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Časopis pro pěstování matematiky, roč.110 (1985), Praha 

ISOMETRIES IN H2, GENERATING FUNCTIONS 
AND EXTREMAL PROBLEMS 

VLASTIMIL PTAK, Praha 

(Received March 8, 1983) 

INTRODUCTION 

Suppose T is an isometry on a Hilbert space H so that T*T = 1. Consider the 
operator T*. Since T*(l — TT*) = 0 the range of 1 — TT* is contained in the sub-
space Ker T*. On the other hand, if T*x = 0, then x = x - TT*x = (i - TT*) x. 
We see thus that Ker T* equals the range of 1 — TT*. 

This, of course, is true for any partial isometry T: the operator T*T is the pro
jection onto the initial space of Tand TT* is the projection onto the final space of T. 
The complement of the final space, the range of 1 — TT*, is thus equal to Ker TT* 
but this is nothing more than Ker T*. 

In particular T* is injective if and only if Tis unitary. Thus for a nonunitary iso
metry Tthe space 

Ker T* = Range (1 - TT*) = H Q TH 

is nontrivial. It is customary to call it the wandering subspace for Tthe name being 
justified by the fact that 

Tpx 1 Tqy 

for any pair 0 ^ p < q and x, y e Ker T*. 
This fact makes it possible to define an operator R(T) which intertwines T and 

a shift operator V on H2(Ker T*) 

R(T) V = TR(T). 

The operator V is a unilateral shift of dimension d = dim Ker T*. 

Similar ideas are frequently used in the theory of unitary dilations of contractions 
treated in the book [11] of B. Sz. Nagy and C. Foias where the reader can find deeper 
information concerning this matter. 

An important particular case of an isometry in H2 is the operator of multiplication 
by a given inner function cp, the mapping T which assigns to eachfe H2 the product 
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cp(z)f(z). If cp is a Blaschke product of length n then the corresponding wandering 
subspace Ker T* has dimension n. 

In the present note we intend to investigate somewhat closer the case of an isometry 
generated by a single Mobius function 

cp(z) 
1 — a*z 

We establish several interesting relations between the function <p and the cor
responding intertwining operator R((p). As an application, we use these relations to 
find an explicit expression for the sequence of vectors obtained by the Gram-Schmidt 
orthonormalization process from a given sequence in H2. This presents yet another 
method of describing the matrix of the operator S | Ker (S — a)" with respect to an 
orthonormal basis. 

Here S is the (backward) shift operator on H2 defined by 

(5/)(z) = l ( / (z)- / (0)) 
Z 

and a is some number less than one in modulus. 

The importance of the problem of finding a concrete representation for this opera
tor lies in the fact that it was shown in [2, 3] that this operator realizes the maximum 
of |A"| under the constraints that A is a contraction whose spectral radius does not 
exceed r if r is a positive number less than one (we take |a| = r). 

It is interesting to note that — taken quite formally — the method to be described 
here was essentially the first method by means of which the concrete representation 
was obtained. 

In the author's paper [2, 3] the extremal operator was identified as S | Ker (S — r)n. 
For a further study of this operator, it was obviously necessary to have its matrix 

with respect to an orthonormal,basis. 

In a series of discussions of M. Fiedler and the author such a matrix was obtained 
using the method of generating functions in a purely heuristic manner without 
formally justifiable proofs. Because of the unorthodox manner in which the result 
has been obtained it was never published. The first published proof is that of N. J. 
Young [12] which is based on complicated algebraic manipulations. For further 
developments, see the survey [8], When the author became acquainted with the theory 
of Nagy-Foias it became obvious that the ideas of this theory could be used to justify 
the formal computations with generating functions. Surprisingly enough this turns 
out to be less straightforward than it might seem at first glance. This note represents 
a somewhat improved version of the author's notes on this matter: it seems that the 
properties of the isometry generated by a Mobius function are interesting on their 
own and that the application which we present in chapter three contributes to the 
rehabilitation of generating functions. 
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1. MATRICES AND GENERATING FUNCTIONS 

We denote by I2 the Hilbert space of all sequences 

[X0, X|, x2, . . . j 

of complex numbers such that £|xy|2 < oo with the usual algebraic operations and 
scalar product; the open unit disc and the unit circle will be denoted by D and T 
respectively. 

We shall frequently identify the element a e I2 with the corresponding element 
Ifl^z" G L2(F) or with the corresponding holomorphic function in the Hardy space H2. 
The standard basis of I2 will be denoted by e0, ex, e2,..., P+ will be the orthogonal 
projection of I^(T) onto H2, the closed linear span of the functions 1, z, z 2 , . . . . 
We write Vfor the operator of multiplication by z on L2(T) and S for the backward 
shift on H2, so that S = (V | H2)*. If g is an element of H2 we denote by g the func
tion g(z) = g(z*)*. For every x e D let us denote by p(x) the element of I2 

p(x) = { l ,x , x2, ...} . 

We shall denote by e(x) the element P(x*); it will be called the evaluation functional 
corresponding to x since it may be used to obtain the value of the function in H2 

corresponding to an element fe I2 as follows 

f(x) = (f,e(x)), for all xeD. 

A doubly infinite array of complex numbers bij9 i,j = 0,\,2,..., will be called 
an operator matrix if the following two conditions are satisfied 

1° for each / the sequence bt = {b^j belongs to I2 

2° for each x e I2 the sequence 

{Lb0kxk9 Zblkxk, "Lb2kxk, . . .} belongs to I2 . 

The bilinear form corresponding to an operator matrix B is defined as the expres
sion 

(Bp(x),p(y)) = lbJkx
ky*J 

for x and y in D. It is not difficult to see that an operator matrix is uniquely deter
mined by its bilinear form. If we assign to the operator matrix B the sequence u} 

of vectors in I2 

UJ = {b%}k 

then the condition 2° may be reformulated as follows 

3° for each x e I2 the sequence 

F(x) = {(x, u0), (x, Wj), (x, u2), ...} 

belongs to I2. 
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Let us show now that F is a bounded linear operator in I2: this is a standard closed 
graph argument. Indeed, suppose that xn -> 0 and F(xn) -> m. Since (F(x), ek) = 
= (x, uk) for all x, we have 

(m, ek) = lim (F(xn), ek) = lim (xn, uk) = 0 

so that m is zero and F continuous. 
We shall use this fact to show that if B is an operator matrix then BT is an operator 

matrix as well. Indeed, we observe that 

(Fek, ej) = (ek, Uj) = bjk 

so that the column {bjk}j consists of the Fourier coefficients of Fek and thus belongs 
to I2. Given any y e I2, we may thus form the sequence 

{Xbj0yj, £bjiyj, Zbj2yj, ...} = {(Fe0, z), (Feu z), (Fe2, z), ...} 

which is nothing more than the sequence of conjugate Fourier coefficients of F*z 
if z stands for the element {y0, yx, y2,...}. 

Given a bounded linear operator A on H2 it is easy to see that the double sequence 

« / * = (Aek, ej) 

is an operator matrix. We shall call it the matrix of A or the matrix corresponding 
to A and denote it by M(A). If we use the terminology and notation just introduced 
we see that the operator F discussed above is defined in such a manner that its matrix 
is exactly B. The function A(s, t) defined on D x D by the formula 

A(s, t) = (A e(t), e(s)) 

will be called the kernel of A. 
The relations among the notions just introduced are described by the following 

propositions 

(1.1) For any operator matrix B the array BT is an operator matrix as well and 

(Bp(y),p(x)) = (BTe(x),e(y)) 

(B p(v*), p(u*)) = (BT p(u), p(v)) . 

Proof. (BJ e(x), e(y)) = Z(BT)rs x*'f = I6 s r x* s / = (B p(y), p(x)). 

(1.2) Given a bounded linear operator A on H2 the matrix Jl(A) is characterized 
by the relation 

(A p(x), p(y)) = (M(A) p(x), p(y)). 

Proof. The reader will understand that the pedantically rigorous statement of 
this lemma would require introducing a notation distinguishing between p(x) taken 
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as a sequence in I2 and as an element of H2 and will be able to give each such state
ment its correct interpretation. Thejk-th element of M(A) is given by 

•*(A)jk = (A*k, ej) 

so that 

(A p(x), p(y)) = (A Xxkek, i y e y ) = Zx* M(A)jk y*' = (M(A) p(x), p(y)). 

(1.3) Given a bounded linear operator A on H2 then the kernel corresponding 
to A is the bilinear form corresponding to M(A)T. 

Proof. Using (1,2) and (1,1) we obtain 

A(s, t) = (A e(t), e(s)) = (M(A) e(t), e(s)) = (M(AT) p(s), p(t)). 

(1.4) The kernel of a bounded linear operator A possesses the following property 

,dz 
(Af)(s) = ^A(s,z)f(z){-

for any fe H2, the integral being taken counterlockwise on the unit circle. 

We shall not give a proof of this fact which is only included for the sake of com
pleteness. The statement itself requires some amplification. Indeed, we have defined 
A(s, z) as (A e(z), e(s)) for s and z less than 1 in modulus, the evaluation functional 
e(z) are meaningless for |z | = 1. Nevertheless, it may be shown that A(m, t)e H2 

and A(s, •) e II2 for all s,teD. As functions in H2 they have well defined boundary 
values and it is in this sense that the above integral is to be taken. 

2. 1SOMETRIES CORRESPONDING TO A MOBIUS FUNCTION 

In this section we intend to study a class of matrices which correspond in a natural 
manner to isometries in H2 generated by a Mobius function. 

Let us denote by M the set of all two by two matrices A which satisfy 

A*QA = Q 

where Q is the matrix 

Q 

It is easy to see that, for a matrix 

A = 

C °v 
Vo-ij 

\cđ)' 
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the inclusion A e J( is equivalent to the following three relations to be satisfied for 
the entries a, b, c, d: 

\d\2 - \b\2 = 1 

a*b - c*d = 0 ; 

if these conditions are satisfied, we clearly have |a| > 0, |d| > 0 and it is not difficult 
to show that 

d 

Indeed, multiplying the equation 

a*b = c*d 

by ca we obtain cb|a|2 = |c|2ad so that 

£.*«l£lUo. 
d a \a\2 

The equation a*b = c*d implies \a\ |b | = |c| |d|; since 
| f l |

2 | f r | 2 = ( l + |c |2) |6 |2 

|c | 2 |d | 2 = |c | 2 ( l + |b |2) 

this implies |b | = |c|. 
Furthermore 

\a\2 = 1 + \c\2 = 1 + \b\2 = \d\2 

so that |a| = |d|. The numbers cjd and bja have thus the same modulus so that 
they have to be complex conjugate. 

It follows from |a | = \d\ > 0 that the quotient e = a\d has modulus 1. If we denote 
by a the quotient — bja we have cjd = a*; at the same time|a |2 — |c|2 = 1 and 
|b | = |c|. Thus |a|2 - |b |2 = 1 whence |a |2 = |b |2 + 1 > |b |2 so that |a| = 
= (1 -\a\~

2yi2 < 1. 

For x e D w e have thus 

ax + b JC — a 
£ 

ex + d 1 — a*x 

In the rest of this section we shall prove that, for each A e Jt, there exists an 
operator matrix m(A) whose bilinear form equals 

(— bx + d — y*(ax — c))"1 = (cy* + d — x(ay* + b))_1 . 
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We intend to describe now an operator on H2 whose matrix is m(A); in other words 
we intend to construct an operator R(A) such that 

J/(R(A)) = m(A). 

The construction of this operator is a particular case of a more general set-up. It 
will therefore be convenient to begin by recalling some known facts about isometries 
and wandering spaces. 

The wandering space of an isometry T on a Hilbert space H is defined as the sub-
space 

Ker T* = Range (l - TT*) = H Q TH . 

If we denote by H2(Ker T*) the Hilbert space of all sequences h0, hu ... with 
hj e Ker T*, £|h/|2 < oo and by W the forward shift operator on H2(fcer T*) 

W(ho,h1,...) = (0,ho,hl,...) 

then there exists a natural intertwining operator R from H2(Ker T*) into H2 such that 

RW = TR . 

Indeed, if we write D for Ker T* and if we identify H2(Ker T*) with D ® H2 then 
the relation 

R(d ® ek) = Tkd 

defines a mapping of D ® H2 into H such that 

TR(d ® ek) = Tk+ld = R(d ® ek+1) = RW(d ® ek) 

for every k = 0,1,2,... whence 
TR = RW. 

It follows from this relation that the range of R is invariant with respect to T. 
It is interesting to note that, in fact, it reduces T. It suffices to observe that the ortho
gonal complement of the range of R is invariant with respect to Tas well; indeed, it 
is easy to identify it as the intersection [)T"H. 

To see that, consider an n ^ 1 and an arbitrary x e H. Then 

(Tnx, Tn'xD) = (Tx, D) = (x, T*D) = 0 

so that Range Tn a (Tn'1D)1 and 

f| (Range Tn) c f| (T'1"1/))1 c (Range R)1. 

On the other hand, if x i . Range R then 

xeD1n (TD)1 n (T2D)L n . . . . 

Now xe D1 implies x = Ty for some y; since (y, D) = (Ty, TD) = (x, TD) = 0, the 
element y itself lies in the range of T so that y = Tz, x = T2z. In a similar manner, 
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(z, D) = (T2z, T2D) = (x, T2D) = 0. so that z = Tv for some v and so on; this 
shows that x e Range T" for every n = 1, 2 , . . . . This proves that 

(Range R)1 = f| Range Tn. 
n 

Consider now a fixed element h e D, \h\ = 1 and denote by Tt the restriction of T 
to the closed linear span M ot h, Th, T2h,.... Then 

P(Tj) is a mapping of H2(Ker T?) ~ H2 into M such that 

R(T1)V=TlR(Tl) 

where Vis the forward shift on H2(Ker Tf). Iff is any polynomial then 

R(T1)f(V)=f(T)R(T1). 

The isometry R(Tt) transforms thus the polynomial fe H2 into the element f(T) h. 
It is obvious that this correspondence f -» f(T) h may be extended to a larger class 
of functions, at least to functions holomorphic in a neighbourhood of the unit disc. 
In particular, the elements e(x) for x e D are such functions. Let us compute 

(R(TL) e(x), e(z)) = (R(T) Xx*kek9 e(z)) = 

= (Zx** R(T) ek, e(z)) = (__x**T*h, e(z)) = ((l - x*T)~i h) (z). 

An important particular case of an isometry is the multiplication by an inner func
tion on H2; if we denote the multiplication operator by M(<p) then M(<p)* M(<p) = 1. 
Since M(<p)* = P+ M(<p) the final space of M(<p) will be M(<p) M(<p)* = 
= M(<p) P+ M(<p) so that its orthogonal complement will be 

1 - M(<p) M(<p)* = 1 - M(<p) P+ M(<p) = 

= M(<p) M(<p) - M(<p) P+ M(cp) = 

= M(<p) (1 - P+) M(<p) = M(<p) P_ M(<p). 

For the wandering subspace we have the following alternative descriptions. 

Ker M(<p)* = Ker <p(V)* = Ker <p(S) = H2 0 <pH2 . 

If <p is a Blaschke product of length d then the dimension of the wandering subspace 
Ker M(<p)* is exactly d. 

If Tis the isometry M(<p) with 

1 — orz 

then Ker T* is the one-dimensional subspace consisting of all scalar multiples of the 
function 

1 

1 - a*z ' 
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This may be easily seen as follows: since T*f = P+ <p(z)f(z) the condition T*f = 0 
may be successively reformulated in the following equivalent forms 

j(zjf(z)eHi 

z~j(z)f(z)eH2 

1 — OLZ 

and this is possible if and only if/ is a scalar multiple of the function 

1 

1 - az * 

Let us turn our attention to the operator R(M(cp)); according to what has been said 
above it is defined by the relations 

mr1)н.(jş£} _ ( z - g y (1 - H 2 ) , / 2 

1 — (X*Z 

Now denote by M the operator of multiplication by 

±± if A = (ab\ 
+ d \c d) 

az 

cz 

We have seen that 

(R(M) p(x), p(y)) = (R(M) e(x*), e(y*)) = 

Now 

((1 - x M ) - h) (y*) = L — — h(y*) . 
. ay* + b 
1 — x 

cy* + d 

1 + - z x ' 
d 

= ~^— (W - k| 2) 1 / 2 = -—-— (Idl2 - \b\2)1'2 = ----— . 
d + czKi ' M ' d + czy^ ' ' ' cz + d 

It follows that 

(R(M) p(x), p(y)) = X = (m(A) p(x), p^)) 
cjl* + a — x(ay* + b) 

whence 
J£(R(M)) = m(A). 
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To obtain the kernel K(s, t) of the operator R(M) it suffices to take the bilinear form 

(R(M) p(x), p(y)) for the values x = t* , y = s* . 

Thus K(s, t) = (cs + d - t*(as + b))'1. 
It is interesting to verify this directly. 
Indeed, consider an arbitrary polynomial f and let us compute the integral 

J_ f 1 f,,dy 

Iтci J cx + d — y*{ax + b) y 2ni { 

taken counterlockwise on the unit circle; it may be rewritten in the form 

f(y) —-Í -
+ d 2ҡi J 

ax + b 
У -

áy 

ex + d 

which, by the Cauchy integral formula, is nothing more than 

1 íax + b\ 

+ d \cx + d) CX 

Summing up, we have assigned to every two by two matrix 

(a tí 

\c d 
A = 

such that A e J( an operator R in H2 such that 

J((R) = m(A) . 

This relation possesses the following equivalent reformulations 

(R p(x), p(y)) = (m(A) p(x), p(y)) = 

= (-bx + d - y*(ax - c))~l = (cy* + d - x(ay* + b))'1 , 

Rp(x)=-J— p(-^^\, 
— bx + d \ — bx + d) 

(«/)(z)—L. ,(«±>Y 
cz + d \cz + d) 

3. SUBSTITUTION OPERATORS 

We have seen that there exist naturally defined operators in the space H2 whose 
generating functions are derived from two by two matrices corresponding to Mobius 
functions. It is natural to ask whether this correspondence could not be extended to 
more general matrices 
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-a 
It is useful to note that, under the assumption |c| < |d|, the expression (az + b), 

. (cZ + d)~l reduces to a Mobius function as follows: for |Z| < 1, we have 

az + b bd* — ac* ad — be d* z + cc 

cz + d \d\2 - \c\2 \d\2 - \c\2 d 1 + a*Z 

with a = (cd~1)* 

For the application that we have in mind it will be necessary to use matrices more 

general than those corresponding to Mobius functions. 

We shall see that a parallel theory may be developed even for this more general 

case. 

We do not intend to embark upon a general study of substitution operators of this 
type since we have a definite purpose in mind — to show how they can be used to 
obtain a concrete representation for our extremal operators. Let us remark that the 
extension to be considered in the present paragraph consists essentially in replacing 
the equality A*QA = Q by the inequality A*QA = Q. 

We shall not pursue this idea further; we might return to it in another com

munication We shall proceed in a completely elementary manner; we begin by 

showing that, for each matrix A which yields a bounded substitution operator, the 

matrix QATQ possesses the same properties. A proposition which we prove later 

will present this fact in another light connecting it with the properties of the adjoint 

to a substitution operator. 

(3,1) Suppose that \c\ < \d\ and that 

az + b 

cz + d 

for each z e D. Then \b\ < \d\ and 

az — c 

eD 

єD 
-bz + d 

for all z e D. 

Proof. Since \c\ < \d\ the quotient 

az + b 

cz + d 

is defined for all Z with |Z| = 1. 

We shall denote it by cp. According to our assumption <p(D) c D. In particular 

<p(0) e D and this means that |b | < |d|. Now suppose that |Z0 | < 1 and 
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azr > 1 . 

It follows that the number 

-bz0 + d\ 

-bz0 + d 

azn - c 

has absolute value \y\ __ \. Now (ay + b) z0 = cy + d. Since |y | __ 1 and \c\ < \d\ 
we have z 0 + 0. Thus 

<Ky) - — 
~o 

so that |<p(y)| > 1. This is a contradiction if |y | < 1. If |y | = 1, there exists a positive 

r < \ such that |<p(ry)| > 1, a contradiction again. 

(3,2) Suppose T is a bounded linear operator on H2 such that 

fт í w (az + bf (Tek, e(z)) = v J 

(cz + df + 1 

for every z e D. 
Then 

for all z e D. 

Proof. Given y e D, 

(T*eк,e(z)) 
_ (a*z — c*)к 

~ (~b*z + d*)к+í 

(T*e„ e(y)) = (e„ TЪy*кeк) - (e„ Zy*кJ^ţ^ -

V" cz + d- y*(az + b)) ~ V" d-by* - z(ay* - c)) 

= ( 1 Y (e -zk (ay* ~c Y ^ = ( (ay*-cy Y 
\-by* + d) V " \~by* + d) j \(-by* + d)r+1) 

Our first task will be to describe those matrices 

for which there exists a bounded linear operator Ton H2 such that 

(14) (TP(x),p(y)) 
1 

-bx + d — y*(ax — c) 
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for all |x| < 1 and |y | < 1. We shall denote this class of matrices by M0. For brevity, 
we shall write T = m(A) if (14) is satisfied. 

Consider first the function appearing in the denominator: it may be expressed in 
two different ways 

F(x, y) = (-bx + d - y*(ax - c)) = ((cy* + d) - x(ay* + b)). 

Let us state first some conditions which are necessary in order that F be different 
from zero for all |x| < 1 and |y | < 1. 

(3,3) If F(x, y) is different from zero for all xe D and y e D then 

1° d * 0, 

2° \at - c\ = \-bt + d\ and \at + b\ = \ct x d\ for all teD, 

3° |b | = |d| and \c\ ^ \d\. 

Proof. Suppose that F is different from zero for all x e D and y e D. The first 
assertion is a consequence of the equality d = F(0, 0). Suppose that \ax — c| > 
> | — bx + d\ for some xe D; then 

— bx + d 
eD 

ax — c 

and F(x, w*) = 0 which is a contradiction. If \ax + b\ > \cx + d\ for some x e D 
then 

ex + d ^ 
v = e D 

ax + b 

and F(v, JC*) = 0, a contradiction again. This proves the second assertion. The third 
assertion follows from the second one upon taking x = 0. The proof is complete. 

Two observations are immediate: first, it follows from the preceding lemma that 
matrices belonging to J/0 have to satisfy the three conditions from Proposition (3,3), 
second, Ji0 contains Ji. It turns out that operators satisfying (14) are substitution 
operators and that there are two kinds of these according to whether A is singular 
or not. 

The situation is completely described in the following two propositions. 

(3,4) Suppose A satisfies the conditions from Proposition (3,3). Then these are 
equivalent. 

1° A e J/0 and the operator m(A) is one-dimensional, 

2° both \b\ and \c\ are less than \d\ and det A = 0, 

3° A E Jt0 and A is singular. 
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In this case the operator T = m(A) may be described as follows 

cz + d \dl 

— bx + d \ d) 

Furthermore, for a matrix A satisfying the three conditions from Proposition 
(3,3) the following four conditions are equivalent 

1° A e J?0 and m(A) is not one-dimensional, 

2° A e M0 and m(A) is infinite dimensional, 

3° A'is nonsingular, 

4° A is nonsingular and az — c < 1 for \z\ < 1. 
•bz + d\ 

In this case the operator T = m(A) may be described as follows 

(7/)(Z) = - i - / ( - ^ ± ^ for fsH\ zeD. 
cz + d \cz + d) 

Tp(x)= pi ) for xeD. 
V } -bx + d \-bx + d) 

Proof. Suppose that 7"= m(A) and T = hg*. Then 

(_bx + d _ y*(ax _ c ) ) - i = [Tp(x), p(y)) = p(y)* hg* p(x) = h(y*) g(x) ; 

in particular 

h(0)g(x) = (-bx + d)~l 

whence 

= h(0)(-bx + d)(-bx + d- y*(ax - c))"1 = h(0) (l - y* ax ~ c \ * . 
\ —bx + d) 

It follows that (ax — c)\( — bx + d) is a constant £ independent of x; since he H 
we must have |£| < 1. Since g is a multiple of (—bx + d)_1 the inclusion g e H 
implies |b | < |d|. Now ax — c = £( — bx + d) so that ad — be = 0. 

Consider first the case b = 0. In this case a = 0 as well and 

Ky*) 9(x) = (cy* + d)-1 . 

Thus g is a constant and 

h(z)g(0)* = (cz + d)'1 
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whence 

1 
Tf = (f, g) h(z) = /(O) fif(O)* h(z) = /(0) -

cz + d 

If b + 0 then f = - c / d = -a\b and 

1 
h(z) = h(0) 

1 -Çz 

g(z) = (h(0) (-Ьz + <*))-- = ( A (0) d ( l - ^ ) ~ ' 

so that 

Thus 

i /&> 

h(o)*d* vdy 

WW-Í/.»)Ч«)-ÏJ^(/. {*))*(•) 

ČГ/CH-V 
1 /tëV h(0) d \ d / w 1 - <Jz cZ + d \d 

Now suppose Ai e JiQ, T = m(A) and let A be singular. Since d 4= 0, we set £ = — c\d 
and obtain 

(Tp(x), p(y)) = (-bx + d)~l (1 - fr*)-» ; 

in particular, |^| < 1. 

This makes it possible to compute Tp(x); indeed, 

(Tp(x),e(z)) = (Tp(x),p(z*)) = 

= (-bx + d ) - 1 (1 - Zz)-1 = (-foe + d)~l (p(S), e(z)) 

so that 

" M ' - h f ^ «(".)• 
To compute Tefc, consider a fixed Z G D and observe that the numbers (Tek, e(z)) 

satisfy, for every xe D, the relation 

TLx\Tek,e(z)) = (Tp(x),e(z))= l 1 

— bx + di + czjd 

For a fixed z e D this expression must be, as a function of x, an element of H2. 
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It follows that \b\ < \d\ and 

cz + d \d ) 

so that 

Given/e H2, we have thus 

so that 

T,--""' 
dl cz + d 

™=Љii 

-*•©• 
with h(z) = (cz + d)~l. 

Now suppose that A e Ji0 and A is singular. Since d + 0 there exists a number ^ 
such that c = !;d and a = <;b. 

Thus (ax — c)j( — bx + d) = — C for every xe D. 
Since A e JtQ we have, for T = m(A), 

TpW--rT-A-Q-
— bx + d 

It follows that Tp(x) is multiple of the vector p( — £) for every x. Since the linear 
combinations of the vectors P(x), x e D are dense in H2, the operator T is one-
dimensional. 

Now suppose that A satisfies the conditions of (3,3) and that A is nonsingular. 
We know that 

aX + b 
<_ 1 for JJC| < 1 ; 

\cx + d\ 

the inequality has to be strict, however, since otherwise the function 

az + b 
z - > • 

cz + d 

would assume its maximum in the interior of the unit disc and would, accordingly, 
be constant which is a contradiction with the assumption of nonsingularity of A. 

Now we shall use a simple consequence of the closed graph theorem. If m is a map
ping of D into itself such t h a t / o m belongs to H2 for a l l / e H2 then the mapping 

/ -> / o m 

is a bounded linear operator on H2. Consider now a nonsingular matrix 
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A = a 
satisfying the conditions of (2,3). It follows from what has been said above that the 
mapping T which assigns to each f e H2 the function 

1 faz + b\ 

cz + d \cz + d) 

is a bounded linear operator on H2; it may also be characterized by the equality 

T ( \ — ^ f ax — c \ 
P W ~ -bx + d P\-bx + d) 

This reasoning proves the implications 3° -> 4° -> 1°. The proof of the implication 
1° -> 2° is simple. To complete the proof it suffices to observe that singularity of A 
implies that m(A) is one-dimensional; this was proved in the first part of the present 
proposition. We have thus the remaining implication 2° -> 3° and the proof is com
plete. 

In the rest of this section we intend to collect some simple propositions which 
describe the connection between the properties of a matrix A e Jt0 and those of the 
corresponding operator m(A). 

(3.5) If A e J/0 then QA*Q e Jt0 as well and 

m(A)* = m(QA*Q). 

Proof. Given x, y e D we have 

(m(A)* p(y), p(x)) = (m(A) p(x), p(y))* = 

= ((-bx + d - y*(ax - c))"1)* = (c*y + d* - x*(a*y + b*))'1 = 

= (™ (!_V J * ' * ) p ^ p w ) = (m(e^*e) PG0."P(*)) • 

(3.6) For every A e Jt0 we have QATQ e Jt0 and — 

m(A)T = m(QATQ). 

Proof. According to lemma (1,1) we have 

(m(A)T p(u), p(v)) = (m(A) p(v*), p(u*)) = (-bv* + d - u(av* - c ) ) _ l = 

= (cu + d- v*(au + b))'1 = (m(QATQ) p(u), p(v)) . 

(3,7) For every A e ,//0 , 

V d) 
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and xe D 

m\ 
W W -bx + d \-bx + d) 

Proof. We have 
(m(A) p(x), e(z)) = (m(A) p(x), p(z*)) = 

= (-bx + d - z(ax - c))"1 = ( 1 - z
 ax ~~ c \ -

— bx + d\ —bx + dj 

« Jax-Jf_zk 
o(-bx + df + 1 

so that 

m(A) p(x) = Y , ("* ~ ^ ek. V ' W o(-bx + df+i k 

(3,8) The set Jt0 is closed with respect to matrix multiplication. If A, B, P are 
elements of J?0 and u, v are given numbers in D then 

1° AB e J(Q and m(B) m(A) = m(A B), 

2° AQP*Q e J?0 and (m(A) p(v), m(P) p(u)) = {m(AQP*Q) p(v), p(u)). 

Proof. We begin by proving the second assertion. Suppose that 

\c dj \r sj 
We have then 

(m(A) p(v), m{P) p(u)) = 

— ( * / av — c \ 1 / pu — r \ \ __ 
\ — bv + d \ — bv + dj' —qu + s \ — qu + sJJ 

(—bv + d)(—qu + s)* av — c f ™* — r \* 
— bv + d 

í pu — r \* 
\-qu + s) 

where 

= ((-bv + d)(-qu + s)* - (av - c) (pu - r)*)"1 = 

= ((-bs* + ar*) v + (ds* - cr*) - u*((-bq* + ap*) v + 

+ (dq* - cp*)))-1 = (m(W)p(v),p(u)) 

_ t „^ , ap* bs* — ar*Ҳ 
= í-bq* + 

\-dq* + cp* ds* — cr*J 
Clearly W = AQP*Q. 
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The first assertion is an immediate consequence of the second one. We have 

(m(A) m(B) p(v), p(u)) = (m(B) p(v), m(A)* p(u)) = 

= (m(B)p(v), m(QA*Q)p(u)) = 

= (m(BQ(QA*Q)* Q) p(v), p(u)) = (m(BA) p(v), p(u)). 

(3,9) Suppose that AeJ/0 and that the inverse m(A)~1 exists. Then |b | = |a|, 
A'1 e J/0 and 

m(A)'1 = m(A~i). 

Proof. Suppose that |b | > |a| so that the function g defined by g(z) = (az + b)"1 

belongs to H2. Setf = m(A)~l g; it follows that 

cz 
1 - /• (az + b\ = L 
+ d \cz + dj az + 

for all z e D so thatf(j) = y'1 for every y which is of the form (az + b)j(cz + d) 
for some z e D. Since m(A) is invertible, the matrix A is nonsingular so that such y 
fill some disc. This contradiction proves that |fe| = |a|. 

Given y e D, denote by fy the element of H2 for which 

m(A)fy = p(y). 

Thus 

1 íax + b\ = 1_ 

+ d y\cx + d) 1 - . cx + a \cx + a) 1 — xy 

for all x e D. If z is of the form 

ax + b 
z = 

cx + d 

then 

dz-b 
x = 

a — cz 

and 

ad —be ad — be 
/ , ( - ) - • a — cz — y( — b + dz) a + by — z(c + dy) 

Since |a| = \b\ we have a + by + 0 and 

ad —be (c + dy\ 

^ = T p r 
a + by \a + by J 

we see thus that 
m(A)'1 = m(B) 
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where 

B <-(•< ~b) 
ad — bc\ — c a ) 

so that B = A"1. 
Before stating the next lemma an explanation might be in order. If a e I2 we shall 

denote by (p('), a) the function in H2 whose value at the point z e D is 

(K-), «); 
clearly another way of describing this element of H2 is 

(p('), a) = Ta*ek. 

With, this explanation in mind, we are ready to prove the following technical lemma 

(3.10) If a and b are given elements of I2 then the scalar product of the H2 

functions (p('), a) and (P('), b) equals (b, a) 

((p(-),a),(p(.),b)) = (b,a). 

If A and B are operator matrices then 

((A p(-), p(u)), (B p(-), p(v))) = (AB* p(v), p(u)). 

Proof. We have 

((p(-), a), (p(-), b)) = (I«*e t, Y.b*ej) = Sfo,«* = (b, a) . 

The second assertion is an immediate consequence of the first one for the case 

a = A* p(u) , b = B* p(v). 

The technical lemma just proved will be used to establish the following neat 
formula for Gram matrices of certain sequences of vectors in H2. 

(3.11) Let b0, bl9... be a sequence in a Hilbert space H such that the mapping 
assigning to each xe H the sequence 

T* = {(*. bj)}j 

maps H into I2. Then T is a bounded linear map of H into I2 and the conjugate 
mapping T* is characterized by the relation 

T*ek = bk. 

The matrix of the mapping TT* with respect to the natural basis of I2 is the Gram 
matrix of the sequence bj. 

Proof. For each x e II and each k = 0, 1, . . . 

(x9 T*ek) = (Tx, ek) = (x, b,) 
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so that T*ek = bk. Furthermore, given /, k, we have 

^(TT*)ik = (TT*ek, e,) = (T*ekf T*e) = (bk, b) = G(b0, bu ...)ik. 

(3.12) The bilinear form corresponding to T* is 

(T* p(x), p(y)) = Zxk bk(y*). 

Proof. (T* p(x), p(y)) = (T* Zxkek, e(y*)) = Zx\T*ek, e(y*)) = Sx< fc»(.v*). 

(3.13) Suppose we have a sequence bj e H2 of the form 

A ' (cz + <*y+i 

such fhaf the matrix 

V d) 
belongs to Ji0. Then 

G(b0,b„. ) = m(AQA*Q). 

Proof. Denote by R the operator defined by Rek = bk. Then 

(R p(x), p(y)) = (-Lxkbk, p(y)) = Sx* bk(y*) = 

= -J— (l - x ^ i f - (^ + d ~ *"»• + *)) -1 
cy* + d\ cy* + d/ 

so that I? = m(A). According to (3,11) 

G(b0, bl9...) = m(R*R) = m(A)* m(A) = m(QA*Q) m(A) = m(AQA*Q) . 

4. ORTHONORMALIZATION 

We intend to show in this section how the technical machinery described in the 
preceding paragraph may be used to express the operator 

S | Ker (S - a)" (|a| < 1) 

as a matrix with respect to an orthonormal basis. 
To find this matrix we consider first a natural basis of the space Ker (5 — a)" 

with respect to which the restriction of 5 has a simple matrix; the result of the preced
ing paragraph may then be used to write down the matrix of this operator with respect 
to the basis obtained by the Gram-Schmidt process from the given one. 

Suppose we are given a sequence b0, bi9... of linearly independent elements 
of H2 and an operator A e B(H2). We shall suppose that the closed linear span E 
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of the sequence is invariant with respect to A. Denote by f0,fi,f2,... the ortho-

normal sequence obtained from b0, bl9 b2,... by the Gram-Schmidt process. If 

fs = IV,5bf then the matrix of A | E with respect to the basis f0,fi,f2,... is 

V~XKV 

if K stands for the matrix for which 

Abj = HKtJbt. 

We shall restrict ourselves to the case where K is column finite — a hypothesis which 
is fulfilled in the concrete case to be investigated in this section. The matrix V is 
upper triangular by its very nature so that V"1 possesses the same property; ac
cordingly, no convergence problems arise in the matrix product V~lKV. Since we 
shall deal with column-finite matrices K only there will be no danger of misunder
standing if we extend to this situation the terminology used in the finite-dimensional 
case: we shall call K the "matrix of A with respect to the basis b"\ the word basis 
used here does not imply, of course, that any additional properties of the sequence bj 
are assumed except that the bj are linearly independent. 

Now consider the particular case of the operator S and the linearly independent 
sequence 

bM = (i ^ v + l > J = 0 , 1 , 2 , . . . . 
(1 — OLzy L 

The matrix of S with respect to the basis b0, bi9 ... is fairly simple since 

Sbk = ccbk + bfc_i 

0. Hence the matrix of S equals a ! + N for k = 0, 1, 2,... if we аgree to set b_ t = 0. Henc< 
where N is the mаtrix 

1° l 0 0 . . . 

N=i° ° 
0 0 

1 0 . . . 
0 1 . . . 

Our task reduces thus to finding the matrix of 5 with respect to the basis fj. We 

observe first that the same sequence fj is obtained if the sequence bj to be ortho-

normalized is replaced by a sequence of the form Wjbj with nonzero Wj. We shall 

choose wk = j8k for a suitable j8 — in this manner we obtain a sequence g} = pJbj 

to which the foregoing theory may be applied; the choice p = 1 — |a| will do. 

Upon multiplying the above relation by /?* we obtain 

Sgk = ccgk + Pgk_t . 

If we denote by W the transition matrix then 

fj = Y^rjQr ; 
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since eachf,- is a linear combination of b0,..., bj we shall have wrj = 0 for r >jso 
that Wwill be upper triangular and will satisfy 

1 = W*G(g0,gu..)W. 

Thus the matrix of S with respect to the gs will be 

a/ + PN. 

To construct such a matrix W, it will be sufficient to find an upper triangular B for 
which G = B*B and then set W = B~l. 

We intend to look for a B of the form m(A) for a suitable A e JtQ. 

Now m(A) should be upper triangular, in other words, m(A)jk should be zero for 
j > k so that the corresponding bilinear form should not contain products xky*J 

for k < j ; since y*J is multiplied by (ax — c)Jj(—bx + d)J+l this is only possible 
if c = 0. We are thus looking for a matrix M of the form 

M 
\0d) 

such that m(M)* m(M) = G(g0, gu ...). 
According to the remarks following (3,11) 

G(g0,gu..) = m(AQA*Q) 

for 

ÍГÒ A = 

so that 

G(g0,gu..) = mm\ / * Y 

The requirement on M is thus 

/|<f - |b|2 M*\ = M* P«* \ 
\-db* |d|V {-«,}* 1 - |apj 

Denoting by q the difference 1 - ja|2 and by qif* the positive square root of q, we 
obtain 

M = (чßą-m 
вii»a*q-*/2Л 

м--i = íAß-У ?1/2 -гţЛ-1 / 2 

* л

- 1 / 2 

«ľ^ 
for suitable numbers ß̂  ,4 of modulus one. 
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To compute the matrix 

m(M)Nm(M)~1 

we consider the corresponding bilinear form 

(m(M) N m(M~*) /?(*), p(u)) = (S m(M~1) p(x), m(M)* p(u)) 

We shall use the formula obtained in (3,4). If Te Jf0 and 

V w) 
then 

m(T)Kx) = — L _ , ( J 2 _ L V 
— sx + w \ — sx + w) 

at the same time 5 p(d) — a p(a) for every a e D. Thus 

„ /rr^ / x 1 rx — t ( rx — t \ 
S m(T)p(x) = — pi — 

— sx + w—sx + w \ — sx + w/ 

m(т)p(x)-
— sx + w 

Using these facts, we obtain 

(m(M)N m(M)-1 p(x), p(u)) = # ( m ( A r J ) p(x), m(M)* p(u)) = 

= H(p(x),p(u)) = H—L^ 
1 — u*x 

where 

„ 1 e\qmx q x q \ x 
H = — — — 

p e*oc*q-1/2x + eU~1/2 P efe2 + a*x P co* 1 - o>a*x 

if we set co — — e^*. The bilinear form corresponding to the matrix of (S — a) with 

respect to the orthonormal systemf 0,f 1 ?... assumes thus the following simple form 

x 1 xk+1 

— qco — —qco H(cocc*)k 

1 — cocc*x 1 — u*x 1 — u*x 

Since multiplication by x amounts to the same as shifting the matrix one column 

to the right the corresponding matrix is the Toeplitz matrix T which has the number 

— qcokot*k~1 on the k-th superdiagonal, (k = 1, 2, . . . ) , in other words 

t„ = -qaf-'^y-*'1 

for s - r = 1,2,..., r = 0. 
Now we are ready to state a result which summarizes our investigations. 
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(4,1) Let a be a complex number with |a| < 1. Consider the infinite Toeplitz 

matrix 

T(a) = 

ga* — qa*2 — qa*3 

g — qa* — qa*2 

a - q — qa* 

/a -q 

' 0 a -q 

0 0 

\ 
and denote by T(a, n) the n by n matrix consisting of the T{OL)J k for 0 ^ j , k g 

S n - \. 

Given any natural number n, there exists an orthonormal basis of the space 

Ker(S —a)n with respect to which the operator S | Ker (5 — a)'1 has matrix 

T(a, n). 

Combining this with the main result of [3] we obtain the following. 

(4,2) Corollary. Let n be a natural number and r a nonnegative number, r < 1. 

Consider the family of all linear operators A on an n-dimensional Hilbert space 

such that 

V the norm of A does not exceed 1 

2° the spectral radius of A does not exceed r. 

Then the maximum of \An\ is attained for the operator T(r, n). 
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