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Časopis pro pěstování matematiky, roč. 109 (1984), Praha 

REMARKS ABOUT MEASURES ON ORTHOMODULAR POSETS 

VLADIMIR ROGALEWICZ, Praha 

(Received March 8, 1983) 

INTRODUCTION 

The set of measures on an orthomodular poset may be fairly different from the 
set of measures on a c-algebra. There exists a (finite) orthomodular poset without 
any measure at all or with exactly one measure (see [2], [9]). In this paper we take 
up the problem of how (and when) we can distinguish noncompatible elements of 
an orthomodular poset by a measure and in particular, when we can separate non-
compatible elements "up to a given e". We construct two examples illustrating that 
the situation may be considerably complex. As the counterexamples are lattice, our 
results may find applications also in the lattice theory. Besides, the problems in
vestigated here are related to the foundations of quantum theories as the paper [7] 
indicates. 

1. PRELIMINARIES 

Definition 1.1. An orthomodular poset (abbr. OMP) is a triple (L, —9'), where L 
is a nonvoid set endowed with a partial ordering =, and where ' is a unary operation 
on L such that 

(i) there is a least element 0 in L, 
(ii) if a9be L and a — b then a' — b'9 

(iii) if a e L then (a')' = a9 

(iv) if a9 b e L and a ^ b then b = a v (b A a')9 where, in all what follows, v, A 
mean the lattice — theoretic operations induced by =, 

(v) if {ai9 i e IV} is a sequence of elements of Land if a; — a'j for any distinct i, j eN 
oo 

then V at exists in L. 

Throughout the paper, the letter Lwill be reserved for OMP's. 

Definition 1.2. A mapping m:L-><0,1> is called a (probability) measure 
on L if 
(i) m(l) = 1, 
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(ii) m( V at) = YJ m{at) whenever at = a'j for any distinct indices i, j e N. 
í = i 

Proposition 1.1. If m is a measure on L and if a ^ b then m{a) g m(b). 

Proof. Obvious. 

Definition 1.3. Two elements a, b e L are called compatible (in symbols: a «-• b) 
if there exist three elements al9 bl9 ce L such that ax ^ bi, bx _̂  c', ax _̂  c' and 
a = flx v c, b = b! v c. 

Proposition 1.2. (i) If a = b rhen a <-> b. 

(ii) If a <-+ b then a v b, a A b exist in L and we have a A b = 0 if and only if 

a = b'. 

(iii) a <-+ b if and only if a «-> V. 

Proof. See [5], [10]. 

Proposition 1.3. Let {mj be a sequence of measures on Land let {a j be a COlleCt-
02 00 

ion of nonnegative real numbers such that £ af = 1. Then m = £ a ^ j is a measure 
i = l i = l 

on L. PVe saj; that m is a convex combination of mi9 i — 1, 2, 3 , . . . . 

Proof. Obvious. 

Definition 1.4. Let Lbe an OMP. We call L reasonable if for any a e L with a 4= 0 
there exists a measure m on Lsuch that m(a) = 1. 

It is known that there exist OMP's with "small" sets of measures (see [2]). Since 
such OMP's seem fairly useless as regards the potential applications in quantum 
theories or elsewhere, we restrict ourselves to those OMP's which possess reasonable 
collections of measure. 

Proposition 1.4. Let L be reasonable. Then for any noncompatible a, b e L there 
is a measure m on L and a real number r = i such that m{a) = r = m{b). 

Proof. If there is a measure m on Lwith m{a) = 1 = m{b) then we have nothing 
to prove. In the opposite case, there are measures ml9 m2 on L such that mx(a) = 1, 
m2{b) = 1, m1(fc) = r2 < 1, m2{a) = r2 < 1 and we put 

m 
_ (1 - r2) mţ + (1 - ri) m 2 

(1 - r.) + (1 - r 2 ) 

Corollary 1.5. Let L be reasonable. Then for any a9b e L with a*±*b there exists 
a measure m on L such that m{a) = \ = m{b). 
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Proof. According to Proposition 1.4, there are measures ml9 m2 on L with mt(a) = 
= mx(b) = rx = \, m2(a') = m2(b') = 1 — r2 _ \. If rl = r2 then rx = r2 = \. 
If this is not the case, we put 

m = ( i ~ r2) m1 + (rl - \) m2 ^ 

? i - r2 

and we obtain the desired measure. 

There is a natural question whether any r, 0 < r < 1, can be placed instead of the 
number \ in the corollary. The answer will be given in Theorem 2.4. 

2. MEASURES ON ORTHOMODULAR POSETS 

In the following definition we introduce certain classes of OMP's which we shall 
deal with in the sequel. 

Definition 2.1. Let L be a reasonable OMP. Let us define conditions (CI) —(C5) 
as follows: 

(C1) if a, b e L and a <+> b then there exists a measure m on L such that m(a) 4= m(b), 
(C2) if a, b e Land a <+> b then there exists a measure m on Lsuch that m(a) = 1, 

m(b) * 1, 
(C3) if a, b E L and a <+> b then there exists a measure m on Lsuch that m(a) = 1 = 

= m(b), 
(C4) if a, b E L and a <+> b and if we are given a real number r, 0 < r < 1, then 

there exists a measure m on Lsuch that m(a) = 1, m(b) = r, 
(C5) if a, b E L and a <+> b and if we are given a real number r, 0 < r < 1, then 

there exists a measure m on L such that m(a) = r, m(b) = r. 

The conditions (Cl), (C2), (C3), (C4) have appeared in [4], [5], [7], [8]. In this 
paper we shall continue the investigation of the respective classes of OMP's and we 
also take up the question of how the condition (C5) is related to the previous ones. 
It is worthwhile to note at the moment that e.g. the Hilbert logic L(H), dim H = 3 
fulfils (C2) but does not fulfil (C5). 

Theorem 2.1. We have the following implications: 

a) (C3) => (C4) => (C2) => (Cl), 

b) (C4) => (C5j => (Cl). 

Proof, a) For (C3) => (C4) and for (C4) => (C2) see [8], the third implication is 
obvious. 

b) The implication (C4) => (C5) holds trivially. If a, b E L and a <+> b then (C5) 
yields the existence of a measure m on L such that m(a) = J, m(b') =t f. Hence 
m(b) = i which proves the implication (C5) => (Cl). 
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We shall show that none of the implications in Theorem 2.1 is an equivalence. 

Prior to that, let us consider the case of finite OMP's. 

Theorem 2.2. Let L be a finite OMP. Then the conditions (C3), (C4) and (C5) are 

equivalent. 

Proof. It remains to prove that (C5) implies (C3). Let L satisfy (C5) and let 

a, b e Land a <+» b. For any n eN let us take a measure mn on Lsuch that mn(a) "— 

— 1 — \\n and mn(b) — 1 — ljn. For any c e Lthe sequence {mn(c)} contains a con

vergent subsequence. Since Lis finite, we can successively find a subsequence {mnk} 

of {mn} such that {m„k(c)} converges for any ceL. Let us define a mapping 

m : L -> <0,1> by putting m(c) = lim mnk(c). We shall show that m is a measure on L. 
k-+oo 

Trivially, m(l) = 1. Let us suppose that cx g c2. Then m(cx v c2) = lim m„k(ci v 

v c2) = lim ( m ^ c j + m j c 2 ) ) = lim m j c j + lim mnk(c2) = m i ^ ) + m(c2). We 

have thus obtained that m is a measure on L. Obviously, m(a) = 1 = m(b). The 

proof is complete. 

Theorem 2.3. None of the implications in the formulae a), b) of Theorem 2.1 

is an equivalence. 

Proof. It IS known that the implications (C2) => (C4) and (C4) => (C3) fail in 

general (see [8]). The implication (CI) => (C2) has been disproved by R. Godowski 

(see [1]). (Also our Example 2.1 presented later on shows that (CI) => (C2) fails.) 

Since the counterexample (CI) =f=> (C3) is finite, we have (CI) #> (C5) (Theorem 2.2). 

It remains to show that (C5) does not imply (C4). We shall construct the example 

by making use of a Greechie diagram. 

We assume that the reader is more or less familiar with the interpretation of 

Greechie diagrams. Let us only recall that the "points" of a Greechie diagram are 

interpreted as the atoms of the corresponding OMP and the straight line segments 
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Fig. 1. 
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(or possibly the curve segments) group together those atoms which belong to a ma
ximal orthogonal set (Boolean block). There is a one-to-one relation between the 
measures on the corresponding OMP and the so called weights on the Greechie 
diagram. (A weight is such a (nonnegative) evaluation of the points of the diagram 
that the sums over Boolean blocks equal 1.) We shall not make any distinction be
tween the weights on a Greechie diagram and the measures on the corresponding 
OMP. The precise description of Greechie diagrams may be found in [2] or [9], 

Let us return to the example disproving (C5) => (C4). We start with a preliminary 
construction. 

Example 2.L The orthomodular poset Lgiven by Fig. 1 has the following pro
perty: If m is a measure on L and if m(b) = 1 then m(a) = 0. 

Proof. Suppose that m(b) = 1 for a measure m on L. Then m(ft) = 0 for any 
i = 1, 2, 3 , . . . . Therefore m(d) + £ m(z) = m(d) + £ m(ci). Sjnce m(e) = 0, the 
left hand side of the last inequality equals one. Hence m(d) + £ rn(ct) = 1 and 
therefore m(a) = 0. This was to prove. Observe that we have also proved that the 
identity m(b) = 1 for a measure m implies m(a') = 1 and thus L does not satisfy 
(C2). On the other hand, if e > 0 and r e (0, 1> are given, we may find a measure m 
such that m(b) = 1 — e and m(a) = r. Obviously, if we take two noncompatible 
elements p,qe Lsuch that (p, q) 4= (a, b), there exists a measure monL with m(p) = 
= 1 = m(q). Hence L satisfies (CI) and, as noted in the proof of Theorem 2.1, we 

Fig. 2. 
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have another example of (CI) =)=> (C2). If d = 0 (it means there does not exist such 
an atom in L), then L becomes an orthomodular lattice. 

The desired example establishing (C5) 4> (C4) is now constructed as follows. 

Example 2.2. An orthomodular poset (lattice) L given by Fig. 2 satisfies (C2), (C5) 
but does not satisfy (C4). 

Proof. If we take noncompatible atoms (p, q) #= (a, b), then there obviously 
exists a measure m on Lsuch that m(p) = 1 = m(q). Let us consider the pair (a, b). 
If m(b) = 1, then m(ft) = 0 for i = 1, 2, 3 , . . . and therefore m(d) + £ m(ct) = 1 
(see Example 2.1). Therefore m(a) _ \ and Ldoes not satisfy (C4). On the other 
hand, L satisfies (C5). Indeed, if we are given an e > 0, we may simply construct 
a measure m with m(b) = 1 — 6 and m(f) e <0, e> (in the manner similar to the 
construction in Example 2.1). The fact that L satisfies (C2) is obvious. Theorem 2.3 
is thus completely proved. 

The following theorem says that (C5) is in fact equivalent to a condition apparently 
stronger. 

Theorem 2.4. A reasonable orthomodular poset L fulfils (C5) if and only if L 
fulfils the following condition (C6): If a, b are two noncompatible elements of L 
and if we are given a real number r e (0, l) then there exists a measure m on L 
such that m(a) = r = m(b). 

Proof. The condition (C6) is obviously sufficient for (C5). To prove necessity, 
let a real number r < 1 be given. We may and shall suppose that r _ \ — otherwise 
we take up the equivalent assertion with a', V and r' = 1 — r. We shall construct two 
measures ml9 m2 on L such that mx(a) = mx(b) = r1 e <0, £> and m2(a) = m2(b) = 
= r2 e <r, 1>. The required measure m on L can be then constructed by putting 

_ (r2 -r)mx+(r - r j m2 m — • 
r2 - r1 

First we shall obtain mv If there is a measure m on L such that m(a') = 1 = m(b'), 
we put m1 = m. If this is not the case, the assumption of Theorem 2.4 guarantees 
the existence of measures m3, m4 on L with m3(a!) = 1, m3(b') = r3 < 1, mA(a') = 
= r4 < 1, m4(b') = 1. We put 

_ (1 - r4)m3 + (l - r3)m4 

(1 - r3) + (1 - r4) 

Let us consider the construction of m2. If there is a measure m on Lwith m(a) = 
= 1 = m(b), we put m2 — m and the proof is complete. If there is no such measure,, 
we consider measures m5, m6 and m7 such that m5(a) = 1, m5(b) = r5 < 1, m6(a) = 
= r6 < 1, m6(b) — 1 and further, if we set s — (max r, r5, r6), we require m7(a) = 
= r7 > 5, m7(b) = r8 > s. The assumptions of Theorem 2.4 guarantee the existence 
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of such measures. If r7 = r8, we put m2 = m7. If r7 < r8, then 

™ - ( rs ~ r7) m5 + (1 - r5) m7 

m2 — ~ • 
(1 " rb) + (r8 - r7) 

If r8 < r7, the construction of m2 proceeds dually. The proof of Theorem 2.4 is 
complete. 
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