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Let k(A) be the number of positive elements in a non-negative square matrix A. 
It is conjectured that for the class of connected matrices, k(An) is a non-decreasing 
function of n. If this result is true, it generalizes a result of Sidak's in [3], 

Let A be an irreducible and aperiodic (= primitive) M x M matrix having at 
most one zero on its main diagonal. We shall call such A, a Sidak matrix. In [3], 
Z. Sidak proved that k(An) is a non-decreasing function of n whenever .A is a Sidak 
matrix. We conjecture that the same is true for the connected matrices defined below. 

Denote S = (1, . . . , M}. The members of S are called states. Let I c S and let 
F(l) be the set of such indices j e S that ax} > 0 for some iel (atj is the (i, j)-entry 
of A). 

Definition. A n M x M matrix is connected if 
(i) it is irreducible, 

(ii) for any proper nonempty subset I of S, F(I) n F(IC) #= 0. 
Connected matrices arise in at least two setups: they are used by Seneta in the 

estimation of non-negative matrices from marginal totals (see [2]; Seneta's definition 
differs slightly from ours, he substitutes (i) by the condition that A have no zero row 
or column). Also, in [1] it is proved, among other things, that if A is the transition 
matrix of a homogeneous Markov chain, and $ is the exchangeable sigma-field 
generated by the chain, $ is trivial iff A is connected ($ is the sigma-field of events 
which are invariant under finite permutations of their coordinates). 

2. 

The definition in 1 can be restated in terms of the following equivalence relation: 

Definition. We say that two states i and j are neighbors if there exists a state k 
such that akiakJ > 0. We say that i and j are equivalent (notation i ~ j) if there 
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is a sequence of states / = il9 il9 

k = 1, ...,n - 1. 
With this definition we have: 

., in = j such that ik and /k +i are neighbors for 

Proposition. ([2], 2.2) An M x M matrix is connected iff 
(i) it is irreducible, 

(ii) all states 1,..., M are equivalent. 
Another way to picture a connected matrix A is to think of the entries of A as the 

squares of a chessboard. Then A is connected iff it is irreducible and a rook can 
move on the board to every row and column visiting only those entries which are 
positive. 

We prove now: 

Proposition, Any Sidak matrix is a connected matrix. 

Proof. Assume that M is the only state such that aMM = 0. We will prove that 
i ~ M for any state /. Since A is irreducible, there are states / = Z0, iu ..., in = M 
such that aik_l9 ik > 0 for 1 ^ k g n. From this, and from the fact that aik, ik > 0 
for 0 ^ k ^ n we conclude that ik_x and ik are neighbors for 1 ^ fe ^ «, and 
/ ~ M. 

In case that afck > 0 for all 1 ^ fc ^ M, we single out any state to play the role of 
the state M in the argument above. 

3. FINAL COMMENTS 

Of (i) and (ii) in the definition of a connected matrix A, only (ii) seems to be es
sential for k(An) to be non-decreasing in all the examples that we have analyzed. 
Look at these examples with M = 4: 

A = + + + +" в = 
+ 0 0 0 
+ 0 0 0 
+ 0 0 0 

D = 

It is easily verified that 

'+ + + +" c = 
0 0 0 + 
0 0 0 + 
0 0 0 + 

0 + + 0 
0 0 + + 
+ 0 0 4 -
+ 0 0 0 

+ + 0 0 
0 + + 0 
0 0 + + 
0 0 0 + 

k(An) = 16 for n = 2. 
k(C2) = 10, 
k(C3) = 14, 
k(Cn) = 16 for n = 4. 

и ž 2 , k(Bn) = 7 for 
k(D2)= 9 , 
fc(£>") = 10 foг n = 3 , 
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Notice that all A, B, C and D have the minimum number of positive entries for 
a matrix to have the rook property (ii), namely 2M — 1, but, while A and C are 
irreducible and hence connected, B and D are not. Irreducibility is the ingredient 
that turns a matrix with the rook property into a primitive matrix (see [1], p. 26 for 
a proof that connectivity implies primitivity), so that there is an integer n such that 
k(An) = M2. 

For an arbitrary primitive M x M matrix, let y be the minimum integer such 
that k(Ay) = M2. It is known ([2], p. 58) that y ^ M2 - 2M + 2 and the bound 
is sharp. For connected matrices, however, y seems to be much smaller than this 
bound, and that is another problem to be studied. 

Note added in proof. The following example due to Chris Parrish (U. Simon 
Bolivar) shows that the conjecture fails to be true in case condition (i) of irreduc
ibility is dropped. 

If A = + + + 0 
0 0 + 0 
0 + 0 + 
0 0 + 0 

then k(A2) = 9 and k(A3) = 8. 
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