Časopis pro pěstování matematiky

Tomasz Natkaniec
On points of qualitative semicontinuity

Časopis pro pěstování matematiky, Vol. 110 (1985), No. 4, 337-342
Persistent URL: http://dml.cz/dmlcz/118238

Terms of use:

© Institute of Mathematics AS CR, 1985

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

ČASOPIS PRO PĚSTOVÁNI MATEMATIKY

Vydd́vó Matematický ústav ČSAV, Praho
SVAZEK 110 * PRAHA 29. 11. 1985 * ČísLO 4

ON POINTS OF QUALITATIVE SEMICONTINUITY

Tomasz Natkaniec, Bydgoszcz

(Received October 5, 1983)

Let \mathscr{I} be the σ-ideal of sets of the first category on the real linc. For a real function $f: R \rightarrow R$ let us define the qualitative upper limit at the point x

$$
q-\lim _{t \rightarrow x} \sup f(t)=\inf \{y \in R:\{t \in R: f(t)<y\} \text { is residual at } x\} .
$$

Similarly let us define the qualitative lower limit of f at x

$$
\underset{t \rightarrow x}{q-\lim \inf } f(t)=\sup \{y \in R:\{t \in R: f(t)>y\} \text { is residual at } x\} .
$$

We use the notation introduced in [1]:

$$
\begin{aligned}
& Q(f)=\left\{r \in R: q-\underset{t \rightarrow r}{q-\lim \sup } f(t)=f(r)=q-\lim _{t \rightarrow r} \inf f(t)\right\}, \\
& S_{q}(f)=\left\{r \in R: q-\lim _{t \rightarrow r} \sup f(t) \leqq f(r)\right\}, \\
& T_{q}(f)=\{r \in R: q-\underset{t \rightarrow r}{-\lim \sup } f(t)<f(r)\}, \\
& S_{q}^{1}(f)=\{r \in R: \underset{t \rightarrow r}{q-\lim \inf } f(t) \geqq f(r)\} \\
& T_{q}^{1}(f)=\left\{r \in R: q-\lim _{t \rightarrow r} \inf f(t)>f(r)\right\}
\end{aligned}
$$

The following facts are proved in [1].
Fact 0. There exist sets B and C such that B is $a G_{\delta}$ set, $C \in \mathscr{I}$ and $Q(f)=B-C$.
Fact 1. The sets $T_{q}(f)$ and $T_{q}^{1}(f)$ are of the first category.
Fact 2. The sets $S_{q}(f)-Q(f)$ and $S_{q}^{1}(f)-Q(f)$ do not contain sets of the second category having the Baire property.
Z. Grande in [1] showed Theorem 3 and stated the following Problem 1.

Theorem 3. Let $A, B, C \subseteq R$ satisfy

(i) $C \in \mathscr{I}, B \subseteq A, C \subseteq A-B$ and the set $A-B$ do not contain sets of second category having the Baire property
and
(ii) $B=D-C$, where D is a $G_{\boldsymbol{\delta}}$ set. Then there exists a function $g: R \rightarrow R$ such that $Q(g)=B, S_{q}(g)=A$ and $T_{q}(g)=C$.

Problem 1. Accepting the assumption (i) of Theorem 3 let us suppose furthermore that $B=D-D_{1}$, where D is a G_{δ} set and $D_{1} \in \mathscr{I}$.

Is there a function $g: R \rightarrow R$ such that $Q(g)=B, S_{q}(g)=A$ and $T_{q}(f)=C$?
The answer to this question is negative. It follows from the following fact.
Fact 3. Let $D_{q}(f)=\left\{r \in R: \underset{t \rightarrow r}{ }-\lim _{t \rightarrow r} \inf f(t)=q-\lim _{: \rightarrow r} \sup f(t)\right\}$. Then $D_{q}(f)$ is a G_{δ} set for every function $f: R \rightarrow R$.

Proof. It is easy to show that for every $a \in R$ the sets $A=\{x \in R: q-\lim \inf f(t) \leqq a\}$ and $B=\{x \in R: q-\lim \sup f(t) \geqq a\}$ are closed. Indeed, if $q-\liminf _{t \rightarrow x}^{\operatorname{infx}} f(t)>a$ then there exist: $\varepsilon>0$ and a neighbourhood U of x such that $U \cap\{y \in R: f(y)<a+\varepsilon\} \in$ $\in \mathscr{I}$. So for every $y \in U$ we we have $q-\lim \inf f(t) \geqq a+\varepsilon$ and $x \notin \mathrm{Cl} A$. Then for all rational numbers $p, q \in Q$ the sets $A(f, p, q)=\left\{x \in R: q-\liminf _{t \rightarrow x}^{t+x} f(t) \leqq p<q \leqq\right.$ $\left.\leqq q-\lim _{t \rightarrow x} \sup f(t)\right\}$ are closed. Since $R-D_{q}(f)=\bigcup\{A(f, p, q): p, q \in Q\}, D_{q}(f)$ is a G_{δ} set.
It is clear that $Q(f) \subseteq D_{q}(f)$ and $D_{q}(f)-Q(f) \subseteq T_{q}(f) \cup T_{q}^{1}(f)$, hence $Q(f)=$ $=D_{q}(f)-\left[T_{q}(f) \cup T_{q}^{1}(f)\right]$.
Assume that $A=R, C=\emptyset, R-B \in \mathscr{I}$ and B is not a G_{δ} set. Suppose that there exists a function $f: R \rightarrow R$ such that $Q(f)=B, S_{q}(f)=R$ and $T_{q}(f)=C$. Then $T_{q}^{1}(f)=\emptyset$. If D is a G_{δ} set and $B \subseteq D$ then $D-B$ is non empty and $D-B \nsubseteq$ $\neq T_{q}(f) \cup T_{q}^{1}(f)$. This is impossible since the Fact 3 holds.

In the next part we assume that every set $A \subseteq R$ of cardinality less than continuum is of the first category. Notice that if CH (Continuum Hypothesis) or MA (Martin's Axiom) are assumed then this condition holds. [3]
The following theorem is generalization of Theorem 3 [1].
Theorem. (MA) For every sets $A, A_{1}, B, C, C_{1} \subseteq R$ the following conditions are equivalent:
(i) $A \cap A_{1}=B$,
$C \cup C_{1} \in \mathscr{I}$, $C \subseteq A-B, C_{1} \subseteq A_{1}-B$,
the sets $A-B$ and $A_{1}-B$ do not contain sets of the second category having the Baire property,
there exists a G_{δ} set D such that $B=D-\left(C \cap C_{1}\right)$,
(ii) there exists a function $f: R \rightarrow R$ such that $A=S_{q}(f), A_{1}=S_{q}^{1}(f), B=Q(f)$, $\left.C=T_{q}^{(} f\right)$ and $C_{1}=T_{q}^{1}(f)$.

Proof. The implication (ii) \Rightarrow (i) follows from the facts $0-3$.
(i) \Rightarrow (ii). Let $E=\mathrm{Cl} B$. Since $E-D \subseteq E-B$, we have $E-D \in \mathscr{I}$. Notice that $E-D$ is a F_{o} set and $E-D=\bigcup_{n \in N} F_{n}$, where F_{n} are closed, nowhere dense and $F_{i} \cap F_{j}=\emptyset$ for $i \neq j[4]$.

Let $\left(a_{n}\right)_{n \in N}$ be a sequence of positive real numbers such that $\sum_{n \in N} a_{n}=1$.
For every $n \in N$ we define the function $h_{n}: R \rightarrow\left\langle-a_{n}, a_{n}\right\rangle$,

$$
h_{n}(x)=\left\{\begin{array}{lll}
a_{n} \sin \frac{1}{\operatorname{dist}\left(x, F_{n}\right)} & \text { for } & x \notin F_{n} \\
0 & \text { for } & x \in F_{n}
\end{array}\right.
$$

For $n \in N$ the function h_{n} is continuous on the set $R-F_{n}$ and for $x \in F_{n}$, $q-\lim \sup h_{n}(t)=a_{n} \geqq h_{n}(x) \geqq-a_{n}=q-\lim \inf h_{n}(t)$.

In the first step we define a function $h: \stackrel{t \rightarrow x}{\rightarrow} R$ such that $Q(h)=S_{q}^{1}(h)=S_{q}(h)=$ $=R-(E-D)=R-\bigcup_{n \in N} F_{n}$ and $T_{q}(h)=T_{q}^{1}(h)=\emptyset$. Let $h(x)=\sum_{n \in N} h_{n}(x)$. This function satisfies the above conditions.

Indeed:
a) Assume that $x \notin \bigcup_{n \in N} F_{n}$. Since h is a sum of a uniformly convergent series, h is continuous at the point x.
b) If $x \in F_{n}$ then

$$
q-\limsup _{t \rightarrow x} h(t)=a_{n}+\sum_{m \neq n} a_{m} \sin \frac{1}{\operatorname{dist}\left(x, F_{m}\right)}=
$$

$$
=h(x)+a_{n}>h(x)>h(x)-a_{n}=-a_{n}+\sum_{m \neq n} a_{m} \sin \frac{1}{\operatorname{dist}\left(x, F_{m}\right)}=q-\lim _{t \rightarrow x} \inf h(t) .
$$

Hence $x \notin S_{q}(h) \cup S_{q}^{1}(h)$.
Assume that $E=R$. Then the following function $f: R \rightarrow R$ satisfies the conditions of the theorem

$$
f(x)= \begin{cases}2 & \text { for } x \in C, \\ -2 & \text { for } x \in C_{1}, \\ q-\operatorname{lim\operatorname {sup}} h_{(}^{\prime}(t) & \text { for } x \in A-C, \\ \underset{t-\liminf _{t \rightarrow x}^{t \rightarrow x} h(t)}{ } & \text { for } x \in A_{1}-C_{1}, \\ h(x)^{2} & \text { elsewhere } .\end{cases}
$$

Since $\{x \in R: f(x) \neq h(x)\} \in \mathscr{I}$, so for every $x \in R, q-\lim _{t \rightarrow x} \sup f(t)=q-\lim _{t \rightarrow x} \sup h(t)$ and $q-\liminf _{t \rightarrow x} f(t)=q-\liminf _{t \rightarrow x} h(t)$. Hence $B \subseteq Q(f), C \subseteq T_{q}(f)$ and $C_{1} \subseteq T_{q}^{1}(f)$.

If $x \in A-(B \cup C)$ then $x \in E-D$. Hence $f(x)=q$-lim sup $h(t)=$
$=q-\limsup _{t \rightarrow x} f(t)>q-\lim _{t \rightarrow x} \inf h(t)=q-\liminf _{t \rightarrow x} f(t)$ and $A-(B \cup C) \subseteq S_{q}(f)-$
$-\left[Q(f) \cup T_{q}(f)\right]$. Similarly, $A_{1}-\left(B \cup C_{1}\right) \subseteq S_{q}^{1}(f)-\left[Q(f) \cup T_{q}^{1}(f)\right]$ and $R-$ $-\left(A \cup A_{1}\right) \subseteq R-\left[S_{q}(f) \cup S_{q}^{1}(f)\right]$. Consequently, $Q(f)=B, S_{q}(f)=A, S_{q}^{1}(f)=$ $=A_{I}, T_{q}(f)=C$ and $T_{q}^{1}(f)=C_{1}$.

Now assume that $R-E \neq \emptyset$. We prove the following lemma.
Lemma. If \dot{A} is an open, non empty subset of R and $B \subseteq A$ then there exists a partition $\left(K_{n}\right)_{n \in N}$ of A such that sets K_{n} are of the second category at every point $x \in A$ and if B is of the second category at x then $K_{n} \cap B(n=1,2, \ldots)$ is of the second category at x.

Proof of lemma. The construction of the sets K_{n} is very similar to the construction of Bernstein's set [2].

Let:
$\left(r_{\xi}\right)$ be an enumeration of the set A,
$\left(I_{n}\right)_{n \in N}$ be a countable basis of A,
$\left(H_{n, \eta}\right)_{\eta<2 \omega_{0}}$ be an enumeration of the family of the residual and G_{δ} subsets of I_{n},
$H_{n, \eta}^{1}=\left\{\begin{array}{lll}H_{n, \eta} & \text { if } & H_{n, \eta} \cap B \in \mathscr{I}, \\ H_{n, \eta} \cap B & \text { if } & H_{n, \eta} \cap B \notin \mathscr{I},\end{array}\right.$
$\left(H_{\xi}\right)_{\xi<2 \omega_{0}}$ be an enumeration of the family $\left\{H_{n, \eta}^{1}: n \in N, \eta<2^{\omega_{0}}\right\}$.
Since MA holds, so for every ξ the cardinality of H_{ξ} is continuum. We shall construct inductively a sequence $\left(x_{\xi, n}\right)$ of the type $2^{\omega_{0}} \times \omega_{0}$:

$$
\begin{aligned}
& x_{\eta, 0}=\min _{\xi}\left\{r_{\xi}: r_{\xi} \in H_{\eta}-\left\{x_{\gamma, k}: \gamma<\eta\right\}\right\}, \\
& x_{\eta, n}=\min _{\xi}\left\{r_{\xi}: r_{\xi} \in H_{\eta}-\left\{x_{\gamma, k}:(\gamma<\eta \vee(\gamma=\eta \& k<n))\right\}\right\} .
\end{aligned}
$$

Let us define sets K_{n} as follows:

$$
K_{n}= \begin{cases}\left\{x_{\eta, n}: \eta<2^{\omega_{0}}\right\} & \text { for } \\ A>0, \\ A-\bigcup_{m>0} K_{m} & \text { for } n=0 .\end{cases}
$$

It is easy to show that sets $K_{n}(n=1,2, \ldots)$ are of the second category at every point $x \in A$. Suppose that the set B is of the second category at x and there exists a number $n \in N$ such that $K_{n} \cap B$ is of the first category at x. Then there exist I_{n} and $H_{n, \eta}$ such that $H_{n, \eta} \subseteq A-K_{n} \cap B$. This is impossible since the set $H_{n, \eta} \cap B \cap K_{n}$ is non empty.

In this step we shall construct a function $g: R \rightarrow R$ such that $Q(g)=B, T_{q}(g)=C$ $T_{q}^{1}(g)=C_{1}, S_{q}(g)=B \cup C$ and $S_{q}^{1}(g)=C_{1} \cup B$. Let $\left(b_{n}\right)_{n \in N}$ be an enumeration of the set of all rational numbers from the interval $(-1,1)$.

Let $\left(K_{n}\right)_{n \in N}$ be a partition of $R-E$ such that for every $x \in R-E$ the sets K_{n} $(n=1,2, \ldots)$ are of the second category at x and if the set $R-\left(A \cup A_{1}\right)$ is of the second category at x then $K_{n}-\left(A \cup A_{1}\right)$ is of the second category at x.

The function g is defined as follows:

$$
g(x)=\left\{\begin{array}{cl}
2 & \text { for } x \in C \\
-2 & \text { for } x \in C_{1}, \\
h(x) & \text { for } x \in E-\left(C \cup C_{1}\right), \\
h(x)+\frac{\operatorname{dist}(x, E)}{1+\operatorname{dist}(x, E)} \cdot b_{n} \text { for } x \in K_{n}-\left(C \cup C_{1}\right) .
\end{array}\right.
$$

a) It is clear that $C \subseteq T_{q}(g)$ and $C_{1} \subseteq T_{q}^{1}(g)$.
b) If $x \in E-B$ then $g(x)=h(x)$ and $g \mid R-\left(C \cup C_{1}\right)$ is continuous at x. Since $C \cup C_{1} \in \mathscr{I}, g$ is qualitive continuous at x.
c) If $x \in(E-D)-\left(C \cup C_{1}\right)$ then $g(x)=h(x), q-\liminf g(t)=q-\lim \inf h(t)$ and $q-\lim _{t \rightarrow x} \sup h(t)=q-\limsup _{t \rightarrow x} g(t)$. Since $x \in R-\left(S_{q}(h) \stackrel{t \rightarrow x}{\cup} S_{q}{ }^{1}(h)\right), x \in R-\stackrel{t \rightarrow x}{-\left(S_{q}(g) \cup\right.}$ $\left.\cup S_{q}^{1}(g)\right)$.
In the next step we define a function $f: R \rightarrow R$ such that $Q(f)=B, S_{q}(f)=A$, $S_{q}^{1}(f)=A_{1}, T_{q}(f)=C$ and $T_{q}^{1}(f)=C_{1}$. Let us define the function f as follows:

$$
f(x)= \begin{cases}\left.q-\lim _{t \rightarrow x} \sup g_{(}^{\prime} t\right) & \text { for } \quad x \in A-(B \cup C) \\ q-\lim _{t \rightarrow x} \inf g(t) & \text { for } \quad x \in A_{1}-\left(B \cup C_{1}\right), \\ g_{(x)}^{\prime} x & \text { elsewhere }\end{cases}
$$

a) If $x \in C$ then $f(x)=g(x)>q-\lim _{t \rightarrow x} \sup g(t) \geqq q-\limsup _{t \rightarrow x} f(t)$ and $x \in T_{q}(f)$. Similarly, $C_{1} \subseteq T_{q}^{1}(f)$.
b) Notice that for $x \in R-E$ we have

$$
\begin{aligned}
q-\lim _{t \rightarrow x} \sup g(t) & =q-\lim _{t \rightarrow x} \sup h(t)+\frac{\operatorname{dist}(x, E)}{1+\operatorname{dist}(x, E)}= \\
& =h^{\prime}(x)+\frac{\operatorname{dist}(x, E)}{1+\operatorname{dist}(x, E)}
\end{aligned}
$$

and

$$
\begin{aligned}
q-\lim _{t \rightarrow x} \inf g(t) & =q-\lim _{t \rightarrow x} \inf h(t)-\frac{\operatorname{dist}(x, E)}{1+\operatorname{dist}(x, E)}= \\
& =h(x)-\frac{\operatorname{dist}(x, E)}{1+\operatorname{dist}(x, E)} .
\end{aligned}
$$

Since for $x \in E$ the set

$$
\left\{t \in R:|f(t)-h(t)|<\frac{\operatorname{dist}(t, E)}{1+\operatorname{dist}(t, E)}\right\}
$$

is residual at the point x, we have $q-\lim \sup f(t)=q-\lim \sup h(t)$ and $q-\lim \inf f(t)=$ $=q-\lim \inf h(t)$. Hence $C_{q}(f) \cap\left[E^{t \rightarrow x}-\left(C \cup C_{1}\right)\right]=\stackrel{t \rightarrow x}{B}, S_{q}(f) \cap\left[E-\left({ }^{t \rightarrow x} \cup C_{1}\right)\right]=$ $=A^{t \rightarrow x}-C$ and $S_{q}^{I}(f) \cap\left[E-\left(C \cup C_{1}\right)\right]=A_{1}-C_{1}$.
c) Assume that $x \in R-\left(E \cup C \cup C_{1}\right)$. The following cases may occur: The set $R-\left(A \cup A_{1}\right)$ is of the second category at x. Then for every $n \in N$ the set K_{n}--$-\left(A \cup A_{1}\right)$ is of the second category at x,

$$
\begin{aligned}
q-\lim _{t \rightarrow x} \sup f(t)=h(x)+ & \frac{\operatorname{dist}(x, E)}{1+\operatorname{dist}(x, E)} \text { and } \quad q-\lim \inf f(t)=h(x)- \\
& -\frac{\operatorname{dist}(x, E)}{1+\operatorname{dist}(x, E)} .
\end{aligned}
$$

There exists a neighbourhood $U \subseteq R-E$ of x such that $U-\left(A \cup A_{1}\right) \in \mathscr{I}$. Since the sets $A-B$ and $A_{1}-B$ do not contain sets of the second category having the Baire property, hence the sets $A-B$ and $A_{1}-B$ are of the second category at x. Then

$$
q-\lim _{t \rightarrow x} \sup f(t)=\lim _{t \rightarrow x}\left(h(t)+\frac{\operatorname{dist}(t, E)}{1+\operatorname{dist}(t, E)}\right)=h(x)+\frac{\operatorname{dist}(x, E)}{1+\operatorname{dist}(x, E)}
$$

and

$$
q-\lim _{t \rightarrow x} \inf f(t)=h(x)-\frac{\operatorname{dist}(x, E)}{1+\operatorname{dist}(x, E)} .
$$

Thus, if $x \in A-C$ then $x \in S_{q}(f)-\left[Q(f) \cup T_{q}(f)\right]$, if $x \in A_{1}-C_{1}$ then $x \in S_{q}^{1}(f)-$ $-\left[Q(f) \cup T_{q}^{1}(f)\right]$ and if $x \notin A \cup A_{1}$ then $x \notin S_{q}(f) \cup S_{q}^{1}(f)$.

Therefore f satisfies the condition (ii).

References

[1] Z. Grande: Quelques remarques sur la semicontinuité supérieure. Fund. Math. CXXV. 1 (1985), 1-13.
[2] K. Kuratowski: Topologie I. PWN, Waszawa 1958.
[3] J. Shoenfield: Martin's Axiom, Am. Math. Monthly 82 (1975), 610-617.
[4] W. Sierpiński: Sur une propriété des ensembles F_{σ} linéaires. Fund. Math. 14 (1929), 216-220.
Author's address: Department of Mathematics WSP Bydgoszcz, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland.

