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ON SOME REGULARITIES OF GRAPHS II

ZOFIA MAIJCHER, Opole

(Received April 13, 1983)

§0

In this paper we continue the study of problems formulated by J. Plonka in [3].
Let G = (V, E) be a simple graph. For v € ¥V we denote: I'(v) = {u e V:{u, v} e E},
o) = |FO)h er(e) = 3 o(w): er(o) = 01if (x) = 9.

uel'(v
Let m be a non-negati(vé integer. A graph G = (V, E) will be called m-I' " -regular
iff for any v e V we have ¢,(v) — o(v) = m.
J. Plonka gave a complete characterization of m-I'"-regular graphs for m < 5.
He also described all m-I' " -regular graphs in which the degrees of vertices assume
only two values. In [3] the following problem has been stated:

Describe all m-I'"-regular graphs G in which |D(G)| = 3 (D(G) denotes the set of
all degrees of vertices of G).

It turns out that such graphs can be of various structure and it is rather difficult
to characterize them in general. In [1] the following problem has been solved:

Problem 1. Let (m, d,, ..., d,) be a sequence of non-negative integers such that
d, > ..., > d,, k > 2. Decide whether there exists an m-I'"-regular graph G such
that D(G) = {d,, ..., d,}.

If such a graph exists we say that G I' -represents the sequence (m, d,, ..., dk).

Studying this problem we obtained more general results (sec [2]), namely, we are
able to decide if there exists a graph in which the degrees of the neighbours of any
vertex are given numbers.

Let now ¢ = (m, d,, ...,d,) be a sequence of non-negative integers such that
dy >...>d, k> 2, and let F = {v;, v,,...} be a fixed countable set. We denote
by Gr—(¢) the set of all graphs G I' " -representing the sequence ¢ such that V(G) =
= {vy, v, ..., v,} for some n e N (N is the set of all positive integers).

In this paper we consider the following
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Problem 2. Describe the set G-(¢).

In Sec. 2 (Theorem 3) we obtain a certain characterization of G--(¢). We introduce
some special constructions on graphs which preserve m-I' " -regularity and show that
by means of them one can find the relations between graphs I' “-representing a given
sequence (Theorem 4).

In Sec. 1 we recall some notions and results from [1, 2] which we need in Sec. 2.

The notations used in [1] and [2] are partially different. Here we adopt the one
from [2].

§1
Let G = (V, E) be a finite simple graph such that D(G) = {d,, d,, ..., d;}. For
i,je{l,2,..., k} we define: -
Vi={veV:io(v) =d],
E;={{uv}eE: ueV, ve v},
t'(v) = |V; n I'(v)]-

A function t;: V — N* such that

t5(v) = (1'(v), t3(v), ..., #*(v)) for veV
will be called the distribution function of vertices of G.

Let V(G) = {vy, v5, ..., v,}. A (k x n)-matrix Mg of the form

M; = [t5(vy), 26(v2)s - ., 16(v,)]

will be called the distribution matrix of the graph G. Then G will be called a realiza-
tion of the matrix Mg.

Let us consider a (k X n)-matrix of non-negative integers of the form

1

1 1 1 1 1
(2PN Y 1 RPN - 7PN o

(1 M=

’

t;‘,'l ...t;;s, ...t;,f1 ...t;,fs,..‘.t;':, ...tfsk
where forany i = 1,2,...,k, g = 1,2; ..., §; we have
ty+th+ . +t,=d;, dy>d,>...>d,.
| For i,je{l,2,...,k} denote ‘ |
= (G T )

i;,) is a non-increasing permutation of the sequence .

i
where (74, ..., B,
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Theorem 1 [2]. A (k x n)-matrix of the form (1) has a graphic realization iff
for any i,je{1,2, ..., k} the following conditions hold:

0 3.

1]

0 (mod 2),

(ii) z‘:if, S m(m—-1)+ 2‘ min {m, #},} for m = 1,2,..., s,
r=1

r=m+1
e s‘
(iii) Zli Z s
m sj
(iv) z_:li{,.g ;min {m,2,} for m=1,2,...,5;5 i <.
Theorem 1 and the definition of an m-I' " -regular graph imply

Corollary 1. If a graph G is a relatization of a matrix M of the form (1), then G
is m-I'"-regular iff foranyi =1,2,....,kand q = 1,2, ..., s; the following formula
holds:

(v) ditiy + dothy + ... + difly = m + d,.

Proof. Assume that a column (t},, ..., t},) is the distribution of the vertexve V(G)

Then ¢,(v) = dyt . + d,ft, and g(v) = d;. It is obvious that (v) is equivalent
to the formula Qr(v) =m + g(v). .

Let R,(M) be the set of all graphs G which are reahzatlons of the matrlx M of the
form (1) and defined on a given vertex-set V = {vy, v,, ..., 1,}.

Let G e Ry(M), G = (V, E) and let (v,,, v,, v,, v,) be a sequence of different vertices
from V such that

1° vy, v, €V}, v, 0,€ V),
2° {v,, v}, {v,, v,} €E,
3° {v,, v}, {vg v:,} ¢ E. ,
The graph G(v,, ‘[vq, v,, v5) = (V, E’), where

B = (o0 s ) o, ol}
will be called a (*)-switching of G. }

Theorem 2 [2]. The set Ry(M) can be generated by one of its elements by a finite
number of (*)-switching operations.

Now we present a solution of Problem 1 (see [1]), but in terms of the notions of
this paper. The solution reduces to finding the matrix M of the form (1) satisfying
the conditions (i)~ (v). We do this in two steps.
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Step 1. Fori = 1, 2, ..., k we solve the system of two equations

®

Let

k
dzi=m+d;, Y zi=d,.

1 r=1

™M=

r

gi = {(p}I’ (LY plzfl)a CERD) (pu!cp [ERD) pli(c')}

be the set of all solutions of (2). If 2, = 0 for some i, then the sequence ¢ =
= (m, dis..y dk) is not I' " -representable. Otherwise every solution of the equations
(2) can be given as a column of M. Other columns cannot occur in M.

Step 2. We solve the following system of equations and inequalities (3)—(5):

Ci Cj .
(3) Y phxi = Zp},x,-, where i,j=1,2,..,k,
r=1 r=1
Ci
(4) Y phxi, =0 (mod2) where i=1,2,..k,
r=1
(5) Xp >0 where i=1,2,...,k.
r=1

If no solution exists, then the sequence ¢ is not I' “-representable. Otherwise, from
solutions of (3)—(5) we can choose a solution

(6) (Pa1s <oos Myegs ooes Migy cuns Bigys wony Mgy +ees Migy)

which satisfies the following conditions (7)—(9):

(7 min n, 2 max pi for i<j, i,je{l,2,...,k},
re{l,..., ci} . se{l,...,c5)

(8) min n, 22 max p), for ie{l,2, ...k},
re{l,...,ci} re{l,...,ci}

9) n, is an even number for ie{l,2,...,k},

re{l,2,...,¢;}.

We form a matrix M such that for r = 1,2,...,¢c;and i = 1, 2, ..., k the column

(pi» -+, P%,) occurs n,, times. The matrix M is the distribution matrix of some simple
graph. A method of constructing this graph is presented in [1].

§2
Now let us consider Problem 2.
Let
: Pi1 - Pley -+ Pit-o+ Pley -+« P + -+ Pey
(10) P=1: : : : : :

k 'k K K &
Pi1 -+ Piey -+ Pir ++ Picy -+ Pkt -+« Py

383




be the matrix of all solutions of the systems (2) for i = 1,2, ..., k. Obviously all
columns in P are different.

Let 2 be the set of all solutions of the systems (3)—(5). Every element of 2 is
a sequence of the form (6). For the matrix P and for « € 2 denote by P, the matrix
obtained from P by repeating the column (p},, ..., p%,) side by side n,, times for
i=12..,kandr=1,2,...,c¢;

We denote by R, (P,) the set of all realizations G of P, such that V(G) = {v,, ..., vya},
where s(a) is the sum of all elements of a.

Theorem 3. Let ¢ = (m, d,, ..., d;) be a I "-representable sequence. Then we have
(11) ] Gr'(‘P) = UQRV(Pa) .
ae
Proof. Let Ge | R,(P,). Then G € Ry(P,,) for some a, € 2. Since P is the matrix

ac2

of all solutions of (2) fori =1,2,...,k, so by Corollary 1, G is an m-I' " -regular
graph. As the sequence o, satisfies (3)—(5), so D(G) = {d,,d,,...,d;}. Thus Ge
e Gr-(9).

Let now G € Gr-(¢). Gis an m-I'”-regular graph such that D(G) = {d,, d,, ..., d;}.
Let a matrix M of the form (1) be the distribution matrix of G. We have to show that
M = P, for some a € 2.

Assume that {911, ..., P1rs o Yi1s --+» Y 1S the set of all different columns of M
and that for i=1,2,....,k, ¢ =1,2,...,r; we have y, = (cj,...,ci) where

k
Y ¢iy = d;. By Corollary 1, any column of the matrix M satisfies (v), so forany i =
s=1 k
=1,2,....,kand ¢ =1,2,...,r; we get Y dy;, = m + d;. Hence it follows that
- s=1

any column of M satisfies the system (2), so it is a column of P. Obviously M need
not contain all columns of P. ,

Assume that for i = 1,2,...,k and ¢ = 1,2, ..., r; the column Yiq OCCUrs m;,
times in M. By Theorem 1 the elements of the matrix M satisfy (iii) and (i), hence
we get

rio o

Yelmg =3 cjm;, for i,j=12..k,
q=1 q=1 ,

Y clmig =0 (mod 2) for i = 1,2,.... k.
q=1

Let us form a sequence

= (Myqy ooy Bygys ooy Migs ooes Miey) »
where for i = 1,2,...,kand r = 1,2, ..., ¢; we have n;, = my if (p},, ..., p},) = i,
and n;, = 0if the column (pj,, ..., p},) does not occur in M. The sequence a construc-
ted in this way satisfies (3) and (4). Since D(G) = {dy, d,, ..., d;}, so the sequence «
satisfies also (5). Thus « € 2 and M = P,
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For some sequences ¢ one can give a simpler characterization of the set Gr-(¢).
To show this we introduce some additional notions.

Lot Gy, G,€Gr-(9), Gy = (W, Ey), G, =(Vp, E;) and V; = {vy,0,,...,1,},
Vy = {vy, 3, ..., v,}. We form a graph G, = (V;, Ej) such that V; = {v,,q, 042, ...
..» Up45} and G, is isomorphic to G. :

A graph G, w G, = (V, U V3, E; U Ej}) will be called the disjoint union of the
graphs G, and G,.

Let G = (V, E), V(G) = {v,, v;, ..., v,}. We define:

16=G, (n+1)G=nGwG for neN.

We shall write H = (),-sw(G) to express that the graph H can be obtained from G
by applying (*)-switching operations n times for n e N u {0}.

If @ =(ay,a,,...,a), p=(by,b,, ..., b,) are two sequences of non-negative
integers and n € N U {0}, then we denote as usual

o + ﬂ = (al + bl) az + bz,-..,as + bs),
noe = (nay, na,, ..., nay).
Lemma 1.

(@) If GeRy(P,) and G’ = (x),-sw(G), then G’ € Ry(P,);

(b) if G, e Ry(P,), G, € Ry(P;), then G, w G, € Ry(P,+5);

(c) if GeRy(P,4,), then for any one of the graphs G, € R,(P,) and G, € Ry(P)
there exists ne N U {0} such that G = (x),-sw(G; w G,).

Proof.

(a) follows from the fact that the operation of (*)-switching preserves the distribu-
tion of any vertex

(b) follows from the definition of theset Ry(P;) for ¢ € 2 and the definition of the
union w.

To prove (c) assume that G € Ry(P,,;) and G,, G, are such graphs that G, €
eR,(P,), G, € Ry(P;). Then G, w G, € Ry(P,, ). From Theorem 2 we infer that any
graph from the set Ry(P,. ,,) can be obtained from the graph G, w G, by applying
the operation of (*)-switching finitely many times. Thus there exists n e N U {0}
such that G = (%),-sw(G, v G,). '

Let 2 denote as before the set of all sequences of non-negative integers satisfying
(3)—(5)- A finite subset Z = {B,, B, ..., B,} of 2 will be called a base of 2 iff the
following conditions 1° and 2° are satisfied: ‘

1° For any « € 2 there exist ny, n,, ..., n, € N U {0} such that

r

a =.Z npi;

i=1

2° if B & A, then B’ does not satisfy 1°.
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<Theorem 4. Let ¢ = (m, d,, ..., d,) be a I'"-representable sequence. Let {B,, P ...
cey ﬁ,} be a base of the set 2 and let Py, Py, ..., P, be the distribution matrices of
the graphs Gy, G,, ..., G,, respectively. Then any graph belonging to Gr-(¢) can
be obtained from.the graphs G,G,, ...,.G, by using first the operation \v finitely
many times and then using (*)-switching operations finitely many times.

Proof. Lét G € Gr-(¢). Then by Theorem 3 there exists a sequence « € 2 such that
GeRy(P,). Assume « = Z n;B;, where n;e N U {0}. By (c) from Lemma 1 there

exists s € N U {0} such that G = (*)y-sw(G’), where G’ = n,G; W n,G, v ... W n,G,.

Example 1. Let ¢ = (10,84 2)
Then
oo11y}. .
P=11301|, 2={a:«=(p,4p,p,7p), peN}.
7130
It is easy to see that the set {a} where a = (1, 4, 1, 7) is the only base of 2. The graph
G in Fig. 1 is a realization of the matrix P,. By Theorem 4 we have:
He Gr-(p) iff H = (x),-sw(sG) for some re N u {0} and se N.

Fig. 1

Example 2. Let ¢ = (10, 5, 4, 3).

Then . -
00112 A
P={02020, 2={ce(Nu{0})*:a=(4p + %4, p, 0, p, 29)} -
52301 : o

One can prove that any sequence from the set 2 is a sum of sequences ¢y, a3, %3,
where o, =(1,1,0,1,2), «, =(1,5,0,5,0), a3 =(4,0,0,0,10). However, the
sequence aj is not an element of 2 since it does not satisfy (5), whereas the matrix P,,
is the distribution matrix of a pseudograph and of no simple graph.

To obtain a result analogous to that of Theorem 4 we need three generalizations,
namely:
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1) a generalization of the base on the set 2’ of all solutions of (3) and (4),

2) a definition of the disjoint union of pseudographs analogous to that of simple
graphs,

3) a generalization of the, operation of (%)- SW1tch1ng cons1stmg m neglectmg the
condition 3° and the assumption that the vertices v, » Ugs Uy, Vg are dlﬂ'erent

From results of [2] it follows that a matrix M of the form (1) is repre,santable by
a pseudograph iff for any i, j € {1, 2, ..., k} the conditions (i) and (ii) hold.

Then in our Example 2 we get:

Any. simple graph I'~-representing the sequence ¢ =(10, 5, 4, 3) can ‘bé¢:obtained'
from the graphs G, G,, G5 (Fig. 2) by using the operation of disjoint union finite’
many times and then using operations of (*)-switchings finite many times. .

G3:

Fig. 2
Example 3.

a) Let ¢, = (12, 8, 4,2). Then for i = 3 there are no solutions of (2)
b) Let ¢, = (14,8, 4, 2).
Then

' (0112

P,=13020]|, however 2, =0.
5710

c) For a sequence @3 = (8, 8, 4, 2) we have:

[001 =
P,=1020| and 2,=0.
‘-821 MR BRI

Moreover let us observe that using the criteria of solutions of (2) given in [1] we
can conclude that for the set {8, 4, 2} there exists a unique m such that the sequence
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(m, 8, 4, 2) is T’ " -representable. Namely, m = 10. The set of graphs I' “-representing
(10, 8, 4, 2) was described in Example 1.

Remark 1. In the considerations of Sec. 2 of this paper one can neglect the as-
sumption of m-I"~-regularity of graphs and generalize the problems as follows.

Let k be a positive integer and {d,, d,, ..., d,} a set of non-negative integers such
thatd, > dy>...>d,. Fori=1,2,...,k let

'qi = {(pl!l’ rey p"fl), e (pilc;’ ceey p,i(cg)}
be;a set of szquences of non-negative integers such that pj, + pi, + ... + pi, = d;
fat. g = 1,2, ..., c;. Let further

1 . 2= U 2.

:note by Gy (2) the set of all graphs G such that V(G) = {v,, v,, ..., v,} for some
ne N and such that 2 = 9(G), where 2(G) is the set of all distributions of the
vertices of G.

Problem 3. Dzscribe the set G (2).
Denote analogously as before
Pit -« Piey -« Pit --- Picy -+ Pit -+ Phey
P=|i i i

Pit - Pic, -« Pit oo Pley - Pht - Prey
and denote by 2 the set of all sequences of the form (7) whose coordinatcs are positive
integers satisfying (3) and (4).

Using the same argument we can formulate theorems analogous to Theorem 3
and Theorem 4 as follows:

1° replace the first sentence both in Theorem 3 and Theorem 4 by the sentence
“Let 2 be a set of k-tuples of the form (12) nad G, (2) + 0”.

2° replace in Theorem 3 and Theorem 4 the symbol G-(¢) by G,(2).

It is known that for every non-empty set {d,, d,, ..., d;} of non-negative integers
there exists a graph G such that D(G) = {d,, d,, ..., d,}. However, there exist non-

empty sets 2 of the form (12) which are distribution sets of no graph (see Example
3b) and 3c)). .
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