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časopis pro pěstování matematiky, roč. 109 (1984). Praha 

VARIATIONAL STABILITY FOR GENERALIZED ORDINARY 
DIFFERENTIAL EQUATIONS 

STEFAN SCHWABIK, Praha 

(Received May 17, 1983) 

INTRODUCTION 

In this paper we study the generalized differential equation 

(J) ^ = DF(x,t) 
dx 

for which the identically zero function is a solution. For c > 0 write Bc = {x e Rn; 
\x\ < c} where | • | stands for some norm in the space Rn. 

Let two functions be given: a function h : [0, + oo) -+ R, nondecreasing and con
tinuous from the left on [0, + oo), and a function co : [0, + oo) -+ R, continuous, 
increasing and such that co(0) = 0; these functions are fixed for the rest of the 
paper. The following assumptions are imposed on the right hand side F of the gen
eralized differential equation (1) throughout the paper: -V. 

(2) there is c > 0 such that F : Bc x [0, + oo) -> Rn ; 

(3) \F(x, t2) - F(x, tx)\ g \h(t2) - h(tt)\ 

for every xe Bc, tl912 e [0, +oo); 

(4) \F(x2, t2) - F(x2, tx) - F(xu t2) + F(xl91,)\ = 

= co(\x2 - xx\) . \h(t2) - h(tx)\ for every xl9 x2e Bc , tl9 t2 e [0, +oo) ; 

(5) F(0, t2) - F(0, tt) = 0 for every tl912 e [0, + oo) . 

Generalized differential equations of the form (1) were introduced and extensively 
studied in detail by J. Kurzweil [2], [3]. The assumptions (2), (3) and (4) are given in 
[3] and the set of all functions F satisfying the assumptions (3) and (4) on G = Bc x 
x [0, + oo) is denoted by !F = !F(G, h9 co). Generalized differential equations of 
the form (1) with F e ^(G, h, co) represent a sufficiently wide class of equations, 
which includes e.g. the class of ordinary differential equations with right hand sides 
satisfying the known Caratheodory conditions. 
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Let us mention that a function x : [a, b] -> JR" is a solution of (1) if 

a) (x(r), t)eBc x [0, -f- oo) for every t e [a, ft] 

and 

C52 

b) x(s2) — x(sl) = I DF(x(T), t) for every si9 s2e [a, b] . 
•vi''i • Jl s t 

The integral used here is the generalized Perron integral introduced by Kurzweil 
in [2]. More details on this integral can be found in [4]. 

The fundamental local existence result for solutions of (l) is given in [3]: If 
F e &(G9 h9 co) and x e Bc9 t0 e [0, + 00) where x + = x + F(x, t0+) - F(x, t0) e Bc 

then there exists 5 > 0 such that there is a solution x : [t0, t0 + 6] -> Rn of (1) 
with x(t0) = x. 

Proposition 1. Assume that sl9 s2 e [0, +00), st :g s2. If y : [s l s s2] -* Bc is such 

^

S2 

DF^T), t) exists then 
S l 

(6) , \Гш(y(,),t) ^ Һ(S2) - h(Sl) . 

For the proof see [3]. 
By this proposition we can conclude that every solution x : [a, ft] -* Rn of the 

equation (1) is of bounded variation on [a, 6], xeBV[a9b\ In fact, if s t ^ s2, 
si, s2 e [a, fe] then v 

(7) | x (5 2 )-x( S l ) | = |ГDҒ(x(т),ř) 
IJsi 

й h(s2) - Л(s.) 

and consequently, also var* x ^ h(b) — /i(a). The continuity from the left of the 
function h together with (7) yields that every solution of the equation (1) is continuous 
from the left. 

If sl9 s2 e [0, +00), s1 g s2 and x, y : [s l 5 s2] -* Bc are such functions that the 
/•S2 /*«2 

integrals DF(xvT), t) and DF(j/(T), t) exist then 
J«l J Sl 

(8) J T D[F(X(T), 0 - F(y(z), *)] I g P D[O>(|X(T) - j<t)|) ft(t)] = 
IJsi I J Si 

= Fot\x(r)-y(r)\)dh(i). 
Jsi 

This statement follows from the assumption (4) and from Lemma 3.1 in [3] (cf. 
also [4]). The integral on the right hand side is the Perron-Stieltjes integral. Finally, 
let us mention that if x : [si9 s2] -> BC9 0 ^ st <; s2 < +00 is a regulated function 
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rs2 

(having onesided limits at each point se [sl9 s2]) then the integral DF(X(T), t) 
J st 

F2 

exists. In our case it is important that the integral DJF(X(T), t) exists whenever 
J s t 

x e BV[sl9 s2] is a function with values in Bc. By the assumptions (5) we have 

D[F(0, t)] = F(s2) - F(s1) = 0 for every sus2e [0, + o o ) . f 
Hence the function x = 0 is a solution of the equation (1) on [0, oo). 

The concept of the generalized differential equation with a right hand side satisfying 
conditions (3) and (4) includes the Caratheodory theory of ordinary differential 
equations as well as the concept of the measure differential equation (see e.g. [5]) 
and the theory of systems with impulses which has been developed intensively by 
A. M. Samoilenko and others (see e.g. [6]). 

In the present paper we give some results concerning the concept of stability of 
a solution of the generalized differential equation. They generalize the results known 
for the Caratheodory concept of differential equation and they also cover the 
interesting case of systems with impulses. The starting point of our approach is the 
stimulative paper of I. Vrkoc [8] on integral stability and the improvements of his 
results given by S.-N. Chow and J. A. Yorke in [1]. Since the solutions of the equation 
(1) are functions of bounded variation it seems to be very reasonable to use the con
cept of variational stability which was mentioned by I. Vrkoc in [8] and which 
belongs to H. Okamura. The concept of variational stability in the case of Caratheo
dory equations is equivalent to the integral stability introduced by I. Vrkoc, see [8]. 
In the case of classical differential equations the concept of variational stability has 
some features of artificiality; in this case the solutions of the differential equations are 
absolutely continuous functions and the power of the concept of the variation of 
a function is not fully exploited. In the case of generalized differential equations we 
have to distinquish also the discontinuities of functions and this can be done in 
a satisfactory way in terms of the total variation of a function. 

Let us introduce the basic definitions of stability and asymptotic stability used 
throughout the paper. 

DEFINITIONS AND PRELIMINARY RESULTS 

Definition 1. The solution x s 0 of the equation (1) is called variationally stable 
if for every e > 0 there exists S = 8(e) > 0 such that if y : [t0, ^ ] -* Bc, 0 ^ 
^ *o < *i < +oo, is a function of bounded variation, continuous from the left 
with 

\y(t0)\<S and varífyťs) - f DF{y{r), t)\ < ö 
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then 
\y(t)\ <e for te [t0, tt] . 

Definition 2. The solution x = 0 0f the equation (1) is called variationally at
tracting if there exists S0 > 0 and for every e > 0 there exists T — T(e) > 0 and 
7 = y(e) > 0 swcfe that if y : [r0, ft] -• 2*c, 0 ^ t0 ^ ^ < +oo, is a function of 
bounded variation, continuous from the left and 

\y(t0)\ < *o and y^Jy(s) - |"DF(y(x),t)\ < y , 

then 
1X01 < e for all t e [ř0, ti] , t ^ ř0 + T(e), í0 ^ O . 

Definition 3. The solution x = 0 of the equation (1) is called variational-asympto-
tically stable if it is variationally stable and variationally attracting. 

The above concepts of variational stability and variational asymptotic stability 
are closely connected with a certain kind of stability with respect to perturbations of 
the generalized differential equation (1). 

Together with the equation (l) we consider the perturbed equation 

(9) £- - D[F(x, t) + P(t)l, 
dr 

where P : [0, + oo) -» Rn is a function of locally bounded variation P e J5Vloc[0, + bo) 
(i.e. for every [a, fc] _ [0, + oo) we have var£ P < oo) which is continuous from the 
left at each point belonging to [0, + oo). It can be easily verified that if the function F 
satisfies (3) and (4) then the function F(x, t) + P(t) — G(x, t) satisfies similar as
sumptions, i.e. 

|G(x, t2) - G(x, tx)\ = |F(x, t2) + P(r2) - F(x, tt) - P(tt)\ S 

_ \h(t2) + var0
2 P - h(tx) - var0

l P| 
and 

|G(x2, t2) - G(x2, tx) - G(x1? t2) + G(xu tt)\ ^ 

_ c o ( h - ^ i | ) | % ) - ^ i ) | -

Hence the right hand side of the generalized differential equation (9) belongs to the 
set ^"(G, h, co) where h(t) = h(t) + var£ P, t e [0, + oo), and all the fundamental 
results are valid for the equation (9) as well; this concerns especially the local existence 
of solutions. 

Proposition 2. The solution x == 0 of the equation (1) is variationally stable if 
and only if for every e > 0 there exists S = d(e) > 0 such that if \y0\ < 8 and 
P e BV[t0, fj], continuous from the left and with var{* P < 5, then 
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|y(', 'o> yo)| < e f°r wry * e [f0, f-J, 

where y(t, t0, y0) is a solution of the equation 

(9) £ = D[.F(.T, t) + />(,)] 
at 

w/t/i y(t0, t0, y0) = j 0 . 

Proof. 1) Assume that x = 0 is variationally stable, i.e. for e > 0 there exists 
S > 0 according to Definition 1. Assume that \y0\ < S, varJi P < 5 and that y(t) = 
= y(t, t0, j 0 ) is a solution of the equation (9) on [/0, tj; then evidently |y(*o)| = 

= | j 0 | < S and for sl9 s2 e [t0, ^ ] we have 

As2) - y(s,) = f DF(y(x), t) + P(S2) - P(Sl), 
J Si 

y(s2) - ^ DF(y(z), t) - y(Sl) - f W ^ t ) , /) = P(s2) - P(Sl) 
J t0 J to 

I.Є. 

and this yields 

varJfXs) - f DF(J(T), Í ) ) = var|; P<6, 

Hence by the variational stability we have 

\y(t)\ = |y(*, t0, y0)\ < e 

for t e [f0, tj] and the condition given in the proposition is satisfied. 
2) Let us assume that the condition given in our statement is satisfied. Let y : 

: [*o> *i] -* -Rn be of bounded variation, continuous from the left, and such that 
|y(r0)| < S and 

v a r ^ ( * ) - (*DF(y(T),t)\<8, 

where 5 > 0 corresponds to the given e > 0 by the assumed condition. For all 
sl9 s2 e [r0, tj we have 

y(s2) ~ y(si) = f 2 DF(y(t), 0 + y(s2) - y(Si) - f DF(J{T), 0 = 
J« l J s i 

= !S2DF(y(x), t) + y(S2) - P D / ^ * ) , f) - ^(s,) + p D r ^ T ) , *) = 
J Si J *o J fo 

= r 2 Dr ( j (T) ,o+ J p( S 2 ) -p(5 1 ) , 
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where P(s) = y(s) - DF(y(x)91)9 s e [t09 * J . Hence clearly, P e £V[f0, f J , P is 
J t0 

continuous from the left and the function y : [t09 f t ] -> Rn is a solution of the equa
tion (9), where 

|y(t0)\ < 5 and varjj P = v < ( y(s) - f DF( J<T) , * ) ) < * • 

Hence by the condition given in the statement we have 

. \y(t)\ = \y(t,t09y(t0))\<e 

for every t e [t09 i^], i.e. the solution x = 0 of the equation (1) is variationally stable. 

Proposition 3. The solution x = 0 of the equation (1) is variationally attracting 
if and only if there exists S0 > 0 and for any e > 0 there exist T _ 0 and y > 0 
SMC/I f/iaf if 

\y0\ < S0 and var[0 P < y 

with P eBV[t09t^\ continuous from the left, then 

|y (Mo>yo) |<£ for all t = t0 + T, te[l0, tx] and t0 = 0 , 

where >>(*, f0, j>0) is a solution of the equation (9) with y(t09109 y0) = y0. 

Proof. 1) Assume that x = 0 is variationally attracting, i.e. that there exists <50 > 0 
and for £ > 0 also T > 0 and y > 0 by Definition 2. Assume further that \y0\ < <50, 
P e BV[t09 *i] continuous from the left such that varfo P < y9 and that y(t) = 
= y(t, t09 y0) is a solution of the equation (9) on [f0, tt~\. Then \y(t0)\ = \y0\ <S0 

and 

var-[ yls) - \ DFiy(x)9t) ) = var- P < y r j f X s ) - {SDF(y(?),t)\ = var^ P 

(cf. the proof of Proposition 2). Hence by Definition 

\y(t, t09 y0)\ = \y(t)\ < e for all t = f0 + T and t0 = 0 . 

2) If the condition given in Proposition 3 is satisfied then assume that y : [t0, tx] 
-• Rn is of bounded variation, continuous from the left, such that |y(*0)| < <> a n d 

w^fy(s)-{SDF(y(r)9t)\<y. 

Then it can be easily shown in the same way as in the proof of Proposition 2 that y 
is a solution of the equation (9) with 

\y(t0)\ < S0 and P(s) = y(s) - f DF(^(t), t)9 se [t091,] . 
J to 
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Pe BV\t0, t{\ is continuous from the left, var^P < y. Hence 

|V(r)| < e for all t ^ t0 + T and *0 ;> 0 . 

Remark. Let us mention that the perturbation P in the equation (9) can be 
replaced by a more general perturbation H(x91) which satisfies 

|fl(x, t2) - H(x, r.)| z \P(t2) - P(h)\ 

for all x in a neighbourhood of 0 and 

|tf(x2, t2) - H(x2, tt) - H(xu t2) + H(xu tt)\ ^ «>(|x1 - x2\) \P(t2) - P(tl)\ . 

These more general perturbations lead to results of the same kind and provide no 
new ideas for the Object of the study; for this reason we consider the simpler case of 
perturbations independent of x. 

The conditions given in Propositions 2 and 3 are equivalent to the notion of 
variational stability and variational attractivity. We use these conditions because 
they are more convenient in many situations. 

Proposition 4. Assume that — o o < a < b < + o o and that f, g : [a, b] -*• R 
are two functions continuous from the left in (a, b\, f, g eBV\a, 6], If for any 
t e [a, b) there exists 3(t) > 0 such that for every h e (0, 8(t)) the inequality 

f(t + h)-f(t)Sg(t + h)-g(t) 
holds, then 

f(s)-f(a)Zg(s)-g(a) 
for every s e [a, b\. 

Proof. Let us denote M = {se [a, b~\; f(a) — f(a) S g(tf) — g(a) for a e [a, s]} 
and set S = sup M. Since f(a + rj) — f(a) ^ g(a + r\) — g(a) for r\ e (0, $(a))9 

we evidently have S > a and f(s) — f(a) < g(s) — g(a) for every s < S. Since 
the functions f, g are continuous from the left we also have 

f(s)-f(a)£g(s)-g(a). 

If S < b were valid then by the assumption 

f(S + r,)-f(S)^g(S + r,)-g(S) 

for every r\ e (0, $(S)) and consequently also 

f(S + rj) - f(a) = f(S + rfi - f(S) + f(5) - f(a) ^ g(S + ri) - g(a) , 

i.e. for r\ e (0, <5(S)) we should have S + r\eM. This contradiction yields S = b 
and M -= [a, ft]. 

Lemma 1. Let V: [0, +oo) x R-* R be such that for every xeRn the function 
V(*,x) is continuous from the left, V('9x)e BVloc[0, +oo) and 
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(10) \V(t,x)-V(t,y)\£K\x-y\ for x, y e Rn , te [0 ,+oo) , 

where K > 0. 
Assume that for every solution x : (a, /?) -> Rn of the equation (1) we have 

/ x ,. V(t + n, x(t + n)) - P(r>*(0) ^ ,*/ IA\ 
(11) hm sup - - i ^;. * — ^ = #(x(f)) , 

1.-0+ n 

where <P : Rn -• R is a real function, t e (a, /?). 
If y : [t0, f-J -• Rn 0 ^ t0 < tx < +oo is a function continuous from the left on 

[t0, tj], j e -BV[f0> *i], then the inequality 

(12) V(ri; y(tt)) S V(t0, y(t0)) + Kv^(y(s) - f DF^t), *)) + M(tx - f0) 

ZioWs wifft M = sup #(y(f))-
*e[f0,fi] 

Proof. Assume that y : [f0, fx] -> Kn is given as in the statement. 
Let a e [t0, t^ be arbitrary and let x be a solution of the equation (1) dx/dr = 

= DF(x, t) such that x((r) = y(a). By virtue of the local existence theorem for equa
tions of the form (1) (see e.g. [3]) there exists rjx(a) > 0 such that a solution x 
exists on [a, a + ih(<r)]. F o r n e [0> fiC0")] w e ^a v e ^ (10) 

% + 1, y(<r + >?)) ~ V(a + 17, x((r + n)) ^ K|y((r + .7) - x(a + fy)| = 

y{a + n)-y(a)- rnVF(x(x),t) . 

Further, 

V(a + n, y(a + )̂) - V(a, y(a)) = V((r + n, y(a + 17)) - V(<r + n, x(a + n)) + 

+ V((r + n, x(a + .7)) - V(<r, x(a)) . 

By the assumption (11) for every e > 0 there exists t]2(a) > 0 such that n2(a) ^ *7i(<r) 
and the following inequality holds for n e [0, n2(a)\: 

V(a + n, y(a + n)) - V(<r, y(<r)) = 

= к 

<к y(* + 4) - X*) - Г ЧDF(x(t), t) 

y(<т + r,) - y(a) - ľ ЧDF(x(i:),t) 

+ tl<Қy((r)) <-

+ ГJM + rjє. 

Hence for rj e [0, */2((T)] we also have 

V(a + n, y(a + n)) - V(a, y(a)) £ K y(o- + ч) "- И*) -Г DҒ(Xт), t) + 
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+ к\Г''D[F(y(x),t)-F(x(r),t)] 
I J o 

+ rjM + rje. 

Let us set 

P(s) = y(s)- (SDF(y(r),t) 
Jřo 

for s e [f0, fj]. Evidently P : [t0i rx] -+ K" is continuous from the left, P e £V[f0, fx] 
and 

(13) V(<r + , , y(a + ,)) - V(<r, ><o-)) = K [ v a C ' F-var?0 F] + 

; + Mi; + o» + X I r+*D[fl(j<T), t) - F(X(T), t] . 
IJ O 

Using (4) and Lemma 3,1 from [3] for estimating the last term on the right hand side 
of this inequality we obtain 

(14) \rnD\F(y(x), t) - F(x(r), «)]| = P D M K * ) - X(T)|) h(t)] = 
\J o I J a 

= J ' V K T ) - X(T)|) dfc(x) = ^ + ( J " a + J"") "(|X*) - *M|) d*(x) = 

= lim f ©fl^t) - X(T)|) c\h(x) = 

^ sup co(|y(e) - X(Q)\) lim (fi(<r + rj) - /?((7 + a)) = 
<>e(<T,<T + J7] a-»0 + 

= sup co(\y(e) - x(e)\)(h(cr + r,) - h(<r +)) 
ee(<r,<T + r/] 

because ^ 
• \_ 

lim f " C ^ T ) - X(T)|) dh(T) = co(\y((r) - x(cr)\) lim (h((r + a) - h(a)) = 

= co(0) lim (h((7 + a) - fc((x)) = 0 
a-*0 + 

by Theorem 1.3.5 from [2]. 

For QE(CT,(T + rj2(cT)) we have X(Q) = J>((T) + I DF(X(T), t) (x is a solution of (1) 

with X(G) = J>((T)) and 
y(в) - X(Q) = j<в) - >>(<-) - ГDF(X(T), 0 
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Hence 

lim (y(Q) - x(Q)) = lim (><<?) - y(a) - f DF(x(T), t)) = 

= lim \y(Q) - y(a) - [(F(x(a), Q) - F(x(a), a))] = 
Q-+0 + 

= y(<r+) ~ y(<r) - F(y(a), a+) + F(y(a), a) = 

= y(a+) - y(a) - lim fW(><T), í) = 

= y(a+) - y(a) - lim ( T DF(><T), í) - f °DF(j;(T), í))) = 

= limP(e) - P(a) = P(a+) - P(a) 
(?-•<* + 

and 

(15) l i m | ^ ) - x ( e ) | = |P(<r+)-P(«r)| 
Q-*<r + 

Let e > 0 be arbitrary and let us set 

(iб) a =-
ЧKҺ) - Һ(t0) + i] 

>o 

Assume that §(<x) > 0 is such that for Q e (0, £(a)] we have CO(Q) < a and let us set 
y € (0, £(a)/2). By (15) there exists rj3(a) > 0, rj3(a) S tlifa), such that for Q e (a, a + 
+ 113(0)] w e h a v e 

(17) 

Denote 

\y(Q)-x(Q)\ž\P(a+)-P(a)\ + y, 

*(«) = |<re [.0, .<]; |P(<r+) - P(<r)| = -&)} ; 

since P e £F[f0, rx], the set N(a) is finite; let 1(a) be the number of elements of the 
set N(a). For a e \t0, ^]\iV(a) and Q e (a, a + Jfo(o')] we have 

co(\y(Q) - X(Q)\) ^ co(\P(a+) - P(a)\ + y) < co (£(a)/2 + £(a)/2) = a>(g(a)) < a 

and by (14) also 

(18) I rnD[F(y(T), t) - F(X(T), t)]\ <Z a(h(a + n) - h(a+)) 

IJ<T 

for r\ 6 (0, ffov*))-

Assume now that a e [t0, t{\ n N(a). Since the limit 
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lim h(a + rj) = h(a+) 
J7-+0 + 

exists, there exists rj4(a) > 0, t]4(a) ^ r]3(a) such that for 0 < rj < qja) we have 

h(a + ri) - h(a +) < ;  
1 "; l ' (1(a) + 1) . co(\P(a+) - P(a)\ + y) 

and (a, a + rjja)] n N(a) = 0. By (14) and (17) we then have for r] e (a, a + r]4(a)] 

(19) r"D[F(y(r), t) - F(x(x), í)] ž sup oi\y(e) - X(Q)\) 
Jtr I Q€(<T,<T + tl) 

š co(\P(a+) - P(a)\ +y). 

(l(a) + í)(oi\P(a+)-P(a)\ + y) 

a 1 

Let us set 

K(t) = 

ř(a) + 1' <o(\P(a+) - P(a)\ + y) /(a) + 1 

£ Ha(t) , t є [í0) í.] , 
/(a) + 1 <reN(a) 

where Ha(t) = 0 for t g <r and if<r(t) = 1 for f > a. The function Jia : [t0, tt] -• R 
is evidently nondecreasing and continuous from the left, varj* ha = ha(tx) — ha(t0) = 
= /(a) . a/(Z(a) + 1) < a, the points of discontinuity of ha are only the points 
belonging to N(a) and for every reN(a) we have ha(t+) - ha(t) = a/(/(a) + 1). 

Define further 

fia(t) = <xhc(t) + ha(t). *e[f 0 ,* i ] , 

where hc is the continuous part of the function h. The function Ra is nondecreasing 
and continuous from the left on [t0, tt] and 

Uh) ~ £a('o) = «lhc(h) - K(to)] + K(tl) - ha(t0) = a(h(rO - % ) + 1). 

If we set r](a) = rj3(a) for a e [f0, /x] \N(a) and rj(a) = ^(cr) for a e [t0, tt] n N(a), 
then by (18), (19) and by the construction of fia : [t0,.?-] ->i?we have 

I Гo + П 

II [ ѓ h> + tj) - ОД [DF(y(z),t)-F(x(*),t)-) 

for every t\ e [0, ti(a)"\ and by (13) also 

V(ff + >;, j((7 + t,)) - V(a, y(a)) g K[v^" P - varf0 P] + Mti + en + 

+ K(Hx(a + t])- Ka(a)) = g(a + t,) - g(a) . 

for every a e [t0, t.) and t\ e [0, >/(<T)] where f/(<r) > 0 and 5(1) = K var{0 P + Mt + et + 
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+ K Rj(t) for t e [r0, 11] is a function continuous from the left on [t0, t . ] , g e 

eBV[t0,tll 

Using Proposition 4 we immediately conclude from this inequality that 

(20) V(tu y(tt)) - V(t0, y(t0)) £ g(tl) - g(t0) = 

= K var|i P + M(tl - t0) + K(/.4(f.) - fia(t0)) + e ^ - t0) g 

^ K var|; y(s) - f DF(y(x), t) + M(.j - t0) + e + e(tt - t0) 
J to 

because by (16) we have 

K(h) - ha(t0) = x(h(tl) - h(t0) + 1) = e/K . 

Since e > 0 was given arbitrarily, the inequality (12) follows directly from (20). 

LJAPUNOV THEOREMS ON STABILITY 

Now we give sufficient conditions for variational stability and asymptotic varia
tional stability of the solution x = 0 of the generalized differential equation (l). 
These sufficient conditions are formulated in terms of a certain kind of Ljapunov 
functions, which are suitable for the case of generalized differential equations. 

1. Theorem Assume that V: [0, oo) x Ba -» jR, 0 < a < c, is such that for every 
xeBa, V(*, X)EBV[0, +OO), V(',x) is continuous from the left. Moreover, let 
V(t, x) be positive definite, i.e. there exists a continuous increasing real function 
b : [0, + oo) -* R such that b(g) = 0 if and only if Q = 0 *) and 

(21) V(t, x) = b(\x\) for all (t, x) e [0, + oo) x Ba , 

(22) V(t, 0) = 0 

and 

(23) \V(t,x)-V(t,y)\^K\x-y\, 

K > 0 being a constant. 

U the function V(t, x(t)) is nonincreasing along every solution x(t) of the equation 

(1) then the solution x == 0 of the equation (l) is variationally stable. 

Proof. Since for a solution x : [a, b] -> Rn of (1) the function V(t, x(t)) is non-
increasing, we have 

*) Let us note that if b*: [0, +co)-> R is continuous nondecreasing and such that b*(o) = 0 
iff Q = 0 then there exists b: [0, +oo)-> R, b(#) <̂  b*((?), Q ^ 0 with the properties given in 
Theorem 1, i.e. b is increasing. 
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(24) lim sup *fr + *> * + ")) ~ ^ XW £ 0 . 
1/-0+ n 

Let e > 0 and let j : \_t0, *i] -> R" h e s u c h t h a t y e -BP[f<» *i]» y continuous from 
the left on [r0, r j -

By (12), from Lemma 1 and by (22), (23) we have (<*> s= 0 in our case) 

(25) V(r, y(r)) = V(t0, y(t0)) + K varj0 (y(s) - f DF(y(r), f A = 

= K|j(r0)| + K varj0 (y(s) - I DF(j(t), t)\ for r e [t0, tt] . 

Let us set a(e) = inf b(r); then lim a(e) = 0 and a(e) > 0 for 2 > 0. Further, choose 

5(e) > 0 such that 2K 5(e) < cc(e). If \y(t0)\ < K*) a n d v a r * (X 5 ) " | DFCK*)> 0 J 

< 5(e) then by (25) we have 

(26) V(r, y(r)) = 2K 5(e) < cc(e) for any r e [t0, f x] . 

If there existed t* e [f0, *i] such that |j;(f*)| ^ e, then 

o(e) = inf b(r) = b(|y(f*)|) = V(f*, y(t*)) 

would also hold and this contradicts (26). Hence \y(t)\ < e for all t e [t0, f x] and 
x = 0 is a variationally stable solution of (1) by Definition 1. 

Remark. In the proof of Theorem 1 we use Lemma 1. In Lemma 1 the function V 
is given for (t, x) e [0, + oo) x Rn. It is evident that it is possible to extend the 
function V: [0, + oo) x Ba -> R given in the assumptions of the theorem to the whole 
halfspace [0, +oo) x Rn such that all requirements of Lemma 1 hold. The same 
is true also for the following theorem. 

Theorem 2. Assume that a function V: [0, +oo) x 5 a - > K , 0 < a = c with the 
properties stated in Theorem 1 is given. 

If for every solution x : [t0, tx] -> Ba of the equation (1) the inequality 

/ ^ \ i- V(t + n, x(t + n)) - V(t, x(t)) ^ _, t ^ ^ 
(27) lina sup — ^—^ -^ L!_w1 = _<P(x(t)), t0 ^ t < .f t 

i7-f>o+ r\ 

holds where <P : Rn -> R is continuous, <P(Q) = 0, <P(x) > 0 for x 4= 0, then the 
solution x = 0 0f fhe equation (l) is variational-asymptotically stable. 

Proof. Since the function V satisfies all the assumptions given in Theorem 1 the 
solution x = 0 of the equation (l) is variationally stable. It remains to show that this 
solution is also variationally attracting. 
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Let 50 be given such that 0 < <50 < a and if y e BV[t0, tx], 0 <; t0 < tx < + 00, 

y continuous from the left, \y(t0)\ < S0 and var£ (y(s) - DF(j/(t), t)) < 30 

J t0 

then \y(t)\ < a, te[t0,tt]. 

Further, let e > 0 be arbitrary. Since x ss 0 is variationally stable there exists 
y*(e) > 0 such that for every y : [t2, f3] -+ Rn, y e BV[t2, f3], continuous from the 
left and such that 

\y(h)\ < y*(e) 
and 

(28) varg (Vs) - P DF(J<T), *)) < 7*00, 

the inequality 

(29) \y(t)\ < s 

holds for f e \t2, t3~\. 

Let us set y(e) = min (<50, y*(e)) > 0 and 

T(e) = -K(30 + y(e))jM > 0 , 

where M = sup (—#(x)) = — inf <?(x) < 0, and assume that we are given 
y(£)<Jx|<e y(£)< |x|<£ 

y '• [to» ti] -* R", y e BV[t0, ti], J> continuous from the left on [f0, ti] and such 
that |.y(t0)| < ô and 

var.o (y(s) - f DF(y(x), tj\ < y(e) . 

Assume that |j>(f)| ^ y(s) for every t e [f0) t0 e T(e)~\. Using Lemma 1 we obtain 

H*> y(*)) ~ V(*o, y(to)) = V(t, y(t)) - V(t0 + T(e), y(t0 + T(e)) + 

+ V(t0 + T(e), y(t0 + T(E)) - V(t0, y(t0)) ^ 

< K varjf r«> (y(s) - P DF(><T), t)\ + M . T(e) + 

+ K var,'0+r(e) (y(s) - P DF(><T), t)) + sup [ - #(*(*))] g 
\ J.0 / «['o+r(£),(] 

< K var;0 ( y(s) - P DF(J<T), t)) + M . T(e) < 

<K.y(e) + M.-K(6° + yW=-KS0. 
M 
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Hence 
V(t,y(t)) < V(t0, y(t0)) - KS0 = K\y(t0)\ - K<50 < KS0 - K50 = 0 

and this contradicts the fact that Vis assumed positive definite. Hence there necessarily 
exists t* e [t0, t0 + T(eJ\ such that \y(t*)\ < y(e) ̂  y*(e) and at the same time also 

v a r ^ s ) - P DF(J;(T), t)\ < y(e) = y*(e) . 

Hence by (29) we have \y(t)\ < e for t e [**, ^ ] . This in particular yields \y(t)\ < e 
for te[t0 + T(e), f j . 

SOME REMARKS ON LINEAR SYSTEMS 

Let us make some remarks on the concept of variational stability for equations 
with a special linear form of the function F(x, t). We use the notation L(Rn) for the 
linear space of n x n — matrices (linear operators on Rn) endowed with the operator 
norm corresponding to the norm given on Rn. Assume that A : [0, + oo) -» L(Rn) 
is continuous from the left, i.e. A(t —) = A(t) for every te(Q, +oo), and locally of 
bounded variation, i.e. var£ A < oo for every compact interval \a, b~\ c [0, + oo). 

For (x, t) e Rn x [0, + oo) define F(x, t) = A(t) x. It can be easily checked that 
the function F(x, t) satisfies the assumptions (3), (4) and (5) with h(t) = var0 A> 
t e [0, + oo) and co(r) = r for r = 0. 

The generalized differential equation corresponding to this linear function F(x, t) 
was studied in [7]. It is clear that a function x : [a, b] -> Rn is a solution of the 
equation 

(30) £- = D{A(t) x] 
dT 

if for every sl9 s2 e \a, b] the equality 

x(s2)-x(Sl)= r2D[4f)*(r)] 
J Si 

holds or (since the integral on the right hand side of this relation is the Perron-
Stieltjes integral) 

x(s2)-x(Sl)={S2d[A(T)-]x(T). 
J Si 

For the initial value problem 

dx 
- = D[A(t)x], x(t0) = x0eRn 

dT 

the solution satisfies the Stieltjes integral equation 
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x(t) = x0 + Г d[A(z)] x(т). 
J (o 

Irt some situations there exists a uniquely determined matrix X(t): [0, + 00) -> L(Rn) 
such that 

X(t) = 1 + Гd[A(r)] X(r) foг / = 0 

(i is the n x n identity matrix) and the solution of the initial value problem can be 
written in the form 

x(t) = U(t, t0) x0 

where U(t910) = X(t)X~l(t0)9 0 = t0 = t < +00. 

It is known (see [7]) that the matrix X : [0, + 00) -+ L(Rn) exists and is regular 
for every t ^ 0 only if and if the matrix I + A+A(t) = I + A(t-\-) — A(t) is re
gular for every te[0, + 00). 

We restrict ourselves to this case and consider the initial value problem for the 
nonhomogetieous equation 

dx 
(31) — = D[A(t) x + P(t)] , *(*0) = x0 , 

dr 

where P : [0, 00) -+ Rn is a function of locally bounded variation which is continuous 
from the left; then the solution to this problem satisfies the integral equation 

x(t) = x0 + f d[A(r)] x(r) + P(t) - P(t0) . 
J tQ 

Using the variation of constants formula (see e.g. Proposition IH.2.15 in [7]) we 
can write the explicit form of the solution y(t, t0, y0) of the initial value problem for 
the nonhomogeneous equation: 

y(t, to, j'o) = ^( t)^ _ 1( to) y0 + P(t) - P(t0) - x(t) f d[x-'(5)] (P(S) - P(t0)) = 
J to 

' = X(t) [X- \t0) y0 + X-'(/) (P(t) - P(t0)) - t' d[X- J(s)] (P(s) - P(t0)j] , 
J to 

Using the integration by parts formiila for the Perron-Stieltjes integral (see [7], 
Theorem 1.4.33) we obtain 

X~*(t)(P(t) - P(t0)) - \'ds[X~i(s)-](P(s) - P(t0)) = 
J r0 

= ('x-l(s)d[P(s)-P(t0)]+ I A+X-'(<r)A+P(<r), 
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since it can be shown (see Theorem IH.2.10 in [7]) that the function X~l(t) : 
: [0, +oo) -+ L(Rn) is locally of bounded variation. Hence we have the following 
expression for the solution of the initial value problem (31): 

(32) y(t, t0, y0) = X(t) íx~ \t0) y0 + [' X~ \s) d[P(s) - P(f0)] 

+ Z A+X-\a)A+P(c)\ 
to<ia<t \j 

+ 

t = t0 . 

This formula for the solution of (31) leads to the following result. 
If A : [0, +oo) -• L(Rn) is an n x n — matrix valued function which is con-

tinuous from the left on (0, +oo), locally of bounded variation and such that the 
matrix I + A+A(t) = / + A(t + ) — A(t) is regular for every t ^ 0 then the zero 
solution of the generalized linear differential equation (30) is variationally stable 
if and only if the fundamental matrix U(t, t0). = X(t)X~1(t0) is bounded for 
0 = 'o = t. V . . . . . . . . . . . . ,..,... K,v, 

In fact, if \U(t, t0)\ = \X(t)X~l(t0)\ ^ M for 0 = t0 g t then by (32) we easily 
obtain the estimate 

(33) \y(t, t0, y0)\ < At\y0\'+ I [' U(t, s) d(P(s) - P(t0)] 
U to 

+ i z m:*+)-u(i*)].A+p(*)\s 
to<;<r<t 

= M\y0\ + M:; var[0 P + 2M . var|0 P = 

= M|y0|.+ 3M.var;0P , t^t0. . -,v...- .-.., 

Hence if for bvery s > 0 we take 5 = e/(4M + 1) >' 6 and if \y0\ < <5, var|o P < <5 
then >>(f, f0, y0) ^ 4M . 5 < e and the zero solution of (30) is evidently variationally 
stable by Proposition 2. 

If, conversely, the zero solution of the equation (30) is variationally stable then by 
Definition 1 there exists d > 0 such that if x : [f0, + oo) -• Rn is a solution of (30) i.e. 

var;o(x(s) - J D[,4(*)X(T)]) = 0 for every tx = t0 r;o/x(s) - J D[,4(*)X(T)]] = 0 for every 

and |x(f0)| < 5 then |x(f)j < 1 for every t = f0. Let us set y(t) = X(t)X~i(t0)z9 

t ^ t0 and define x(t) = (<5/2) y(t), t ^ t0. It is assumed that z e Rn is arbitrary and 
such that \z\ S 1. Then |x(f0)| =(d[2)f\y(t0)\ =r <<5/2) \z\ £8j2 < 6 and x(f)i is 
a solution of (30). Hence \x(t)\ < 1, i.e. (<5/2) \y(t)\ < 1 and consequently 

\X(t)X-\t0)z\ = \y(t)\<2tt. 

Hence also |X(0X_1(to)| = sup \X(t)X~\t0) z\ < 2/<5 = M for t = /0 and the 

fundamental matrix U(f, t0) is bounded. 
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The subsequent parts of the paper are devoted to the conversion of the Ljapunov 
type stability Theorems 1 and 2. We will show that the variational stability and the 
asymptotic variational stability imply the existence of Ljapunov functions of the type 
given in Theorems 1 and 2. 

The methods used here for generalized differential equations are strongly influenced 
by those of Chow and Yorke from [1]. The character of the generalized differential 
equations and their solutions, which are in general functions of locally bounded 
variation, forces us to use different devices for obtaining the corresponding results. 

FURTHER AUXILIARY STATEMENTS 

Let us introduce a slightly modified notion of the variation of a function. 

Definition 4. Assume that — o o < a < b < + o o and let G : [a, b~] -• Rn is given. 
For a given decomposition 

D : a = a0 < cc1 < ... < ock = b 

of the interval [a, b] and for every k ^ 0 define 

ie-^^->|G(a,) - G^OI = vk(G, D) 

and set 
eA varf, G = sup vk(G, D) , 

D 

where the supremum is taken over all finite decompositions D of the interval [a, &]• 
The number eA varf, G will be called the covariation of the function G over the 
interval [a, b]. 

Lemma 2. / / — o o < a < 6 < +oo and G : [a, fe] -• Rn then for every A ̂  6 we 

have 

"(34) e-A(*-«) var* G ^ eA varf, G = var* G . 

Ifa^c^b then for k = 0 the identity 

(35) eA varf, G = e"A(b-c) eA var* G + eA var* G 

holds. 

Proof. For every X ^ 0 and every decomposition D : a = a0 < ax < ... < ak = 
= 6 we have 

e-AO-a) g e-AO-a,.,) -g e ° = 1 , j = 1, 2, . . . , k . 

Hence 

e-^-«>t;0(G, D) = vk(G, D) g v0(G, D) = £ |G(a;) - G f o . t ) | 
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and passing to the supremum over all finite decompositions D of the interval [a, fc] 
we obtain (34). 

For second statement it is easy to see that we can restrict ourselves to decomposi
tions D which contain the point c as a node, i.e. 

D : a = a0 < ax < ... < ocl^i < OLX = c < a /+1 < ... < cck = b . 

Then we have 

(36) vx(G, D) - i e - ^ - > | G ( a , ) - G0_,_.)| = 
1=1 

_.fe-«»-'-«>|G(«,)-G(«,_1)| + £ _-*—'">|G(«,) - G(ccy_0| « 
y = i ; = i + i 

= c - w > i c - ^ - ' - ' > | G ( « y ) - G(a,_.)| + i e-*-'-'>|G(_y) - G(a,_1)| = 

= e -« ( - 'VC, I ) 1 ) + Cl(G>D2), 
where 

Dt : a = a0 < ax < ... < af =- c and 

D 2
 : c = a i < a/ + i < ••• < ak = b 

are decompositions of [a, c] and [c, ft], respectively. On the other hand, any two 
such decompositions Dt and D2 f ° r m a decomposition D of the interval [a, t ] . 
The equality (35) now easily follows from (36) when we pass to the corresponding 
suprema. 

Corollary l.If a _S c ^ b and A = 0 fhen 

(37) eA var* G ^ eA var* G . 

For a > 0, t > 0, x e Ba let us denote 

Aa{U x) = {<p : [0, + oo) -> K"; <p e BVloc[0, + oo) , q>(0) = 0 , 

(p(t) = x, <p is continuous from the left and sup |<p(s)| < a} . 
se[0,f] 

Moreover, for X = 0, s = 0 and x e Ba define 

z = inf k v a r 0 ( V ) - T D F ^ T ) , o ) l for s > 0 
(38) Vx(s,x) v*Aa(s,x) ( \ J0 /J 

N = |xj for s = 0 . 

Let us mention that this definition makes sense because for <p e Aa(s, x) the in

tegral I DF(<JO(T), t) is of bounded variation as a function of the variable a and 
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consequently, the function (p(a) - DF(<p(r), t) is of bounded variation on [0, s] 

as well and the eA-variation of this function is bounded. 
It is evident that the function <p = 0 belongs to Aa(s, 0) and consequently we have 

(39) n M ) = 0 

for every s ^ 0 and k ^ 0, because <p(<r) — DF((p(t), t) == 0 for every a ^ 0. 
Jo 

Since eA var0(<p(<r) — J DF((p(x), t)) ^ 0 for every cp e Aa(s, x) we have by the 

definition (38) also 

(40) VA(s, x) ^ 0 for every s ^ 0 and x e Rn. 

Lemma 3. For x,yeBa = {xeRn; \x\ < a), s e [0, + co) and I ^ 0 the ine
quality 

(41) | K M - Vk(s,y)\^\x-y\ 

holds. 

Proof. Assume that s > 0 and 0 < n < s. Let <peAa(s, x) be arbitrary. Define 

^(cr) =*• <p(cr) for <7 e [0, s - ,7] , 

#j(*) *- <P(S - tf) + - (y ~ <P(S ~ ri))(a - s + n) for <r e [s - n, s] . 

The function q>n coincides with the function <p on [0, s - n\ a n d i s l i n e a r w i t h 

<Pn(s) = y on [s - .7, s]. By the definition we clearly have <pn s Ms> y) a n d u $ i n g 
(35) from Lemma 2 we get 

= e A ,eя var0 

t/д(s, >>) g eя varj ( ( ^ ) - Г D % , , ( T ) , 0 

(?(«-) - Г DF(ę(x), t)) + eя vаt-JęJff) ' JЩ<PЌ)> <)) = 

= e-^cд v a r 0 - ( V ) - Г D % ( T ) , t)\+ var;.,"^ + var^, ( J o

D f W т ) ' ')) = 

^ e-л 'eя varo-1 (ę(a) - [°ЪF(<p(т), ř)) + \y - ф-"ч)\ + ^ " Л^S ~ ^ ' 

Since for every n > 0 we have 

e ^ v a r S - ' (ф) - Г D F В Д , .)) « e д vaгj (ç>(<r) - J J>ғM*l ')) ~ 
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- e _ var__, L(a) - [°DF(<P(T), t)) g eA var«0 (<p(a) - (°DF(<p(r), t)) , 

we obtain for every n > 0 the inequality 

Vk(s, y) £ eA var0 (<p(a) - f DF(cp(r), t)\ + \y - cp(s - n)\ + h(s) - h(s - n). 

Since cp and h are assumed to be continuous from the left: lim cp(?) = <p(s) = x, 
t->_,— 

and the last inequality holds for every ^ > 0 w e can pass to the limit rj -• 0+ in 
order to obtain the inequality 

Vk(s, y) < eA var0 L(a) - [*DF(<P(T), t)\ + \y - x\, 

which holds for every cp e Aa(s, x). Taking the infimum for all <p e Aa(s, x) on the 
right hand side of this inequality we get the inequality 

(42) Vk(s,y)£ Vk(s,x) + \y-x\. 

Since all is symmetric in x and y we similarly obtain the inequality 

Vk(s, x) ^ Vk(s, y) + \y- x\ 

and this together with (42) yields the inequality (41) for s > 0. 
If s = 0, then we have by definition 

\Vx(0,y)-Vx(0,x)\ = \\y\-\x\\z\y-x\. 

Hence the statement of Lemma 3 is proved. 

Corollary 2. Since Vk(s, 0) = Ofor every s _g 0, we have by (39) and (41) 

(43) ' • 0 g Vx(s,x)^\x\. 

Lemma 4. For y e Ba, s, r e [0, 4- oo) and X _g_ 0 the inequality 

(44) | Vx(r, y) - Vx(s, y)\ __ (1 - e "'"-I) a + \h(r) - h(s)\ 

holds. 

Proof. Suppose that 0 < s :g r and let cp e Aa(r, y) be given. Then by Lemma 2 
we have 

(45) eя vaг. U(a) - Г D % ( T ) , t)) = c-x<^cx var^ íę(a) - Г D % ( т ) , í)) 

+ eд var̂  L(a) - Г DF(<p(r), t)\ _ţ 

+ 
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= e-«'-*>V,(s, cp(s)) + e"^'-s> var; L(a) - T D % ( T ) , t)) = 

= e-A<'"5> lvx(s, cp(s)) + var> - varj f" DF((p(r), f)l = 

= e-^'"s>[VA(s, cp(s)) + \y - <Ks)| - (*(r) - h(s))] = 

= e-*-*[Vx(s,y)-(h(r)-h(s))]. 

By (41) from Lemma 3, we have 

Vk(s, cp(s)) + \y - <p(s)| ^ VA(s, y) . 

Hence passing to the infimum over <p e Aa(r, y) on the left hand side of (45) we obtain 

(46) Vx(r, y) = e-^>[VA(s, y) - (h(r) - h(s))] = 

= e-«-*Vx(s,y)-(h(r)-h(s)). 

Now let <p e Aa(s, y) be arbitrary; define 

9*(ff)= ' *(a) f o r *e[M-
\ y for a e [s, r] . 

Evidently <p*(s) = (p(s) = y, <p* e Aa(r, y) and by (35), (34) 

Vx(r, y) = e, var0 L*(a) - T D % * ( T ) , t)) = 

e, var0 (<K<r) - [ D ^ T ) , t)) + eA var̂  L*(a) - CDF(<P*(T), *)) = 

*~%x varj L(a) - (" DF(cp(x), t)) + var̂  cp* + varj ( |DF(<P*(T), f)) :g 

^ e-^-^e, var0 (<p(<x) - T D ^ ^ T ) , *)) + h(r) - h(s) . 

Taking the infimum over all <p e A"(s, y) on the right hand side of this inequality 
we obtain 

Vx(r, y) = e - ^ ' - ^ s , y) + h(r) - h(s) . 

Together with (46) we have 

|r,(r, y) - e"^-s>V,(s, y)\ = h(r) - h(s) . 

Hence by (43) we get the inequality 

\Vx(r, y) - Vx(s,y)\ = \Vx(r,y) - e-^"s>V,(s, y)| + |l - e-*->| |VA(s,y)| = 
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= h(r) - h(s) + (1 - e-« r - s ) ) \y\ = h(r) - h(s) + (1 - e ^ ' " 5 ' ) . . 

because |}»| _ a, i.e. we have obtained (44). 

Assume that 5 = 0 and r > 0. Then by (43) and from the definition (38), 

(47) Vx(r, y) - Vx(s, y) = Vx(r, y) - Vx(0, y) = Vx(r, y) - \y\ = 0 . 

Let us derive an estimate from below. Assume that <p e Aa(r, y). We have 

ex var0 (<p(a) - f DF(<p(r), t) J _ e* var0 <p(o) - e, var0 f D % ( T ) , t) = 

= e " " var0 <p - varo [ ^ ^ ( ^ ( T ) , /) = e-^|<p(r) - <p(0)| - (h(r) - h(0)) = 

= e-*W - W) - *(0)) 
by (34), Lemma 2 and Proposition 1. Passing again to the infimum for cp e Aa(r, y) 
op the left hand side of this inequality we get 

Vx(r,y)*e-*'\y\-(h(r)-h(0)) 

and 

Vx(r, y) - Vx(0, y) = Vx(r, y) - \y\ = (e"" - 1) \y\ - (h(r) - h(0)) = 

_ - ( l - e - * ) M ~ W r ) - * ( 0 ) ) . 

Together with (47) we obtain 

|^.(r, y) - Vx(0, y)\ = (1 - e"^) a + (h(r) - 7.(0)) , 

i.e. the inequality (44) holds in this case, too. The remaining case s = r = 0 is evident. 
Finally, let us mention that the case r < s can be dealt with in the same way because 
the situation is symmetric in s and r. 

By Lemmas 3 and 4 we immediately conclude that the following holds. 

Corollary 3. For x, y e Ba = {x e Rn; \x\ < a}, r,se [0, + oo) and X = 0 the 
inequality 

(48) \Vx(s, x) - Vk(r, y)\ g |* - y| + (1 - e " ^ - « ) a + \h(r) - h(s)\ 

holds. 

Let us now discuss the behaviour of the function Vk(t, x) along the solutions of 
the generalized differential equation 

— = DF(x91). 
dr 

We still assume that the function F(x, t) satisfies the usual assumptions (2), (3), 
(4) and (5). The following statement is important for the forthcoming considerations. 
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Lemma 5. If \j/ : [s, s + n(sj\ —• Rn is a solution of the generalized differential 
equation (1), s _t 0, //(s) > 0, then for every X _\ 0 the inequality 

(49) lim SUp V>(* + * K> + 1)) ~ V>(s> K>)) _ -XVx(s, +{,)) 
1--0+ n 

holds. 

Proof. Let s e [0, + oo) and x e Rn be given. Let us choose a > 0 such that a > 
> |x| + h(s + 1) — h(s). Assume that (p e Aa(s, x) is given and let \j/ be a solution of 
the equation (1) with i//(s) = x defined for ae^s, s + n(sj]; 0 < n(s) < 1. The 
existence of such a solution \j/ is guaranteed by the local existence theorem for the 
equation(l), see e.g. Theorem 2,1 in [3]. For 0 < n < n(s) define 

(pn(a) = (p(a) for a e [0, s] , 

PuM = ^(°) for a e[s,s + n]; ^ 

because we have </>(s) = \//(s) = x = ^(s). Evidently (pn e Aa(s +.17, î (s +17)) 
because (̂<x) is continuous from the left and by the definition of a solution we have 

\W*)\ = I* + f* DF(H*l 0 = 1*1 + *(*) ~ Ks) = 
I Js 

= |x| + h(s + 1) - h(s) < a 

for (7 e [s, s + 17] and . ....., . 

Vx(s + 17, *(s + /,)) = e . v a C (V(<r) - f*D.Ffo,(*). .)) = 

= e^e,• vaij L(a) - ' 'f*D%(T), 0) + e. varf" (*(») - fW(<p(T), f) -

-jDF(^(T),r)) = 

= e" *<e, var; L(cr) - ( " D ^ T ) , *)) + eA varf' (x + | " D % ( T ) , f)) = 

= e-^'e, varS (*>(*) - f * D ^ T ) , *)) • 

Taking the infimum for all (p e Aa(s, x) on the right hand side of this inequality we 
obtain 

Vx(s + 1,, tfr(s + 1,)) g e-*»n(-, *) = e-A'VA(s, *(s)). 
This inequality yields 

VA(s;+ , , *(s + , ) ) - VA(s, *(s)) = (e-** - 1) Vx(s, *(s)) i 
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and also 

VA(s + n, »(s + rj)) - Vx(s, ^(s)) ^ e ^ - 1 y ^ ^ ) } 

" >/ 

for every 0 < ?/ < 1*7(5). 

Since lim(e"A,z — l)/f7 = — A we immediately obtain the inequality (49). 
ij-*0 

CONVERSE LJAPUNOV THEOREMS 

Now we are in position when we can formulate and prove converse theorems to 
Theorems 1 and 2. The first of them concerns the case of variational stability. 

Theorem 3. If the solution x = 0 of the generalized differential equation (1) is 
variationally stable then for every 0 < a < c there exists a function V: [0, + 00) x 
x Ba —> R satisfying the following conditions: 

1) for every x e Ba the function V(', x) is continuous from the left and V(',x)e 
eBVloc[0, +co). 

2) V(t, 0) = 0 and \V(t, x) - V(t, y)\ = |x - y\ for x,yeBa,te [0, + 00), 

3) the function V is nonincreasing along the solutions of the equation (1), 

4) the function V(t, x) is positive definite, i.e., there exists a continuous non-
decreasing real-valued function b : [0, +00) -> R such that b(g) = 0 if and only if 
Q = 0 and 

b(\x\)£V(t,x) 

for every t e [0, + 00), x e Ba. 

Proof. A candidate for the function Vis the function V0(s, x) defined by (38) for 
1 = 0, i.e., we take V(s, x) = V0(s, x). The properties stated in 1) are easy con
sequences of Corollary 3. 2) follows from (39) and from Lemma 3. By Lemma 5, 
for every solution \j/ : [s, s + d~\ -• R" of (1) we have 

n->o+ n 

Hence 3) is also satisfied. It remains to prove that the function V(t, x) is positive 
definite; this is the only point where the variational stability of the solution x = 0 
of the equation (1) is used. Assume that there is an e, 0 < e < a, and a sequence 
{tk, xk), k = 1, 2, ..., e ^ |xfc| < a, tk -» 00 for k -• 00 such that V(tk, xk) -* 0 for 
k -* 00. 
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Let 5(e) > 0 (cf. Proposition 2) be such that for every t0 = 0, P e 5Vloc[0, + oo) 
continuous from the left we have \y(t, t0, y0)\ < e for t = t0, where y(t, t0, y0) is 
a solution of 

-^ = D[F(y, t) + P(r)] , y(t0, t0, y0) = >;0 
dT 

with |y0 | <^(e), var£P<<5(e). 
Assume that fc0 e N is such that for k > k0 we have V(fk, xk) < <5(£). Then there 

exists <pk e Aa(tk, xk) such that 

var; 

Let us set 

b* (<*>*(*) - fDF(^(T), t)\ < S(B) . 

P(a) = <pk(a) - I DF(q>k(x), t) for a e [0, ft] , 

P(<r) = xk - I " D F ^ T ) , t) for <r e [tt, + co). 

We evidently have 

vatf P = vatf Lk(a) - [°T>F(<pk(x), tj\ < S(e) 

and P is continuous from the left. For a e [0, f] we have 
fa fa 

<pk(a) = DF(<jDt(T), t) + <pk(a) - DF(<pk(T), t) = 
Jo Jo 

-= [°DF(<pk(x), t) + P(a) - P(0) = cpk(0) + f °D[F(<pk(x), t) + P(ij\ 

since q>k(0) = 0. Hence q>k is a solution of the equation dyjdx = D[F(j>, f) + P(f)] 
and consequently, by the variational stability we have \(pk(s)\ < e for every s e [0, tk~\. 
Hence we also have |<Pfc('k)| = |x*| < e but this contradicts our assumption. In this 
way we obtain that the function V(t, x) is positive definite and 4) is also satisfied. 

The following result is a converse theorem for the case of asymptotic variational 
stability. 

Theorem 4. If the solution x = 0 o / the generalized differential equation (1) is 
variational—asymptotically stablethenfor every a > 0,a < c there exists a function 
U : [0, +oo) x Ba -> R satisfying the following conditions: 

1) For every xeBa the function U(*,x) is continuous from the left and U(',x)e 
e£Vloc(0, +oo). 
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2) U(t, 0) = 0 and 

\U(t, x) - U(t, y)\ £\x-y\ for x,yeBa, t e [0, + oo). 

3) For every solution \f/(a) of the equation (l) defined for a ̂  t and satisfying 
\j/(t) = x e Ba the relation 

lim sup U(< + r,,<l,(t + r,))-U(t,x) ^ _ ̂  x) 

II»O + rj 

holds. 
4) The function U(t, x) is positive definite. 

Proof. For x e Ba, s = 0 let us set 

U(s, x) = V_(s, x) 

where V_ is given by (38) for X = 1. In the same way as in the proof of Theorem 3 we 
can easily see that the function U satisfies 1), 2) and 3). (Let us mention that 3) is 
exactly the fact stated in Lemma 5.) Hence it remains to show that 4) is also satisfied 
for our choice of the function U. 

Since the solution x = 0 of the equation (1) is variationally attracting (see Proposi
tion 3) there exists <50 > 0 and for any e > 0 there exist T(e) > 0 and y(e) > 0 such 
that if \y0\ < S0 and varj* P < y(e), PeJ3V[t0, t__\, P continuous from the left, 
then 

\y(t> h, y0)\ < e 

for all t G [t0, t_\ t _± t0 + T(e) and t0 = 0. The function y(t, t0, y0) is a solution 
of dx/dx = D[F(x, t) + P(tj] with y(t0, t0, y0) = y0. 

Assume that U is not positive definite. Then there exists e, 0 < e < a = 50, and 
sequences tk, xk, k = 1, 2, . . . such that e ^ \xk\ < a for k = 1, 2,... and tk -> -f oo, 
U(tk, xk) -> 0 for k -• oo. 

Let us choose k0 e N such that for k e N, k > k0 wo have tk > T(e) + 1 and 

U(tk,xk)<y(e)c-™+i\ 

According to the definition of U let us choose cp e Aa(tk, xk) such that 

Q v a r l R ' -''»-'-*- — - i^ui,ni>r\ t\ i .-" <M/C\ 1a~(-r(«)+ -•) rÓk (<ř>(̂ ) - ҐDҒ( Ф (т) , ()) < ľ(є)e-

Let us set t0 = tk - (T(e) + 1); we have f0 > 0 because tk > T(e) + 1 and also 
tk = t0 + T(e) + 1 > f0 + -T(e). Further, evidently 

ei y< L(a) - f D % ( T ) , 0 ) < Ka) e^ r « + 1 > 

and by (34) from Lemma 2 also 
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e-(T(.,+ t) v a r ; ; L(a) _ rDF(<p(r), t)) = 

<l U°) ~ f M v W . 0) < 7(«)e-<T<«>+,)' 

and consequently 

(50) var* L(<r) - ( " D F ^ T ) , /)) < ?(<0 • 

For <r e [f0, ft] define 

P(<r) = <p(<T) - f DF(V(T),r). 
Jo 

P '• [-o> h_ •* ^" is continuous from the left and by (50), 

varfc P < y(e). 

Moreover, for a e [t0, tk~\ we have 

q>(a) = [ ' D F ^ T ) , t) + q>(a) - [ ' D F ^ T ) , t) 
Jo Jo 

and also 

<p(s) - <p(t0) = f DF(<p(r), 0 + P(s) - P(t0) - f D[F(y(x), t) + P(tJ] , 
J t0 J t0 

i.e. the function cp : [t0, fk] -» Pn is a solution of the equation dx/dT = D[F(x, t) + 
+ P(r)] with |<p(f0)| ^ a -= <50 because (p e Aa(ffe, xfc). By the definition of variational 
attractivity the inequality \cp(t)\ < e holds for every t > t0 + T(e). This is valid also 
for the value t = tk > t0 + T(e), i.e. \(p(tk)\ = \xk\ < £, which contradicts our as
sumption IxJ __ e. This yields the positive definiteness of U. 

INTERVAL BOUNDED PERTURBATIONS 

In [1] Chow and Yorke proved that in the case of ordinary differential equations 
the integral asymptotic stability of the solution x = 0 is maintained if the system is 
perturbed by the larger class of interval bounded functions. This result can be trans-
fered to the case of generalized differential equations, too. 

Definition 5. A function P : [0, +oo) -> Rn is said to be of interval bounded 

variation if 

sup varj+1 P < oo . 
t_\0 
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The space of functions with interval bounded variation will be denoted by 
IBV[0, oo) = IBV. It is evident that every function P : [0, oo) -> Rn which is locally 
of bounded variation is also of interval bounded variation, i.e. BVloc cz IBV. 

We can use the general scheme for the definition of the concept of stability under 
perturbations in the class of functions of interval bounded variation which are 
continuous from the left. We say that x = 0 is stable under pertubations in the space 
of functions of interval bounded variation if for every e > 0 there exists 8(e) > 0 
such that if |j01 < S and P e IBV, P continuous from the left such that 

sup varj+1 P < S , 

then 

\y(u t0, yo)| < £ 

for every t = t0, where y(t, t0, y0) is a solution of the equation 

(9) f = D[F(x, t) + P(r)] 

with y(t0, t0, y0) = y0. 
The solution x = 0 is said to be asymptotically stable under perturbations in the 

space of functions with interval bounded variation if it is stable under perturbations 
from this class and if it is also attracting under perturbations of this kind, i.e. if there 
exists a S0 > 0 and for each e > 0 there exists T = T(e) = 0 and y = y(e) > 0 such 
that if \y0\ < S0 and 

sup varj+ 1 P < y(e), then \y(t, t0, y0)\ < e 

for all t = t0 + T(e) and r0 = 0 (here y(t, t0, y0) is again a solution of the generalized 
differential equation (9) which satisfies the initial condition y(t0, t0, y0) = y0). 

Since BVioc c IBV it can be easily shown that if x = 0 is asymptotically stable 
under perturbations in the space of functions with interval bounded variation then 
x = 0 is also variational-asymptotically stable. The equivalent form of variational 
stability and variational attractivity stated in Propositions 1 and 2 has to be used for 
the proof of this fact. 

Similarly as in [ l ] for the case of integral asymptotic stability, also in our case the 
converse is true, i.e. the following theorem is valid. 

Theorem 5. The solution x = 0 of the equation (\) is variational-asymptotically 
stable if and only ifx = 0 is asymptotically stable under perturbations in the space 
of functions with interval bounded variation. 

Proof. It remains to prove that if x = 0 is variational-asymptotically stable then 
x == 0 is also asymptotically stable under perturbations in the space IBV. By Theorem 
4 there exists a Ljapunov function U : [0, + oo) x Bc -> R such that for every x e Bc 
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the function U('9x) is continuous from the left, U('9 x) e £Vloc[0, + oo), U(t9 0) =-=. 0, 
' = 0, 

\U(t,x)-U(t9y)\z_\x-y\ for x, y e Bc , f e [ 0 , +oo ) . 

U(t9 x) is positive definite, i.e. there is b : [0, + oo) -• R9 b continuous, increasing, 
b(0) = 0, b(r) < r for r > 0 such that 

b(|x|) = U(t9 x) for all t e [0, + oo), xeBc 

and for every solution \j/((r) of the equation (1) defined for a = t satisfying \j/(t) = 
= xe Bc the relation 

lim sup U(t + *,Kt + >l))-U(t.*) <: _ u{t> x) 

» , -0+ Y\ 

holds. 

Assume first that x = 0 is not stable under perturbations in LBV. Then there is an 
e > 0 such that for every S > 0 there exist P : [0, + oo) -> Rn continuous from the 
left with 

sup var|+ 1 P < S 9 
t_\0 

y0 E Rn; \y0\ < 59 t0 _% 0, and a solution y(t) = y(t, t0, y0) of the equation (9) such 
that \y(t_)\ = e for some t2 > t0. y is a solution of the generalized differential equa
tion (9), hence y is continuous from the left and of bounded variation on every 
compact interval. 

Assume now that S > 0 is so small that 

5 < b(b(e\2)) < b(e\2) < b(e) < e 

and 

b(e\2) + d < b(e) . 

Using the continuity from the left of y we get the existence of t_ e (t0, t2) such that 
\y(t)\ > b(e/2) for t e (tl912) and |y(f i)[ __ b(e\2). (Let us remember that the function y 
is of bounded variation and consequently it has possibly a discontinuity at t_.) 

Using Lemma 1 for the function U and for y we obtain the inequality 

U(t2, y(t2)) - U(t_9 y(t_)) = var^ fy(s) - f DF(j(r), t\ + M(t2 - t_) = 

= varf^ P + M(t2 -t_)9 

where M = sup (-b(|y(f)|) = - 1nf b(|y(f)|) = -b(b(e\2)) < -5 and evidently 
fe [ f , , f 2 ] «6[ f l f f 2 ] 

var^ P = (t2 - rx + 1) sup varj+1 P < (t2 - ^ + 1) d . 
f^O 

Hence we get the inequalities 
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b(e) = b(|y(r2)|) = V(t2,y(t2)) < U(tuy(tx)) + 

+ 5(t2 - t t + l)-S(t2- tx) = 

= U(tl9 y(<i)) + <5 = |y(<i)| + 5 = b(e\2) + 8<b(e) 

and this evidently leads to a contradiction. Hence the solution x = 0 is stable under 
perturbations in IBV. 

Let us set <50 = 6(c) > 0 where S(c) corresponds to c > 0 by the definition of the 
variational stability of the solution x == 0; hence if \y0\ < S0 then \y(t)\ < c for all 
t = f0, where y(t) = j(r, f0, y0) is a solution of (9) with y(t0) = >/(f0, f0, j;0) = >>0. 

Let e > 0 be given and let us set 

* . ) = min (S(e), ±b(5(s)) , T(s) = *> + *M® 
ib(5(ej) 

d(s) > 0 corresponds to £ > 0 by the definition of the stability of x = 0. Assume 
that for every t2 e \t0, t0 + T(e)~] we have 

c > \y(t2)\ Z 6(e) . 

Using again Lemma 1 we get the inequality 

0 < b(5(s)) < U(t2, y(t2)) < U(t0, y(t0)) + var^ P + 

+ sup ( - H K 0 | K < 2 - to) <- ll(to, y(h)) + varj* P - b(S(s))(t2 - t0) . 
telt0,t2l 

If we assume 
supvar|+1 P < y(e) = b(5(e))J2 

then var^ P ^ &((5(e)) (t2 - t0 + l)/2 and 

0 = U(f0,y('o)) + b(S(e))(t2 -t0 + l)/2 - b(<5(fi))(r2 - r0) = 

= |y('o)| + b(5(e)p - b(<5(£))(*2 - t0)j2 < 

<d0 + b(5(e))l2 - b(8(e))(t2 - t0)/2. 

If now f2 = r0 + T(e), i.e. f2 - f0 = (d0 + b(5(e))l2)j(b(S(e))l2), then we obtain 
the contradictory inequality 

o < , 0 + H*))P-W)^»-o. 

Hence for every solution y(t) of the equation (9) with y(t0) = y0, \y0\ < S0 there 
exists a point tx = f0 such that |y(fi)| < <5(e), and by the properties of 3(e) > 0 
given in the definition of the stability we obtain that |y(t)\ < e for all t = t1 and, in 
particular, for f _ t0 + T(e). This together with the stability under perturbations 
in/BVyields also the asymptotic stability under perturbations inFBVand our theorem 
is proved. 
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