Časopis pro pěstování matematiky

Zdeněk Ryjáček

On graphs with isomorphic, non-isomorphic and connected N_{2}-neighbourhoods

Časopis pro pěstování matematiky, Vol. 112 (1987), No. 1, 66--79
Persistent URL: http://dml.cz/dmlcz/118295

Terms of use:

© Institute of Mathematics AS CR, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ON GRAPHS WITH ISOMORPHIC, NON-ISOMORPHIC AND CONNECTED N_{2}-NEIGHBOURHOODS

Zdeněk RyjAčée, Plzeñ

(Received April 18, 1984)

Summary. The subgraph $N_{2}(u, G)$ induced by the edges $x y$ of G for which $\min \{\varrho(x, u)$, $Q(y, u)\}=1$ is called the neighbourhood of the second type of the vertex u. In the paper three questions are studied: existence and properties of graphs with N_{2}-neighbourhoods isomorphic to a given graph, existence of graphs with non-isomorphic N_{2}-neighbourhoods and existence and properties of graphs with connected N_{2}-neighbourhoods.

INTRODUCTION

Let $G=(V(G), E(G))$ be a finite undirected graph without loops and multiple edges. The neighbourhood of an arbitrary vertex $u \in V(G)$ (i.e. the subgraph induced on the set of vertices adjacent to u) will be denoted by $N_{1}(u)$ and called the neighbourhood of the first type of u. Following [2] let us denote by $N_{2}(u, G)$ (or, briefly, $N_{2}(u)$), the neighbourhood of the second type of u, i.e. the subgraph of G with the set of edges containing all the edges $v w$ of G for which $\min \{\varrho(v, u), \varrho(w, u)\}=1$ and with the corresponding set of vertices $(\varrho(x, y)$ denotes the distance of vertices $x, y)$. Then the following questions can be formulated:

1. Given a graph G, does there exist \tilde{G} such that for every vertex $u \in V(\widetilde{G}), N_{i}(u)$ is isomorphic to G ? (For $i=1$ this is the well-known Trahtenbrot-Zykov problem, see e.g. [1], [3], [4], [5], [6].)
2. Does there exist a graph G such that for every $u, v \in V(G)$ the neighbourhoods $N_{i}(u)$ and $N_{i}(v)$ are non-isomorphic? (For $i=1$ see [2], for 2-neighbourhoods defined as subgraphs induced on the sets of vertices at distance 2 see [7], [8].)
3. What are sufficient conditions for G to be N_{i}-locally connected and what are the properties of N_{i}-locally connected graphs? (G is said to be N_{i}-locally connected if for every $v \in V(G)$ the neighbourhood $N_{i}(v)$ is a connected graph. For $i=1$ see [9], [10].)

Investigation of these questions for $i=2$ is the main aim of the present paper.

1. N_{2}-REALIZABLE GRAPHS

We say that a graph G is N_{2}-realizable if there exists a nonempty graph \boldsymbol{G} (called an N_{2}-realization of G) such that for every vertex $u \in V(\widetilde{G}), N_{2}(u, \widetilde{G})$ is isomorphic to G. We can assume without loss of generality that $\tilde{\boldsymbol{G}}$ is connected.

An N_{2}-realizable graph obviously cannot contain isolated vertices. Let us observe some other properties of N_{2}-realizable graphs. Denote by $\Delta(G)(\delta(G))$ the maximum (minimum) degree of G.

Theorem 1.1. If \widetilde{G} is an N_{2}-realization of G, then

$$
\Delta(G) \leqq \Delta(\widetilde{G}) \leqq \Delta(G)+1
$$

If moreover $\delta(G) \geqq 2$, then

$$
\delta(\tilde{G}) \geqq \delta(\boldsymbol{G})+1
$$

Proof. 1. Obviously $\Delta(G) \leqq \Delta(\boldsymbol{G})$. Suppose that there exists $u \in V(\tilde{G})$ such that $d_{\tilde{G}}(u) \geqq \Delta(G)+2\left(d_{\widetilde{G}}(u)\right.$ denotes the degree of u in $\left.\widetilde{G}\right)$. Then $N_{2}(v, \widetilde{G})$ for arbitrary v adjacent to u contains a vertex of degree at least $\Delta(G)+1$ and therefore cannot be isomorphic to G.
2. Suppose that there exists $u \in V(\widetilde{G})$ such that $d_{\tilde{G}}(u) \leqq \delta(G)$ and consider again $N_{2}(v, \widetilde{G})$ for an arbitrary $v \in V(\widetilde{G})$ adjacent to u. Then the following two possibilities can occur:
a) $N_{2}(v)$ does not contain u. Then $d_{\widetilde{G}}(u)=1$ and since $\delta\left(N_{2}(u)\right) \geqq 2$, necessarily $d_{\bar{G}}(v) \geqq 3$. Therefore v is adjacent to another vertex $w \neq u$ and it is easily seen that w has degree 1 in $N_{2}(u)$ which is a contradiction.
b) $N_{2}(v)$ contains u. Then

$$
\left.\delta_{1}^{\prime} G\right) \leqq d_{N_{2}(v)}(u)=d_{\widetilde{G}}(u)-1 \leqq \delta(G)-1
$$

which is again a contradiction.
Corollary. An N_{2}-realization of a regular graph of degree $d \geqq 2$ is a regular graph of degree $d+1$.

A set $M \subset V(G)$ is said to be a covering set, if every edge of G has at least one vertex in M. The minimum number of vertices in a covering set will be denoted by $\alpha(G)$.

Theorem 1.2. If G is N_{2}-realizable then $\alpha(G) \leqq \Delta(G)+1$.
Proof. If $G=N_{2}(u)$ then every edge of G has at least one vertex adjacent to u and hence the set of all vertices of G which are adjacent to u is a covering set. The proof is completed by using Theorem 1.1.

Corollaries. 1. If G is N_{2}-realizable then

$$
|E(G)| \leqq \Delta(G) \cdot(\Delta(G)+1)
$$

$(|M|$ denotes the number of elements of $M)$.
Proof: One vertex can cover not more $\Delta(G)$ edges, hence $|E(G)| \leqq \alpha(G) . \Delta(G)$ and we can use Theorem 1.2.
2. If G is an N_{2}-realizable regular graph of degree d then $|V(G)| \leqq 2(d+1)$.

Proof. Use Corollary 1 for $\Delta(G)=d,|E(G)|=\frac{1}{2}|V(G)| . d$.
3. a) For $n \geqq 7$ the circuit C_{n} is not N_{2}-realizable.
b) If G is a cubic (i.e. regular of degree 3) graph and $|V(G)| \geqq 9$ then G is not N_{2}-realizable.
c) For $n \geqq 7$ the path P_{n} is not N_{2}-realizable.

Denote by $g(G)$ the girth of G, i.e. the length of the shortest circuit in G (if G contains no circuits, put $\left.g(G)^{-}=\infty\right)$.

Theorem 1.3. Suppose \tilde{G} is an N_{2}-realization of $G \neq C_{3}$ and $\delta(\tilde{G}) \geqq 3$. Then G contains a path of length 3 if and only if $g(\widetilde{G}) \leqq 4$.

Proof. Let $P \subset \bar{G}$ be a path of length $3, P \subset N_{2}(u)$. Then the vertices of P adjacent to u together with u determine in \tilde{G} a circuit of length at most 4 . The converse is evident.

Theorem 1.4. If G is an N_{2}-realizable regular graph of degree $d \geqq 2$ then G is 2-connected.

Proof. 1. Suppose G is disconnected. For every regular graph G^{\prime} of degree d we obviously have $\left|V\left(G^{\prime}\right)\right| \geqq d+1$ which together with Corollary 2 of Theorem 1.2 shows that G has 2 components (each of them on $d+1$ vertices) and hence $G=$ $=2 K_{d+1}$. From $\alpha\left(K_{n}\right)=n-1$ and from Theorem 1.2 it follows that G is not N_{2}-realizable.
2. Suppose G has an articulation (cutvertex) x. Since each of the blocks of G has (including x) at least $d+1$ vertices and $|V(G)| \leqq 2(d+1)$, necessarily one of the blocks of G has exactly $d+1$ vertices. Hence the degree-sequence of this block is

$$
\underbrace{d, d, \ldots, d, \alpha}_{d \text {-times }}
$$

for some $\alpha<d$, which can be easily proved to be impossible.
We shall further use the following simple assertion:
Theorem 1.5. Suppose $|E(G)| \geqq 1$ and let $\widetilde{G}, \widetilde{\mathbb{G}}$ be N_{2}-realizations of G such that $\tilde{G} \subset \widetilde{\boldsymbol{G}}$. Then $\tilde{G}=\widetilde{\boldsymbol{G}}$.

Proof is easy.
One can easily observe that the unique N_{2}-realization of the complete graph K_{n} for $n>2$ is K_{n+1}. (Here and in the sequel the term "unique" is meant up to isomorphism.) Let us consider N_{2}-realizability of some other classes of graphs.

Theorem 1.6. The circuits C_{3}, C_{5}, C_{6} have a unique N_{2}-realization while C_{4} and C_{n} for $n \geqq 7$ are not N_{2}-realizable.

Proof. $n=3$: Let $N_{2}(u) \simeq C_{3}(\simeq$ denotes isomorphism). We have (up to isomorphism) the following two possibilities: $d_{\overparen{\sigma}}(u)=2$ or $d_{\tilde{G}}(u)=3$. In the first case we obtain an N_{2}-realization of C_{3} isomorphic to K_{4}, in the second case considering $N_{2}(v)$ of any vertex v adjacent to u we are led again to an N_{2}-realization isomorphic to K_{4}.
$n=4$: Let $N_{2}(u) \simeq C_{4}$. Then some two non-adjacent vertices v_{1}, v_{2} of C_{4} must be joined with u by an edge, which implies that v_{2} has degree 3 in $N_{2}\left(v_{1}\right)$ - a contradiction.
$n=5:$ If $N_{2}(u) \simeq C_{5}$ then there necessarily exist three vertices v_{1}, v_{2}, v_{3} on C_{5} such that (say) v_{1} is not adjacent to v_{2} and v_{3} but v_{2} is adjacent to v_{3} and all of them are adjacent to u. Considering $N_{2}\left(v_{1}\right)$ and using Theorem 1.5 we obtain the only possible N_{2}-realization to be $C_{3} \times P_{1}$, i.e. the graph of the trigonal prism.
$n=6$: Similarly as in the preceding case it can be proved that the only $N_{2^{-}}$ realization of C_{6} is the graph of the 3 -dimensional cube.

For $n \geqq 7$ see Corollary 3a of Theorem 1.2.
A vertex $u \in V(G)$ is said to be universal if it is adjacent to all other vertices of G.
Theorem 1.7. If G has exactly one universal vertex and $|V(G)|=n \geqq 4$, then one of the following possibilities occurs:
a) $G \simeq K_{1, n-1}$ and G is uniquely N_{2}-realizable;
b) n is odd, $G \simeq \underbrace{K_{2,2}, \ldots, 2,1}$ and G has the unique

$$
\frac{1}{2}(n-1) \text { times }
$$

N_{2}-realization $\tilde{G} \simeq \underbrace{K_{2,2, \ldots, 2}}$;

$$
\frac{1}{2}(n+1) \text { times }
$$

c) G is not N_{2}-realizable.

Proof. Suppose that $N_{2}\left(u_{0}\right) \simeq G$ has n vertices $u_{1}, \ldots, u_{n}, u_{1}$ is universal in $N_{2}\left(u_{0}\right)$ and \boldsymbol{G} is an N_{2}-realization of G.

Case 1. Suppose u_{0}, u_{1} are adjacent in \tilde{G}. Then the neighbourhood $N_{2}\left(u_{1}\right)$ must have a universal vertex and without loss of generality we may assume that it is u_{0}. If there exists a vertex $u_{k}(k \neq 0,1)$ which is adjacent to both u_{0} and u_{1} then an easy
consideration shows that both u_{0} and u_{1} are universal in $N_{2}\left(u_{k}\right)$ which is a contradiction. Hence no u_{k} is adjacent to both u_{0} and u_{1} and by considering $N_{2}\left(u_{1}\right)$ and using Theorem 1.5 it is seen that the only possble \tilde{G} is the "double-star", i.e. the tree consisting of the edge $u_{0} u_{1}, n-1$ edges $u_{k} u_{1}$ for $2 \leqq k \leqq n$ and $n-1$ other edges adjacent to u_{0}; the resulting graph is an N_{2}-realization of the star $K_{1, n-1}$.

Case 2. If u_{0}, u_{1} are not adjacent in \widetilde{G} then the universality of u_{1} in $N_{2}\left(u_{0}\right)$ implies that u_{0} is adjacent to all u_{i} for $i=2, \ldots, n$. Now the neighbourhood $N_{2}\left(u_{i}\right)$ for every $i=0,1, \ldots, n$ has exactly n vertices and hence \tilde{G} cannot have any other vertices. We shall prove by induction the following assertion:

Lemma. Let l be an integer such that $1 \leqq l \leqq \frac{1}{2}(n-1)$. If each of the graphs $N_{2}\left(u_{i}\right), i=0, \ldots, 2 l-1$ contains exactly one universal vertex then all pairs of vertices u_{i}, u_{j} for $0 \leqq i \leqq 2 l-1$ are adjacent in G except the pairs $u_{2 k}, u_{2 k+1}$ for $k=0,1, \ldots, l-1$.

Proof. For $l=1$ the lemma holds evidently. Suppose that $l \leqq \frac{1}{2}(n-1)$ and the assertion of our lemma is true for $l-1$ - therefore the pairs of vertices $u_{2 k}, u_{2 k+1}$ are not adjacent for $k=0,1, \ldots, l-2$. This implies that none of the vertices u_{i} for $i<2 l-2$ can be universal in $N_{2}\left(u_{2 l-2}\right)$; hence this universal vertex must be one of u_{i} for $2 l-1 \leqq i \leqq n$ and we may assume without loss of generality that it is $u_{2 l-1}$. Hence $u_{2 l-1}$ is adjacent in \widetilde{G} to all u_{j} for $2 l \leqq j \leqq n$ and therefore the vertices $u_{2 l-2}, u_{2 l-1}$ cannot be adjacent in \widetilde{G} (since in the other case $u_{2 l-1}$ would be another universal vertex in $N_{2}\left(u_{0}\right)$. This implies that all the pairs $u_{2 l-2}, u_{j}$ for $2 l \leqq j \leqq n$ are adjacent in \tilde{G} and the lemma is proved.

Case 2a. n is odd. Using our lemma for $l=\frac{1}{2}(n-1)$ and observing that the vertices u_{n-1}, u_{n} cannot be adjacent in \widetilde{G} (since otherwise both u_{n-1} and u_{1} would be universal in $\left.N_{2}\left(u_{0}\right)\right)$ it is proved that the only possibility is $G \simeq \underbrace{K_{2,2}, \ldots, 2}$.

$$
\frac{1}{2}(n+1) \text { times }
$$

Case $2 \mathrm{~b} . n$ is even. Then using the lemma for $l=\frac{1}{2}(n-2)$ and considering $N_{2}\left(u_{n-2}\right)$ we conclude that one of u_{n-1}, u_{n} (say $\left.u_{n-1}\right)$ must be universal in $N_{2}\left(u_{n-2}\right)$. Then u_{n-1}, u_{n} and one of the pairs of vertices u_{n-2}, u_{n-1} and u_{n-2}, u_{n} must be adjacent. But in the first case u_{n-1} and in the other case u_{n} is another universal vertex in $N_{2}\left(u_{0}\right)$. This contradiction proves the non-existence of an N_{2}-realization.

Corollary. The wheels W_{3} and W_{4} are uniquely N_{2}-realizable while W_{n} for $n \geqq 5$ is not N_{2}-realizable (wheel W_{n} is C_{n} together with an aditional univesal vertex).

Proof. $\tilde{W}_{3} \simeq K_{5}$ since $W_{3} \simeq K_{4}, \tilde{W}_{4} \simeq K_{2,2,2}$ since $W_{4} \simeq K_{2,2,1}$, for $n \geqq 5$ use Theorem 1.7.

Theorem 1.8. Let G be a disjoint union of stars, i.e.

$$
G=\bigcup_{i=1}^{n} K_{k_{t}, 1}, \quad k_{i} \geqq 2, \quad i=1, \ldots, n, \quad n \geqq 2 .
$$

Then G is N_{2}-realizable if and only if $k_{1}=k_{2}=\ldots=k_{n}=n-1$ and in this case G has infinitely many non-isomorphic N_{2}-realizations.
Proof. Suppose G is N_{2}-realizable. First observe that if \boldsymbol{G} is an N_{2}-realization of G then an arbitrary vertex $u \in V(\widetilde{\boldsymbol{G}})$ is adjacent in \boldsymbol{G} to all centers of components of G and to no other vertices: if some end-vertex v of G were adjacent to u in \boldsymbol{G} then its neighbourhood $N_{2}(v)$ should contain a path of length 3 which is a contradiction. Hence \tilde{G} is a regular graph of degree n and therefore necessarily $k_{1}=k_{2}=\ldots$ $\ldots=k_{n}=n-1$.

Conversely, suppose $k_{1}=k_{2}=\ldots=k_{n}=n-1$. Then $G=n K_{n-1,1}$ and according to Theorem 1.3, G is N_{2}-realized by an arbitrary regular graph \boldsymbol{G} of degree n such that $g(\widetilde{G}) \geqq 5$. Existence of an infinite family of such graphs is proved in [12], Chapter III, Theorem 1.4'.

Denote by $P_{k}, k \geqq 1$, the path of length k, i.e. with k edges and $k+1$ vertices.
Theorem 1.9. Let G be a disjoint union of paths, i.e. $G=\bigcup_{i=1}^{n} P_{k_{i}}, k_{i} \geqq 1, i=$ $=1, \ldots, n, n \geqq 1$. Then G is N_{2}-realizable only in the following cases:

n	$k_{i}(i=1, \ldots, n)$ $($ number of paths $)$	number of non-isomorphic $($ length of paths $)$
N_{2}-realizations		

1	1	2
2	2	
	3	1
	6	∞
2	1,1	∞
	2,3	∞
	2,4	∞
3	$2,2,2$	∞

Proof. If $\widetilde{G} N_{2}$-realizes G then according to Theorem 1.2 necessarily $\alpha(G) \leqq 3$. Hence $n \leqq 3$ and it remains to consider the following possibilities: for $n=1$: $k=1,2,3,4,5,6$; for $n=2: k_{i}=1,1 ; 1,2 ; 1,3 ; 1,4 ; 2,2 ; 2,3 ; 2,4$; for $n=3$: $k_{i}=1,1,1 ; 1,1,2 ; 1,2,2 ; 2,2,2$.

Case $n=1$. Non-realizability of P_{4} and P_{5} is proved and examples of $N_{2^{-}}$ realizations of P_{1}, P_{2}, P_{3} and P_{6} are given in [2]. It remains to prove the assertion concerning the number of N_{2}-realizations.
a) Let $N_{2}(u) \simeq P_{1}$. Then u is adjacent either to one of the vertices of P_{1} or to both of them. In virtue of Theorem 1.5 the first case yields C_{3} and the second case yields P_{3} as the only possible N_{2}-realizations.
b) Let $N_{2}(u) \simeq P_{2}$, let v_{1}, v_{2}, v_{3} be the three vertices of P_{2}. We have (up to isomorphism) the following four possibilities: u is adjacent to $v_{2} ; u$ is adjacent to v_{1} and $v_{2} ; u$ is adjacent to v_{1} and $v_{3} ; u$ is adjacent to v_{1}, v_{2} and v_{3}. In the first case considering $N_{2}\left(v_{2}\right)$ we obtain the first N_{2}-realization of P_{2} which is a tree on 6 vertices with exactly 2 of them of degree 3 while in the third case we obtain C_{4} as the second possible N_{2}-realization of P_{2}. The second and fourth cases imply a contradiction.
c) Let $N_{2}(u) \simeq P_{3}$. In a similar manner as in the preceding case it can be proved that the N_{2}-realization which is shown in [2] (i.e. the circuit C_{5} with one diagonal edge) is the only one.
d) In [2] it is shown that P_{6} is N_{2}-realized by the graph of the m-gonal prism $C_{m} \times P_{1}$ for arbitrary $m \geqq 5$.

Case $n=2$. a) $C_{m} N_{2}$-realizes $2 P_{1}$ for an arbitrary $m \geqq 5$.
b) Suppose $N_{2}(u) \simeq P_{1} \cup P_{2}, V\left(P_{1}\right)=\left\{v_{1}, v_{2}\right\}, V\left(P_{2}\right)=\left\{w_{1}, w_{2}, w_{3}\right\}$. According to Theorem $1.1 d_{\bar{G}}(u) \leqq 3$ and hence we obtain the following three possibilities:
$-u$ is adjacent to w_{2} and one of v_{i} 's (say v_{1});

- u is adjacent to w_{1}, w_{3} and one of v_{i} 's (say v_{1});
$-u$ is adjacent to w_{2}, v_{1} and v_{2}.
The last two cases immediately imply a contradiction while in the first case the condition $N_{2}\left(w_{2}\right) \simeq P_{1} \cup P_{2}$ implies that either one of the vertices w_{1}, w_{3} must have degree 1 or they are joined by another path P_{2}. In both of these cases considering $N_{2}\left(w_{1}\right)$ we obtain a contradiction.
c) Let $N_{2}(u) \simeq P_{1} \cup P_{3}$. Then necessarily $d_{G}(u)=3$. Since $N_{2}(u) \supset P_{1}$, the vertex u is adjacent to some vertex v of degree 2 in \tilde{G} and hence $N_{2}(v)$ cannot be isomorphic to $P_{1} \cup P_{3}$.
d) Non-realizability of $P_{1} \cup P_{4}$ can be proved similarly.
e) Non-realizability of $2 P_{2} \simeq 2 K_{2,1}$ follows from Theorem 1.8.
f) An N_{2}-realization of the graph $P_{2} \cup P_{3}$ can be constructed by using an arbitrary connected regular graph of degree 3 and replacing each of its vertices by C_{3}.
g) An N_{2}-realization of the graph $P_{2} \cup P_{4}$ can be constructed in a similar manner as in the above case by using a connected regular graph of degree 4 and the circuit C_{4}.

Case $n=3$. a) If $N_{2}(u)$ is a graph with 3 components and one of them is P_{1} then u is adjacent to some vertex v such that $d_{\tilde{G}}(v)=2$ and hence $N_{2}(v)$ cannot be a graph with 3 components. Hence the graphs $3 P_{1}, 2 P_{1} \cup P_{2}$ and $P_{1} \cup 2 P_{2}$ are not N_{2}-realizable.
b) $3 P_{2} \simeq 3 K_{2,1}$ has infinitely many N_{2}-realizations according to Theorem 1.8.

Theorem 1.10. The complete bipartite graph $K_{m, n}$ is N_{2}-realizable if and only if either $\min \{m, n\}=1$ or $|m-n|=1$. The graphs $K_{1,1}$ and $K_{1,2} \simeq K_{2,1}$ have exactly two non-isomorphic N_{2}-realizations while in the other cases the N_{2}-realization of $K_{m, n}$ is unique.

Proof. The assertion concerning $K_{1,1} \simeq P_{1}$ and $K_{1,2} \simeq K_{2,1} \simeq P_{2}$ follows from Theorem 1.9 while the assertion concerning $K_{1, n} \simeq K_{n, 1}$ for $n \geqq 3$ follows from Theorem 1.7.
Let \widetilde{G} be an N_{2}-realization of $G=K_{m, n}, u_{0} \in V(\widetilde{G}), N_{2}\left(u_{0}\right) \simeq K_{m, n}, m \geqq 2$, $n \geqq 2$. Let $A=\left\{a_{1}, \ldots, a_{m}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\}$ be the two classes of vertices of $K_{n, m}$. Then u_{0} is adjacent either to all a_{i} 's or to all b_{j} 's since otherwise for a pair of vertices $a_{i_{0}}, b_{j_{0}}$ such that none of them is adjacent to u_{0} the edge $a_{i_{0}} b_{j_{0}}$ would not be in $N_{2}\left(u_{0}\right)$. Further, u_{0} is adjacent either to all a_{i} 's and no b_{j} 's or to all b_{j} 's and no a_{i} 's since in the first case for $b_{j_{0}}$ adjacent to u_{0} the neighbourhood $N_{2}\left(a_{1}\right)$ would contain the circuit of length 3 with vertices $a_{2}, b_{j_{0}}, u_{0}$; the second case is similar. Consequently, in the first case $a \in A \Rightarrow N_{2}(a) \simeq K_{m-1, n+1}, b \in B \Rightarrow N_{2}(b) \simeq N_{2}\left(u_{0}\right) \simeq K_{m, n}$ and hence $m-n=1$ and $\widetilde{G} \simeq K_{m, m}$; in the second case $a \in A \Rightarrow N_{2}(a) \simeq N_{2}\left(u_{0}\right) \simeq$ $\simeq K_{m, n}, b \in B \Rightarrow N_{2}(b) \simeq K_{m+1, n-1}$ and hence $n-m=1$ and $\widetilde{G} \simeq K_{n, n}$.

Theorem 1.11. The only N_{2}-realizable cubic (i.e. regular of degree 3) graphs are the tetrahedron K_{4}, the trigonal prism $C_{3} \times P_{1}$ and the 3-dimensional cube Q_{3}, and each of them has a unique N_{2}-realization.

Proof. The only cubic graph with four vertices is the uniquely N_{2}-realizable tetrahedron K_{4}. For $|V(G)|=6$ there exist 2 non-isomorphic cubic graphs, namely

Fig. 1
$K_{3,3}$ and the trigonal prism $C_{3} \times P_{1}, K_{3,3}$ is not N_{2}-realizable according to Theorem 1.10. Suppose $N_{2}(u) \simeq C_{3} \times P_{1}, u_{i, j}(i=1,2,3, j=1,2)$ being its vertices.

Necessarily $d_{\tilde{\mathcal{G}}}(u)=4$ and hence the only (up to isomorphism) possibility is that $u_{1,1}, u_{2,1}, u_{2,2}$ and $u_{3,2}$ are adjacent to u (these vertices must form a covering set). The condition $N_{2}\left(u_{1,1}\right) \simeq C_{3} \times P_{1}$ then implies that the vertices $u_{3,1}$ and $u_{1,2}$ are adjacent in \tilde{G} and hence we have obtained the unique N_{2}-realization which is shown in Fig. 1.

If $|V(G)|=8$ then $\alpha(G)=4$ according to Theorem 1.2 and hence G is necessarily bipartite. The only bipartite cubic graph with 8 vertices in the 3 -dimensional cube the N_{2}-realization of which is shown in Fig. 2. The proof of uniqueness is similar to the preceding case.

Fig. 2
For $|V(G)|>8$ see Corollary 3 b of Theorem 1.2.

Corollaries.

1. The only N_{2}-realizable cube Q_{n} is the 3-dimensional one.

Proof. For $Q_{2} \simeq C_{4}$ and Q_{3} see Theorems 1.6 and 1.11. Q_{n} is not N_{2}-realizable for $n \geqq 4$ according to Corollary 2 of Theorem 1.2 since Q_{n} is regular of degree n and $\left|V\left(Q_{n}\right)\right|=2^{n}>2(n+1)$.
2. The only N_{2}-realizable graphs of Platonic bodies are the tetrahedron and the cube, and their N_{2}-realizations are unique.

Proof. N_{2}-realizability of the tetrahedron and the cube and non-realizability of the dodecahedron is established by the preceding theorem. The icosahedron is not N_{2}-realizable since it has no covering with at most 6 vertices. Suppose G is the graph of the octahedron, \tilde{G} its N_{2}-realization, $u \in V(\tilde{G}), N_{2}(u) \simeq G$. Necessarily $d_{\tilde{G}}(u)=5$; hence we may denote by u_{1} the vertex of G which is not adjacent to u, by u_{6} the only vertex of G which is not adjacent to u_{1}, and by $u_{2}, u_{3}, u_{4}, u_{5}$ the other vertices of G. \tilde{G} is regular of degree 5 and hence u_{1} is necessarily adjacent in \tilde{G} either to u_{6} or to
another vertex v, but it can be shown that both of these possibilities lead to a contradiction.

2. GRAPHS WITH NON-ISOMORPHIC N_{2}-NEIGHBOURHOODS

Following [2] let us denote by $\mathbf{G}_{\mathbf{2}}$ the class of graphs with the following property: for every pair of vertices u, v of G the neighbourhoods $N_{2}(u)$ and $N_{2}(v)$ are not isomorphic.

Theorem 2.1. Let n be an integer. Then there exists a connected graph G_{n} on n vertices belonging to \mathfrak{G}_{2} if and only if $n \geqq 7$.

We shall first prove some auxiliary assertions.
Lemma 1. Let $n \geqq 7, G_{n} \in \mathfrak{G}_{2}$, suppose that G_{n} is connected, none of the vertices u_{1}, \ldots, u_{n} of G_{n} is universal and the only vertex which is adjacent to u_{n} is u_{n-2}. Let us construct a graph G_{n+1} on $n+1$ vertices from G_{n} by adding a vertex u_{n+1} and making it universal in G_{n+1}. Then $G_{n+1} \in \mathfrak{G}_{2}, G_{n+1}$ is connected and u_{n} is adjacent only to u_{n-2} and u_{n+1}.

Proof. Suppose that $f: N_{2}\left(u_{\alpha}, G_{n+1}\right) \rightarrow N_{2}\left(u_{\beta}, G_{n+1}\right)$ is an isomorphism. Without loss of generality we may assume that $\alpha \neq n+1$ and hence $u_{n+1} \in V\left(N_{2}\left(u_{\alpha}, G_{n+1}\right)\right)$. If $f\left(u_{n+1}\right)=u_{n+1}$ then the partial mapping $\left.f\right|_{V\left(G_{n}\right)}$ is an isomorphism $N_{2}\left(u_{\alpha}, G_{n}\right)$ onto $N_{2}\left(u_{\beta}, G_{n}\right)$. Hence $f\left(u_{n+1}\right)=u_{\gamma}, \gamma \leqq n$ and u_{γ} is universal in $N_{2}\left(u_{\beta}, G_{n+1}\right)$. If $\beta=n+1$ then $N_{2}\left(u_{\beta}, G_{n+1}\right)=G_{n}$ and u_{γ} is universal in G_{n}. Hence $\beta \leqq n$ and therefore u_{n+1} is the second universal vertex in $N_{2}\left(u_{\beta}, G_{n+1}\right)$. Interchanging these two universal vertices we obtain an isomorphism $f_{1}: N_{2}\left(u_{\alpha}, G_{n+1}\right) \rightarrow N_{2}\left(u_{\beta}, G_{n+1}\right)$ such that $f_{1}\left(u_{n+1}\right)=u_{n+1}$, which is a contradiction.

Lemma 2. Let $n \geqq 7, G_{n} \in \mathfrak{G}_{2}, V\left(G_{n}\right)=\left\{u_{1}, \ldots, u_{n}\right\}$, suppose that u_{n} is universal in G_{n}, the only vertex of degree 1 in $N_{2}\left(u_{n}, G_{n}\right)$ is u_{n-1} and u_{n-1} is adjacent only to u_{n-3} and u_{n}. Let us construct a graph G_{n+1} on $n+1$ vertices from G_{n} by adding a vertex u_{n+1} and joining it to u_{n-1} by an edge. Then $G_{n+1} \in \mathfrak{G}_{2}, G_{n+1}$ is connected and has no universal vertex.

Proof. The vertex u_{n} is universal in G_{n} and hence all vertices of G_{n} have (by assumption, non-isomorphic) N_{2}-neighbourhoods on $n-1$ vertices. The only vertices u_{i} of G_{n+1} for which $N_{2}\left(u_{i}, G_{n+1}\right) \neq N_{2}\left(u_{i}, G_{n}\right)$ are evidently u_{n-3} and u_{n} (and, of course, $\left.u_{n+1}\right) . N_{2}\left(u_{n+1}, G_{n+1}\right)$ has 3 vertices while both $N_{2}\left(u_{n-3}, G_{n+1}\right)$ and $N_{2}\left(u_{n}, G_{n+1}\right)$ have n vertices. Suppose that there exists an isomorphism $f: N_{2}\left(u_{n}, G_{n+1}\right) \rightarrow N_{2}\left(u_{n-3}, G_{n+1}\right)$. By assumption, the only vertex of degree 1 in both $N_{2}\left(u_{n}, G_{n+1}\right)$ and $N_{2}\left(u_{n-3}, G_{n+1}\right)$ is u_{n+1}. Hence the partial mapping $\left.f\right|_{V\left(G_{n}\right)}$ is an isomorphism of $N_{2}\left(u_{n}, G_{n}\right)$ onto $N_{2}\left(u_{n-3}, G_{n}\right)$, which is a contradiction.

Proof of Theorem 2.1. The non-existence of $G_{n} \in \mathfrak{G}_{2}$ for $n \leqq 6$ can be easily verified by listing all such graphs (see e.g. [13]). For $n \geqq 7$ let us construct a graph G_{n} using the following construction:

- for $n=7$ see Fig. 3;

Fig. 3

- having obtained G_{n}, construct G_{n+1} using Lemma 1 if n is odd and Lemma 2 if n is even.

Then G_{n+1} is connected and $G_{n+1} \in \mathfrak{G}_{2}$.
Theorem 2.2. Let n, k be integers, $k \geqq 1, n \geqq k^{2}+5 k+1$. Then there exists a graph $G \in \mathfrak{G}_{2}$ with n vertices and k components.

Proof. Let us define a graph G using the graphs G_{n} which are described in the proof of Theorem 2.1:

- the first component of G is G_{7},
- the i-th component of G is $G_{2 i+4}, i=2, \ldots, k$.

Then every component of G belongs to \mathfrak{G}_{2} and since for every pair of vertices u_{1}, u_{2} which belong to different components of G their N_{2}-neighbourhoods have different numbers of vertices, necessarily $G \in \boldsymbol{G}_{2}$. Further, $n=7+\sum_{i=2}^{k}(2 i+4)=k^{2}+$ $+5 k+1$ and hence for $n=k^{2}+5 k+1$ the theorem is proved.

For $n>k^{2}+5 k+1$ take the same graph G with the only difference in the k-th component: if we denote $a=n-\left(k^{2}+5 k+1\right)$ then it is constructed as $G_{2 k+4+a}$ if a is even and as a graph which can be obtained from $G_{2 k+3+a}$ by adding a new vertex and joining it to the only universal vertex of $G_{2 k+3+a}$ if a is odd.

3. N_{2}-LOCALLY CONNECTED GRAPHS

Theorem 3.1. Let G be a connected N_{2}-locally connected graph, suppose that G
contains a path of length 4. Denote by G^{\prime} the graph which is obtained from G by deleting all vertices of degree 1 together with their edges. Then every edge of G^{\prime} is contained in some circuit of length $m \leqq 4$ and G^{\prime} is 2 -connected.

Proof. Let h be an edge of G^{\prime}. Each of its vertices is adjacent to another edge denote them by h_{1}, h_{2}. If h_{1}, h_{2} have a common vertex then h is contained in a triangle h, h_{1}, h_{2}. Suppose that h_{1}, h_{2} have no common vertex and that in G there is no circuit of length $m \leqq 4$ containing h. Then the existence of path of length 4 in G and the connectedness of G yield that in G there exists a path of length 4 such that if u_{0}, u_{1}, u_{2}, u_{3}, u_{4} are its vertices then $h=u_{1} u_{2}$. The neighbourhood $N_{2}\left(u_{2}, G\right)$ then contains the edges $u_{0} u_{1}$ and $u_{3} u_{4}$. Suppose that in G there is no circuit of length $m \leqq 4$ containing h. Hence if a vertex v is adjacent to u_{1} and w is adjacent ot u_{2} then v cannot be adjacent to w and therefore the edges $u_{0} u_{1}$ and $u_{3} u_{4}$ are in different components of $N_{2}\left(u_{2}, G\right)$.

Let u be an articulation of G^{\prime}. Then u is an articulation of G and such edges h_{1}, h_{2} can be found that h_{1}, h_{2} are in different blocks of G and none of them is adjacent to u (since otherwise u would not be an articulation of G^{\prime}). But then $N_{2}(u, G)$ is disconnected, which is a contradiction.

Obviously, every N_{1}-locally connected graph G is N_{2}-locally connected and hence the assertions which are proved in [9], [10] can be used to obtain sufficient conditions for G to be N_{2}-locally connected. Nevertheless, some of them can be replaced by weaker ones.

Theorem 3.2. Every graph which contains no path of length 4 is N_{2}-locally connected.

Proof is easy.
Theorem 3.3. Let G be a graph such that every pair u, v of non-adjacent vertices satisfies the inequality

$$
d_{G}(u)+d_{G}(v) \geqq|V(G)|
$$

Then G is N_{2}-locally connected.
Proof. Let $u_{0} \in V(G)$ and suppose that $N_{2}\left(u_{0}, G\right)$ is disconnected. Choose vertices. u_{1}, u_{2} in different components of $N_{2}(u)$ so that they are adjacent to u_{0}. Each of the vertices u_{1}, u_{2} is adjacent to $d_{G}\left(u_{i}\right)-1$ vertices (excluding u_{0}) and these vertices are necessarily different. Hence

$$
|V(G)| \geqq\left(d_{G}\left(u_{1}\right)-1\right)+\left(d_{G}\left(u_{2}\right)-1\right)+3
$$

which implies

$$
d_{G}\left(u_{1}\right)+d_{G}\left(u_{2}\right) \leqq|V(G)|-1,
$$

a contradiction.

Example. The graph G which can be obtained by taking two disjoint copies of $K_{n}, n \geqq 2$, and joining their vertices with an additional universal vertex u, is not N_{2}-locally connected and every pair x, y its of vertices such that $x \neq u$ and $y \neq u$ satisfies $d_{G}(x)+d_{G}(y)=2 n<2 n+1=|V(G)|$. Hence Theorem 3.3 is the best possible.

Corollary. If $\delta(u) \geqq \frac{1}{2}|V(G)|$ then G is N_{2}-locally connected.
Theorem 3.4. Let G be a graph without triangles and such that

$$
\sum_{u \in V(P)} d_{G}(u) \geqq|V(G)|+2
$$

for every path $P \subset G$ of length 2 . Then G is N_{2}-locally connected.
Proof. Let u_{0}, u_{1}, u_{2} be the same as in the proof of Theorem 3.3. Then u_{0} is adjacent to $d_{G}\left(u_{0}\right)$ vertices and each of the vertices u_{1}, u_{2} is adjacent to another $d_{G}\left(u_{i}\right)-1$ vertices. These vertices are different since $N_{2}\left(u_{0}, G\right)$ is disconnected and G has no triangles. Hence

$$
|V(G)| \geqq d_{G}\left(u_{0}\right)+d_{G}\left(u_{1}\right)-1+d_{G}\left(u_{2}\right)-1+1
$$

which yields

$$
\sum_{i=0}^{2} d_{G}\left(u_{i}\right) \leqq|V(G)|+1
$$

a contradiction.

Corollary. Suppose that G is a graph without triangles for which one of the following conditions is fulfilled:
a) for every pair of vertices u, v,

$$
d_{G}(u)+d_{G}(v) \geqq \frac{2}{3}(|V(G)|+2) ;
$$

b)

$$
\delta(G) \geqq \frac{1}{3}(|V(G)|+2) .
$$

Then G is N_{2}-locally connected.

Acknowledgment. The author is indebted to J. Sedláček, for his helpful suggestions.

References

[1] A. A. Zykov: Problem 30, Theory of graphs and its applications. Proc. Symp. Smolenice 1963 (M. Fiedler, ed.), Prague 1964, 164-165.
[2] J. Sedláček: Local properties of graphs. Čas. pěst. mat. 106 (1981), 290-298.
[3] V. K. Bulitko: On graphs with given vertex-neighbourhoods. Trudy mat. inst. im. Steklova 133 (1973), 78-94.
[4] P. Hell: Graphs with given neighbourhoods I. Problèmes Combinatoires et Théorie des Graphes (Colloq. Orsay 1976), C.N.R.S., Paris 1978, 219-223.
[5] J. I. Hall: Localiy Petersen graphs. J. Graph Theory 4 (1980), 173-187.
[6] A. Vincu: Locally homogeneous graphs from groups. J. Graph Theory 5 (1981), 417-422.
[7] H. Bielak: On graphs with non-isomorphic 2-neighbourhoods. Čas. pěst. mat. 108 (1983), 294-298.
[8] H. Bielak, E. Soczewińska: Some remarks about digraphs with non-isomorphic 1- or 2neighbourhoods. Čas. pěst. mat. 108 (1983), 299-304.
[9] G. Chartrand, R. E. Pipert: Locally connected graphs. Čas. pěst. mat. 99 (1974), 158-163.
[10] D. W. VanderJagt: Sufficient conditions for locally connected graphs. Čas. pěst. mat. 99 (1974), 400-404.
[11] O. Ore: Theory of graphs. AMS, Providence, R. I. 1962.
[12] B. Bollobás: Extremal graph theory. Academic Press 1978.
[13] F. Harary: Graph theory. Addison-Wesley, Reading, Mass. 1969.

Souhrn

O GRAFECH S ISOMORFNIMI, NEISOMORFNÍMI A SOUVISLÝMI N_{2}-OKOLÍMI Zdeněk RyJÁčé

Podgraf $N_{2}(u, G)$ grafu G indukovaný množinou hran $x y$ grafu G, pro něž $\min \{\varrho(x, u)$, $Q(y, u)\}=1$, se nazývá okolí 2 . druhu uzlu u. V článku jsou vyšetřovány tři otázky: existence a vlastnosti grafů, v nichž N_{2}-okolí každého uzlu je isomorfní z daným grafem, existence grafủ s neisomorfními N_{2}-okolimi uzlủ a existence a vlastnosti grafủ, v nichž N_{2}-okolí všech uzlủ jsou souvislá.

Резюме
 О ГРАФАХ С ИЗОМОРФНЫМИ, НЕИЗОМОРФНЫМИ И СВЯЗНЫМИ N_{2}-ОКРУЖЕНИЯМИ

Zdeněk Ryjáček

Подграф $N_{2}(u, G)$, порожденный такими ребрами $x y$ графа G, для которых $\min \{\varrho(x, u)$, $\varrho(y, u)\}=1$, называется окружением второго типа вершины u. В настоящей статье рассмотрены следующие три вопроса: существование и свойства графов, N_{2} - окружения вершин которых изоморфны заданному графу, существование графов, N_{2} - окружения вершин которых неизоморфны и существование и свойства графов, N_{2} - окружения вершин которых являются связными.

Author's address: 30614 Plzeň, Nejedlého sady 14 (Katedra matematiky VŠSE).

