
Časopis pro pěstování matematiky

Tomasz Natkaniec
On points of qualitative semicontinuity

Časopis pro pěstování matematiky, Vol. 110 (1985), No. 4, 337–342

Persistent URL: http://dml.cz/dmlcz/118238

Terms of use:
© Institute of Mathematics AS CR, 1985

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/118238
http://dml.cz


ČASOPIS PRO PĚSTOVÁNI MATEMATIKY 
Vydává Matematickf ústav ČSAV, Praha 

SVAZEK 110 * PRAHA 29. 11.1985 • ČÍSLO 4 

ON POINTS OF QUALITATIVE SEMICONTINUITY 

TOMASZ NATKANIEC, Bydgoszcz 

(Received October 5, 1983) 

Let J be the cr-ideal of sets of the first category on the real line. For a real function 
f:R -» R let us define the qualitative upper limit at the point x 

q-lim supf(f) = inf {y e R: {te R:f(t) < y} is residual at x} . 
t*-+JC 

Similarly let us define the qualitative lower limit of f at x 

q-lim inff(t) = sup {y e R: {t e R:f(t) > y} is residual at x} . 
t-*x 

We use the notation introduced in [1]: 

2(f) ={re R: a-lim supf(f) = f(r) = q-lim inff(f)} , 
t->r t-*r 

Sjf) = {r e R: q-lim supf(t) = f(r)} , 
t-*r 

Tjf) ={reR: q-Mrn sup/(f) < f(r)} , 
r-+r 

Sl
q(f) ={reR: q-lim Mf(t) = f(r)} , 

t-*r 

Tl(f) = {r eR: q-lim Mf(t)>f(r)}. 

r-+r 

The following facts are proved in [1], 

Fact 0. There exist sets B and Csuch that B is a Gs sety CeJ and Q(f) = B — C. 

Fact 1. The sets Tq(f) and Tl
q(f) are of the first category. 

Fact 2. The sets Sq(f) - Q(f) and S\(f) - Q(f) do not contain sets of the second 
category having the Baire property. 

Z. Grande in [ l ] showed Theorem 3 and stated the following Problem 1. 
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Theorem 3. Let A9B9C .= R satisfy 

(i) CeJ9B^A9C^A — B and the set A — B do not contain sets of second 
category having the Baire property 

and 
(ii) B = D — C, where D is a G8 set. Then there exists a function g: R -> R such 

that Q(g) = B9 Sq(g) = A and Tq(g) = C. 

Problem 1. Accepting the assumption (i) of Theorem 3 let us suppose furthermore 
that B = D — Dl9 where D is a G8 set and Dt e Jr. 

Is there a function g:R-+R such that Q(g) = B9 Sq(g) = A and Tq(f) = CI 
The answer to this question is negative. It follows from the following fact. 

Fact 3. Let Dq(f) = {r e R: q-liminff(t) = g-lim supf(r)}. Then Dq(f) is a G8 

set for every function f:R-+R. 

Proof. It is easy to show that for every a ER the sets A = {x e R: q-lim inff(f) = a} 
t^x 

and B = {xeR: q-limsupf(t) = a} are closed. Indeed, if q-liminff(t) > a then 
t->x f->x 

there exist: e > 0 and a neighbourhood U of x such that U n {y e R:f(y) < a + s} e 
G J. So for every y e U we we have q-lim inff(f) = a + e and x $ CIA. Then for 

r-+x 

all rational numbers p9qe Q the sets A(f9 p9q) = {xe R:q — lim inf f(t) = p < q = 
t->x 

= q-lim supf(t)} are closed. Since R - Dq(f) = \j{A(f9 p9 q): p9 q e Q}9 Dq(f) is 
t-*x 

a Gd set. 
It is clear that g ( / ) £ Dq(f) and Dg(/) - Q(/) £ T/ j ) u T^ j ) , hence Q(f) = 

- (̂f) - [-#) ^ ^(f)l-
Assume that A = R9C = 09R — Be*/ and B is not a G5 set. Suppose that there 

exists a function f:R->R such that g(f) = B, Sq(f) = R and T̂ (f) = C. Then 
T[(f) = 0. If D is a G3 set and B c D then D - B is non empty and D - B $ 
$ Tgff) u T^(f). This is impossible since the Fact 3 holds. 

In the next part we assume that every set A i= R of cardinality less than continuum 
is of the first category. Notice that if CH (Continuum Hypothesis) or MA (Martin's 
Axiom) are assumed then this condition holds. [3] 

The following theorem is generalization of Theorem 3 [ l ] . 

Theorem. (MA) For every sets A9 Al9 B9 C, Cx c R the following conditions are 
equivalent: 

(i) AnAt=B9 

C u CxeJ9 

C <= A - B9 Ct c AY - B9 
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the sets A — B and Ax — B do not contain sets of the second category having 
the Baire property, 
there exists a Gd set D such that B = D — (C n C j , 

(ii) there exists a function/: K -> K such that A = Sq(f), At = S*(/), B = Q{f), 
C = Tjf) and C- = r j ( / ) . 

Proof. The implication (ii) => (i) follows from the facts 0 — 3. 
(i) => (ii). Let E = CI B. Since E - D c E - B, we have F - DeJ. Notice 

that F — D is a F0 set and E — D = IJ F„, where F„ are closed, nowhere dense and 
netV 

F. n Fy = 0 for i 4= j [4]. 

Let (a,,),,^ be a sequence of positive real numbers such that ^ #„ — -•• 
neAt 

For every rc e N we define the function /7„: K -> < — aM, aw>, 

7 / , L n s i n - — - — r r f o r *$Fn> 
Jrn(x) = + dist (x, Fn) 

[0 for x e Fn. 

For n e N the function /?., is continuous on the set R — Fn and for x e F„, 
g-lim sup hn(t) = an = hn(x) = —an = q-lim inf hn(t). 

t^x t-*x 

In the first step we define a function h: R -* R such that Q(h) = Sq(h) = Sq(h) = 
= R - (E - D) = R - (J F„ and Tq(h) = Tl

q(h) = 0. Let h{x) = £ hn(x). This 
neiV nuN 

function satisfies the above conditions. 
Indeed: 
a) Assume that x <£ (J F„. Since h is a sum of a uniformly convergent series, /z is 

neN 

continuous at the point x. 
b) If x e Fn then 

q-lim sup h(t) = an + £ am s i n - — - — — = 
f->x w*« dist (X, Fm) 

= h(x) + an > h(x) > h(x) — an = —an + £ Om sin = q-lim inf h(t) . 
IM-1-« d i s t ( x , Fm) *-»JC 

Hence x £ Sq(h) u ^ ( h ) . 
Assume that E = R. Then the following function/: R -> R satisfies the conditions 

of the theorem 
2 for x G C , 

— 2 for x e Cx , 
q-lim sup h(t) for x e A — C , 

q-lim inf h(f) for x e i j - C 1 ? 

f - + j -

/z(x) elsewhere. 
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Since {xeR:f(x) =t= h(x)}eJ, so for every xeR, q-limsupf(f) = q-lim sup h(t) 
t->x t-*x 

and q-Yim inff(t) = a-lim inf h(t). Hence B £ Q(f), C £ T,(/) and C. £ Tj( / ) . 
f->JC t-*x 

If x G A — (B u C) then x e F — D. Hence f(x) = g-lim sup h(t) = 

= q-lim supf(r) > q-hminf h(t) = q-liminff(r) and A - (B u C) r= S,(f) -
*-*jc * - > * t->jf 

- iQtf) v Tq(f)l Similarly, A,-(BKJ C.) s S ' ( / ) - [Q(/) u T ^ / ) ] and R -

- (A u A.) £ R - [ S / / ) u 5»(/)] . Consequently, Q(/) = B, Sq(f) = A, Sj(/) = 

= A„ Tq(f) = C and T\(f) = C t. 

Now assume that R — E + 0. We prove the following lemma. 

Lemma. If A is an open, non empty subset of R and B .= A then there exists 
a partition (Kn)neN of A such that sets Kn are of the second category at every point 
x e A and if B is of the second category at x then Knn B (n = 1,2,...) is of the 
second category at x. 

P r o o f o f lemma. The construction of the sets Kn is very similar to the construction 
of Bernstein's set [2], 

Let: 

(r%) be an enumeration of the set A, 
(In)neN be a countable basis of A, 

(Hn„)n<2<o0 be an enumeration of the family of the residual and Gd subsets of/.,, 

Hi =[Hn„ if HntnnBeJ, 
"'' \H„nB if HntnnB$f, 

(/I^<2co0 be an enumeration of the family {Hnn: neN, n < 2co°}. 
Since MA holds, so for every f the cardinality of H^ is continuum. We shall construct 
inductively a sequence (x% „) of the type 2<0° x co0: 

x„f0 = min {rc: r^ e Hn - {x7y. y < n}}, 

x„tn = min {r^: r^eHn- {xyy. (y < n v (y = t)& k < n))}}. 

Let us define sets Kn as follows: 

= Uxny. n < 2<°°} for n > 0 , 

" YA-\JKm for n = 0 . 
(. w > 0 

It is easy to show that sets Kn (n = 1, 2, ...) are of the second category at every 
point xe A. Suppose that the set B is of the second category at x and there exists 
a number w e IV such that Kn n B is of the first category at x. Then there exist In 

and Hnn such that Hnn c A — Kn n B. This is impossible since the set Hnnn B nKn 

is non empty. 
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In this step we shall construct a function g: R -> R such that Q(g) = B, Tq(g) = C 
T\(g) = Cl9 Sq(g) = B u C and S*(g) = Ci u B. Let (bn)neN be an enumeration of 
the set of all rational numbers from the interval ( — 1,1). 

Let (Kn)neN be a partition of R — E such that for every x e R — E the sets K„ 
(n = 1, 2,. . .) are of the second category at x and if the set R — [A u At) is of the 
second category at x then Kn — (A u At) is of the second category at x. 

The function g is defined as follows: 

2 for xeC, 

- 2 for xeCl9 

h(x) for x G E - (C u Cx) , 

dist (x, F) 

ø(*) 

h(x) + . č>„ for X є К„ - (C u C.) . 
1 + dist (x, E) 

a) It is clear that C c Fq(g) and C- c F1^). 

b) If x G E — B then #(x) = h(x) and g | R — (C u Cx) is continuous at x. Since 
C u Cx G ,/, g is qualitive continuous at x. 

c) If xe(E - D) - ( C u Cj) then g(x) = h(x), q-lim inf g(f) = q-lim inf h(t) 
t-+x t-+x 

and q-lim sup ft(f) = q-lim sup g(t). Since x G R — (Sq(h) u S^Qi)), x e R - (Sq(g) u 
t-*x t-+x 

vSl(g)). 
In the next step we define a function f: R -» K such that Q(f) = B, S^f) = .4, 

S*(/) = Al9 Tq(f) = C and T\(f) = Cx. Let us define the function fas follows: 

q-\im sup g[t) for x G A — (B u C) , 

f(x) = < g-lim inf g(r) for x e A1 — (B u Cx) , 
t-*JC 

g^x) elsewhere. 

a) If x G C then f(x) = g(x) > q-lim sup g(t) = q-\im supf(f) and x e Tq(f). 

Similarly, Ct c T\(f). 
b) Notice that for x e K — F we have 

q-lim sup a(r) = g-lim sup h(f) H — — - — = 
r->jc t-*x 1 + dist (x, E) 

= '<*) + 
dist (x, E) 

1 + dist (x, E) 
and 

q-lim inf g(t) = a-lim inf h(t) l i i?i_i__ = 
r->jc f-jc 1 + dist (x, E) 

= / l M
 d i s t ^ £ ) . 

v 1 + dist (x, E) 
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Since for x e F the set 

>teR:\f(t)-h(t)\< d l s t ( ' ' j g U 
{ I W W l 1+dist (t,E)j 

is residual at the point x, we have q-lim supf(t) = cI-lim sup h(t) and g-lim inf/(t) = 
t-*x t-+x t-^x 

= q-hm inf h(t). Hence Cq(f) n [F - (C u Q ) ] = B, Sq(f) n [F - (C u C*)] = 

= A - C and Sj(/) n [F - (C u d ) ] = -4t - C x. 

c) Assume that x e R — ( F u C u Cx). The following cases may occur: The set 

R — (A u At) is of the second category at x. Then for every n e N the set Kn ~ 

— (A u Ax) is of the second category at x, 

g-lim sup/(t) = h(x) + —-^--—— and q-lim inf/(t) = h(x) — 
*-JC 1 + dist(x, F) t-^x 

dist (x, F) 

1 + dist (x, F)' 

There exists a neighbourhood U _= K — F of x such that U — (AuA^eJ*. Since 

the sets A — B and Ax — B do not contain sets of the second category having the 

Baire property, hence the sets A — B and Ax— B are of the second category at x. 

Then 

a-lim -upДO = hm (h(t) + ^ M M __ А ( x ) + J ћ M 
t^x KJ

 ř_Д W 1 + dist (í, £ ) / У ' l + d i s ф , l 

ҙ-lim inf f(t) = h(x) 

u , \ 1 + dist (t, E)j 1 + dist(x, F) 

and 

dist (x, F) 

1 + dist (x, F)' 

Thus, if x e A - C then x e S€(/) - [Q(f) u F,(/)], if x e A1 - Cx then x e S\\J) 

- [Q(f) u Tl
q(f)] and if x $ A u Ax then x £ 5,(/) u S\(f). 

Therefore / satisfies the condition (ii). 
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