] = [= Vi(7)]

and the theorem is proved.

Theorem 2.4. Let Sy, 5(xo, v5, 1) be the system of knots of the (2k + 2)nd kind
corresponding to the differential equation (1.1), to the condition (x,, vo) and to the
basis (aty, .-+, %, By --- Bi)- Let x4, X, € J, x; < x,. Let v}, v, be real numbers such
that the points [x,,v}], [xs, v3] are two neighbouring knots of the (2k + 2)nd
kind from the system Sy, 5(xo, v5, r). Let v(x) be a solution of (1.1) for which

V;"(xo) = v:) >
where V,(x) is defined by (1.10,). If &(x) is a solution of (1.1) such that the function

Vi(x), where V,(x) is defined by (1.10;), does not pass through these knots, then there
exists exactly one number 7 in the interval (x,, x,) such that

[ Vi(®)] = [ V(@] -

The proof is quite similar to the proof of Theorem 2.3.
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