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ZPRAVY

RECENT RESULTS OF NOVOSIBIRSK MATHEMATICIANS
IN GRAPH THEORY

L. S. MeL'NIROV, Novosibirsk

Summary. The paper gives an overview of recent results obtained in graph theory by a group
of Novosibirsk mathematicians (Aksionov, Borodin, Kostochka, Mel’nikov, Ponomarev, Ta$ki-
nov). The following themes are dealt with: colouring, interval representations, topological im-
beddings, Hadwiger number, Berge’s conjecture on regular subgraphs of regular graphs, one
problem on spanning trees.

1. INTERVALS AND COLOURINGS

Following [1], [2] let us consider graphs G = (V, E) without loops and multiple
edges. Assign to each vertex v € ¥(G) a nonnegative weight h(v). The weight of the
subset S < V(G) will be defined naturally as h(S) = Y. h(v). Let us assume without

veS
loss of generality that the weights h(v) are integers. The pair (G, h) will be called

a weighted graph (WG). By an interval representation (IR) we shall mean such
a mapping J of the set of the vertices of the WG into a set of intervals in the real
axis that it assigns to each vertex v € ¥(G) an interval J(v) of length |J(v)| = h(v).
We call an IR chromatic if the intervals assigned to adjacent vertices are disjoint,
i.e. (v, u) € E(G) = J(v) n J(u) = 0. The length of an IR (G, h, J) is the number

L(G,h,J) = | U J(v)|. If there are not conditions for the type of the IR then the
veV (G)

least length of a given WG is obviously max h(v). But things are quite different for
veV (G)

chromatic IR. Call the chromatic length of a WC (G, h) the number x(G, h) =
= min L(G, h, J), where the minimum is taken over all chromatic IR.

The problem to construct a chromatic IR may have various applications [8], e.g.
connected to scheduling problems.
The clique length of a WG (G, h) shall be the number

w!G, h) = max h/K),
K

where K ranges over all subsets of vertices that induce a clique in G. The following
inequalities are obvious:

o(G, h) £ x(G, h) < h(V(G)).
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Proposition 1.1. [1]. If h(v) = c is constant for all v e V(G) then x(G, h) = ¢ x(G),
where x(G) is the chromatic number of the graph G.

Proposition 1.2. [8]. x(G, h) = min (max h(V(P))), where A(G) is the set of all
G'eA(G) PG’

acyclic orientations of the edges of G, and P = G' is a directed path in the di-
graph G'.

def

Proposition 1.3. [2]. x(G, h) £ A(G, h) = max h(N(v)), where by the neigh-
veV(G)

borhood N(v) of the vertex v we mean the set of all vertices adjacent to v together

with v itself:
N(s) = {0} v {ul(e, w) € E(G)}

By far not all known estimates for the chromatic number admit generalization to

chromatic length. The following bound is well known: ¥(G) < max ( min [d(v) + 1]).
G'SG veV(G')

Define analogously to the right-hand side: w(G, h) = max ( min h(N(v))).

G'SG veV(G')

Proposition 1.4. [2] For arbitrary k 2 0 there is (G, h) such that x(G, h) >
> w(G, h) + k.

1

Fig. 1

Proposition 1.5. [2]. x(Cyi+y) = max{ max h(e), min h(N(v))}, where
e€E(Caxk+ 1) veV(Cak+1)
h(e) = h(u) + h(v) and e = (u, v). If K is complete then y(K, h) = A(K, h).
In view of this fact and of proposition 1.5, Aksinov assumes the following gener-
alization of Brooks’s theorem [6] to hold:

Conjecture 1.6. [2]. Assume G to be connected and x(G,h) = A(G, h), then
either G is complete or G is an odd cycle with h(v) = const for all v e V(G).
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2. TOPOLOGICAL IMBEDDINGS AND COLOURINGS

Here I shall omit my old results [2] and concentrate on several new results of
Borodin [3], [4].

Call a graph 1-planar if there exists its representation in the plane such that each
edge intersects at most one other edge of the graph.

In [3], the following theorem is proved, verifying Ringel's hypothesis [ 15]:

Theorem 2.1. Suppose the graph G is 1-planar, then for its chromatic number
2G) = 6.

Fig. 2

The graph on Fig. 2 is K4 and is obviously 1-planar, which shows that the theorem
cannot be improved. The generalization of 1-planarity to 1-embedding into an ar-
bitrary closed two dimensional surface FY with Euler’s characteristics N is straight-
forward, as well as the definition of the upper bound of the chromatic number of
graphs admitting such a 1-embedding. Ringel [16] obtained such an upper bound
of the chromatic number x,(N) < [(9 + /(81 — 32N))/2] for N < 2. He also
showed it to be exact for Klein’s bottle and for the torus (N =0), for N = 2 its
exactness follows from Theorem 2.1. Schumacher and Wegner showed that for the
projective plane (N = 1) the bound is not sharp and y,(1) = 7. However, further
extension of these results meets substantial difficulties arising in connection with
systematization of 1-embeddings of complete graphs into FY. Unfortunately, the
Ringel-Youngs theory of flow graphs and imbeddings connected with them admits
no simple transfer to 1-embeddings.

Combined colourings appear rather often (see e.g. [19] the total chromatic number
and the author’s hypotheses [12]). In fact, in [3] the problem of vertex colouring
of 1-planar graphs was reduced to the combined colouring of planar graphs having
only 3- and 4-faces in such a way that two vertices adjacent to the same face are
assigned different colours. The first to deal with combined colouring appears to
have been Ringel [15] who conjectured the following result due to Borodin [3]
which follows from Theorem 2.1.
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Theorem 2.2. For any planar graph there is a combined colouring of vertices and
edges with 6 colours.

Theorem 2.3. [3], [4] (without proof)
[3k2]* < x(k) <2k -1,

where x(k) is the maximal chromatic number of planar graphs where all faces
of degree d*(F) < k have their vertices coloured in different colours. ([+]* denotes
here the post office function.)

The pseudosphere (or pseudoplane) F} arises from the sphere by pairwise identi-
fying 2k different points.

There are three different possible ways of imbedding a graph into a pseudo-
surface (in particular, into the pseudosphere):

1) through the “double” points of the pseudosurface the edges may not pass,

2) in the “double” points there may not lie vertices,

3) no conditions.

Theorem 2.4.
Case 1: [7], [5] x#"(F?) = min {k + 4, [(7 + /(1 + 24k))[2], 12}, k> 0.
Case 2: [9] x®(F}) = [(7T + J(1 + 8k))[2] for k > 0.
Case 3: [5] x®(F?) = min {k + 4, [(7 + /(1 + 24k))[2],
[(11 + /(73 + 8k))[2]} for k > O.

For 1-embeddings into the pseudosphere Borodin proved (only for case 2):

[© + /(17 + 16k))[2] for O < k + 4,

Theorem 2.5. [4] ¥{(F?) =
, [4] 15(F) {Sfor‘k=4.

3. THE HADWIGER NUMBER 7#(G)

A. V. Kostochka disproved Zelinka’s conjecture [20] that the inequality

7(G) + n(G) = n(G) + 1
is a sharp bound. '

Theorem 3.1. [10]. For an arbitrary simple graph of n vertices (n 2 5) the fol-
lowing sharp bounds hold:

n(G) + n(G) = [6;"] n(G) . n(G) < B(E n])z].

Kostochka’s paper [11] is devoted to classification of the behaviour of the minimal
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Hadwiger number in the class 2, of graphs the average degree of which is not less
than k. Denote

(k) = min#(G), w(k) = min {n(G)/x(C) 2 K} ,

(k) = min {n(G)/G is k-connected},
5= {alv@) 2 %, |5 > k@) - (“ 7 )b m(K) = minn(o).

Mader, Miller, Zelinka and Zykov looked into the behaviour of the function #(k).
The best results that could be achieved were the bounds

< n(k) £ 4k _ .
8log, k Jlog, k

' k
Theorem 3.2. [11] For k= 2, y(k) 2 ——M—.
(1] 1 2 225 Jlog, k
k

Corollary 3.3. For k =2, wk) 2 ——.
y - (k) 540 \/log, k

Corollary 3.4. Hadwiger’s conjecture holds for almost all graphs (P. Erdos,
B. Bollobds, P. Catlin).

Corollary 3.5. For k sufficiently large, Hadwiger’s conjecture holds for almost
all graphs with n vertices and kn edges.

Corollary 3.6. min (1(G) + n(G)) = O ( L )
¥ (G)]=n Jlogn

Hence, we know the order of the lower bound for the sum 5(G) + n(G), but
unfortunately an exact lower bound is not known.

k
Corollary 3.7. v(k) = O .
0 y (k) (\/log k)

Theorem 3.8. [11]. n,(k) 2 L _k

27 'log, k

for k=2,

4. REGULAR SUBGRAPHS OF REGULAR GRAPHS
Berge’s conjecture states that any 4-regular graph has a 3-regular subgraph.
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Theorem 4.1. [17], [18]. Every 4-regular graph has a 3-regular subgraph.

V. A. Tadkinov studied in sufficient generality the problem under which conditions
an r-regular graph has a g-regular subgraph. His results are contained in a dis--
sertation which is to be presented in the near future. Partial problems are answered
in the following two theorems.

Theorem 4.2. [17]. For any r = 3 any r-regular graph has a 3-regular subgraph.

Theorem 4.3. [17] + [Dissertation]. For any r 2 5 there is an r-regular graph
which has no (r — 1)-regular subgraph.

5. SPANNING TREES WITH LIMITED NUMBER OF END EDGES

Vizing’s problem [19] is: To find max |E(G)|/n(G) = n and any spanning tree
of the graph G has no more than k end edges (i.e. edges adjacent to an end vertex).
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In the case of G connected, denote that maximum by m(n, k), and in the case of an
arbitrary graph G by M(n, k).

Theorem 5.1. [13]. m(n,k) =n + (k + 1)(k — 2)[2 for k+n -2, 2<k <
§ n— l)

m(n, k) = [n(n —2)2] for k=n-2, nz4,
m(n,k) =1 for k=n=2;

max(n+%(k+1)(k—2), [P—(nz;z)]), 2<k<n-1,

M(n, k)

nf2 for k=n.

The proof of Theorem 5.1 is based on a result formulated by B. Zelinka [21] but as
the proof contained a mistake we had to do it new [14].

Theorem 5.2. [14]. The maximal number of edges of a connected graph of n
vertices any spanning tree of which has not more than n — 3 end edges, is equal
to (n* — 5n + 10)/2 for n = 5, and all extremal graphs are given in Fig. 3.
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Souhrn

NOVE VYSLEDKY NOVOSIBIRSKYCH MATEMATIKU V TEORII GRAFU

L. S. MELNIKOV

Prace podava ptrehled novych vysledki skupiny novosibirskych matematikit (Aksjonov,
Borodin, Kostocka, Mélnikov, Ponomarev, TaSkinov) v teorii grafi. Jsou pojednana tato
témata: barveni, intervalové reprezentace, topologickd vnorfeni, Hadwigerovo dislo, Bergeova
hypotéza o regularnich podgrafech regularnich grafu a jeden problém o kostrach.

Pe3rome

HOBBIE PE3VJIbTATBI HOBOCUBUPCKUNX MATEMATHKOB
B TEOPMU I'PA®OB

L. S. MiLNIKOV

B pabote maetcsi 0630p HOBBIX Pe3yJIbTATOB IPYIMIbI HOBOCUOMPCKHX MAaTeMAaTHKOB (AKCEHOB,
Boponun, Kocrouka, Mensuukos, ITonomapes, Tamkunos) B Teopun rpadoB. PaccMoTpens! cre-
OYIOLIME TeMLI: PACKpaCKd, WHTEPBaJIbHbIE INPEACTABIICHHUA, TOMOJOTMYECKUE BIIOKEHHUS, YHUCIIO
Xansurepa, runote3a bepxa o perynspusix moarpadax perynsipHeix rpadoB U ogna mpoGrema
CBA3aHHasA C Kapkacamu rpada.

Author's address: Institute of Mathematics, Siberian Branch, Academy of Sciences of the
USSR, 630090 Novosibirsk, USSR.
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