Časopis pro pěstování matematiky

Hwang Wen Pu; Huo Hui Min Pu

On representations of Baire functions in a given family as sums of Baire Darboux functions with a common summand

Časopis pro pěstování matematiky, Vol. 112 (1987), No. 3, 320--326

Persistent URL: http://dml.cz/dmlcz/118314

Terms of use:

© Institute of Mathematics AS CR, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ON REPRESENTATIONS OF BAIRE FUNCTIONS IN A GIVEN FAMILY AS SUMS OF BAIRE DARBOUX FUNCTIONS WITH A COMMON SUMMAND

H. W. Pu, H. H. Pu, College Station
(Received September 3, 1984)

Abstract

Summary. The authors show that Mišik's result on representation of Baire α-functions ($\alpha>1$) from a given family as sums of Baire Darboux functions with a common summand can be extended to the case $\alpha=1$ provided the family considered is finite, and give a counterexample if the family is infinite.

Keywords: Baire functions, Baire Darboux functions.

1. In 1967 [5], Mišik proved the following theorem.

Theorem M. If \mathscr{A} is a countable family of Baire α functions and $\alpha>1$, then there exists a Baire α function f such that $f+g$ has the Darboux property for every $g \in \mathscr{A}$.

In other words, if \mathscr{A} is a countable family of Baire α functions and $\alpha>1$, then the functions in \mathscr{A} can be represented as sums of two Darboux Baire α functions with a common summand. Naturally we want to know whether Theorem M is still true if $\alpha=1$. This question has been raised by Ceder and Pearson [3]. In this paper, an example is given to show that a common summand cannot be expected for the case $\alpha=1$ if \mathscr{A} is infinite. Furthermore, we prove that if \mathscr{A} is finite, then the conclusion of Theorem M remains valid even if $\alpha=1$.

Throughout this paper, we shall use R to denote the real line, \mathscr{B}_{1} the family of Baire 1 functions, \mathscr{D} the family of Darboux functions and $\mathscr{D}_{\mathscr{B}_{1}}$ the family $\mathscr{B}_{1} \cap \mathscr{D}$.
2. In the proof of our theorem, a result from [2] proved by Bruckner, Ceder and Keston will be used. We state their lemma and some facts from its proof as a lemma here.

Lemma. Let D be a first category set in $R,(a, b)$ an open interval $(-\infty \leqq a<$ $<b \leqq+\infty), 0<\lambda \leqq+\infty$. Then there exist an $h \in \mathscr{D}_{\mathscr{B}_{1}}$ on (a, b) and a first category subset P of (a, b) such that $P \cap D=\emptyset$, the closure $\bar{P}=P \cup\{a, b\}$, $|h(x)|<\lambda$ for every $x \in(a, b),\{x: h(x) \neq 0\} \subset P$ and

$$
\begin{aligned}
& \varliminf_{x \rightarrow a+} h^{\prime}(x)=\varliminf_{x \rightarrow b-}^{\lim _{x}} h^{\prime}(x)=-\lambda, \\
& \lim _{x \rightarrow a+} h^{\prime}(x)={\underset{x \rightarrow b-}{ }}_{\lim _{x \rightarrow-}^{\prime}}{ }^{\prime}(x)=\lambda .
\end{aligned}
$$

Moreover, let $x_{0}=y_{0}$ be a fixed point in (a, b), let $\left\{x_{n}\right\}_{n=0}^{\infty}$ and $\left\{y_{n}\right\}_{n=0}^{\infty}$ be strictly monotone sequences such that $x_{n} \searrow a$ and $y_{n} \rtimes b, I_{n}=\left[x_{n}, x_{n-1}\right]$ and $J_{n}=$ $=\left[y_{n-1}, y_{n}\right]$ for $n=1,2, \ldots$. If $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ is a sequence of positive real numbers such that $\lambda_{n} \nearrow \lambda$, then h can be chosen such that

$$
\begin{array}{ll}
\sup h\left(I_{n}\right)=\sup h\left(J_{n}\right)=\lambda_{n} & \text { if } n \text { is even }, \\
\inf h_{(}^{\prime}\left(I_{n}\right)=\inf h\left(J_{n}\right)=-\lambda_{n} & \text { if } n \text { is odd } .
\end{array}
$$

Also, we shall use the following criterions for a function in \mathscr{B}_{1} to be Darboux. They were proved by Young, Sen and Massera (see [1], p. 9).

Let $h \in \mathscr{B}_{1}$. Then
(1) $h \in \mathscr{D}$ if and only if for each x, there exist sequences $\left\{x_{n}^{\prime}\right\}$ and $\left\{x_{n}^{\prime \prime}\right\}$ such that $x_{n}^{\prime} \searrow x, x_{n}^{\prime \prime} \nearrow x$, and.

$$
\lim _{n \rightarrow \infty} h\left(x_{n}^{\prime}\right)=\lim _{n \rightarrow \infty} h^{\prime}\left(x_{n}^{\prime \prime}\right)=h^{\prime}(x)
$$

(2) $h \in \mathscr{D}$ if and only if for each x, we have

$$
\left.\varliminf_{t \rightarrow x+} h(t) \leqq h(x) \leqq \varlimsup_{t \rightarrow x+} h^{\prime} t\right)
$$

and

$$
\left.\varliminf_{t \rightarrow x-} h(t) \leqq h(x) \leqq \overline{\lim }_{t \rightarrow x-} h^{\prime} t\right) .
$$

3. First we give the example mentioned in § 1. Let g be defined as follows:

$$
\begin{aligned}
g(x) & =0 \quad \text { if } x \text { is irrational }, \\
& =1 \quad \text { if } x=0 \\
& =\frac{1}{q} \quad \text { if } x=\frac{p}{q} \text { is a nonzero rational } \\
& \quad \text { number in reduced form with } q>0 .
\end{aligned}
$$

Let $g_{n}=n g$ for $n=1,2, \ldots$. Clearly $\lim _{t \rightarrow x} g_{n}(t)=0$ for every n and every x, and $\mathscr{A}=$ $=\left\{g_{n}\right\}_{n}$ is a countable family of Baire 1 functions. Suppose that f is a function such that $f+g_{n}$ is Darboux for every n. We now show that $f \notin \mathscr{B}_{1}$.

Since $f+g_{n} \in \mathscr{D}$, we have, for every x,

$$
\varliminf_{t \rightarrow x}\left(f+g_{n}\right)(t) \leqq f(x)+g_{n}(x) \leqq \varlimsup_{t \rightarrow x}\left(f+g_{n}\right)(t) .
$$

In particular, since $\lim _{t \rightarrow x} g_{n}(t)=0$, we have, for $x=p!q$,

$$
\lim _{t \rightarrow x} f(t)=\lim _{t \rightarrow x}\left(f+g_{n}\right)(t) \geqq f(x)+\frac{n}{q}
$$

This holds for every n. Thus $\lim _{t \rightarrow x} f(t)=+\infty$ for every x. It follows that f is not continuous at any point. Consequently, $f \notin \mathscr{B}_{1}$.

Theorem. Let \mathscr{A} be a finite family of Baire 1 functions. Then there exists a Baire 1 function f such that $f+g$ is Darboux for every $g \in \mathscr{A}$.

Proof. We use $\omega(g, x)$ to denote the oscillation of a function g at a point x. For each positive integer i, let $\left.D_{i}(g)=\left\{x: \omega^{\prime} g, x\right) \geqq 2^{-i}\right\}$ and $\left.D_{i}=\bigcup\left\{D_{i}^{\prime} g\right): g \in \mathscr{A}\right\}$. Since \mathscr{A} is finite and $\mathscr{A} \subset \mathscr{B}_{1}$, each D_{i} is a nowhere dense closed set. It follows that $D=\bigcup_{i=1}^{\infty} D_{i}$ is a first category set.

Similar to the proof of Proposition 1 in [2], we shall use induction to construct a series of functions and prove that the sum is the desired function f. Since we need to modify their construction and we do not use the theorem appearing on p .294 of Kuratowski [4] that is used in [2], we present the construction here.

The construction involves a sequence of open residual sets $\left\{G_{k}\right\}_{k=1}^{\infty}$. Each G_{k} has components $\left\{\left(a_{k j}, b_{k j}\right)\right\}_{j}$ (j runs from 1 to ∞ or to a certain integer depending on k). Let $\lambda_{1}=+\infty$ and $\lambda_{k}=2^{-(k-2)}$ if $k \geqq 2$. We take D as above, $(a, b)=\left(a_{k j}, b_{k j}\right)$, $\lambda=\lambda_{k}$. By Lemma, there exist $h_{k j} \in \mathscr{D} \mathscr{B}_{1}$ on $\left(a_{k j}, b_{k j}\right)$ and a first category set $P_{k j}$ in $\left(a_{k j}, b_{k j}\right)$ such that
(i) $P_{k j} \cap D=\emptyset$,
(ii) $\bar{P}_{k j}=P_{k j} \cup\left\{a_{k j}, b_{k j}\right\}$,
(iii) $\left|h_{k j}(x)\right|<\lambda_{k}$ for every $x \in\left(a_{k j}, b_{k j}\right)$,
(iv) $\left\{x: h_{k j}(x) \neq 0\right\} \subset P_{k j}$,

$\lim _{x \rightarrow a_{k j+}} h_{k j}(x)=\lim _{x \rightarrow b_{k j}-} h_{k j}(x)=\lambda_{k}$.
For the case $k=1$, we require more from each $h_{1 j}$. This will be made clear later.
For each k, we define h_{k} on R by

$$
\begin{aligned}
& h_{k}(x)=h_{k j}(x) \text { if } x \in\left(a_{k j}, b_{k j}\right) \text { for some } j, \\
& =0 \quad \text { if } \quad x \notin G_{k},
\end{aligned}
$$

and set $P_{k}=\bigcup_{i=1}^{k} \bigcup_{j} P_{i j}$. Clearly $h_{k} \in \mathscr{B}_{1}$ and P_{k} is a first category set disjoint from D. Moreover, by (ii),

$$
\begin{equation*}
\overline{\bigcup_{j} P_{k j}} \subset\left(\bigcup_{j} P_{k j}\right) \cup\left(R-G_{k}\right) \quad \text { for each } k . \tag{ii+}
\end{equation*}
$$

Also, since each G_{k} is an open residual set, the sets $\left\{a_{k j}\right\}_{j}$ and $\left\{b_{k j}\right\}_{j}$ are dense in $R-G_{k}$. Using (v), we can easily show

$$
\begin{aligned}
&(\mathrm{v}+) \quad \varliminf_{t \rightarrow x+} h_{k}(t)=\varliminf_{t \rightarrow x-} h_{k}(t)=-\lambda_{k} \quad \text { and } \\
& \lim _{t \rightarrow x+} h_{k}(t)=\lim _{t \rightarrow x-} h_{k}(t)=\quad \lambda_{k} \quad \text { at each } \quad x \in R-G_{k} .
\end{aligned}
$$

Let $G_{1}=R-D_{1}$ and a component $\left(a_{1 j}, b_{1 j}\right)$ be fixed. Let the intervals $\left(a_{1 j}, b_{1 j}\right)$, $I_{j n}, J_{j n}(n=1,2, \ldots)$ correspond to $(a, b), I_{n}, J_{n}$ in Lemma. For each $n,\left(I_{j n} \cup J_{j n}\right) \cap$ $\cap D_{1}=\emptyset$, and hence $\omega(g, x)<\frac{1}{2}$ for every $x \in I_{j n} \cup J_{j n}$ and every $g \in \mathscr{A}$. Since each $I_{j n} \cup J_{j n}$ is a compact set, there exists $M_{j n}>0$ such that $|g(x)|<M_{j n}$ for every $x \in I_{j n} \cup J_{j n}$ and every $g \in \mathscr{A}$. With no loss of generality, we assume that $M_{j 1} \leqq$ $\leqq M_{j 2} \leqq \ldots$. Let $\lambda_{1}=+\infty, \lambda_{j n}=2 M_{j n}+n$ correspond to λ and λ_{n} in Lemma. Then $h_{1 j}$ can be chosen to satisfy the conditions (i)-(v) (for $k=1$) and

$$
\begin{array}{ll}
\sup h_{1 j}\left(I_{j n}\right)=\sup h_{1 j}\left(J_{j n}\right)=\lambda_{j n} & \text { if } n \text { is even }, \tag{vi}\\
\inf h_{1 j}\left(I_{j n}\right)=\inf h_{1 j}\left(J_{j n}\right)=-\lambda_{j n} & \text { if } n \text { is odd } .
\end{array}
$$

By $(\mathrm{ii}+), \bar{P}_{1} \subset P_{1} \cup\left(R-G_{1}\right)=P_{1} \cup D_{1}$ and hence $D_{1} \cup P_{1}=D_{1} \cup \bar{P}_{1}$ is closed.

We now proceed with the induction step. Assume that for some $k \geqq 1$, we have constructed an open residual set G_{k}, the associated functions $h_{k j}$ (j runs through the enumeration of the components of G_{k}) and h_{k}, the associated first category sets $P_{k j}$ and P_{k} such that $D_{k} \cup P_{k}$ is closed. Clearly $D_{k+1} \cup P_{k}$ is a closed first category set. We take $G_{k+1}=R-\left(D_{k+1} \cup P_{k}\right)$. The associated functions and sets are as described above. To complete the induction, we need to show that $D_{k+1} \cup P_{k+1}$ is closed. $\mathrm{By}(\mathrm{ii}+)$ and the choice of G_{k+1},

$$
\overline{\bigcup_{j}} P_{k+1, j} \subset\left(\bigcup_{j} P_{k+1, j}\right) \cup\left(D_{k+1} \cup P_{k}\right)=D_{k+1} \cup P_{k+1}
$$

Since $D_{k+1} \cup P_{k}$ is closed, $D_{k+1} \cup P_{k}=\overline{D_{k+1} \cup P_{k}}=D_{k+1} \cup \overline{P_{k}}$. Consequently,

$$
D_{k+1} \cup P_{k+1} \supset D_{k+1} \cup \overline{P_{k}} \cup \overline{\bigcup_{j} P_{k+1, j}}=D_{k+1} \cup \overline{P_{k+1}}
$$

This implies that $D_{k+1} \cup P_{k+1}$ is closed. Thus we have constructed the series

$$
\sum_{k=1}^{\infty} h_{k}(x)
$$

by induction.
It can be easily seen from the definition of h_{k} and (iii) that this series converges uniformly on R. Therefore we can define a function f on R by letting

$$
f(x)=\sum_{k=1}^{\infty} h_{k}^{\prime}(x)
$$

and claim that $f \in \mathscr{B}_{1}$.

Now we show that $f \in \mathscr{D}$. This will be used later. From the construction, we see that the sets $P_{k j}$ are mutually disjoint. Thus, owing to (iv), we have

$$
\begin{array}{rlrl}
f(x) & =h_{k j}(x) & & \text { if } \\
& x \in P_{k j} \text { for some } k \text { and some } j, \\
& =0 & & \text { if } \\
& x \notin \bigcup_{k=1}^{\infty} \bigcup_{j} P_{k j} .
\end{array}
$$

Since $\bigcup_{k=1}^{\infty} \bigcup_{j} P_{k j}$ is a first category set, $\{x: f(x)=0\}$ is dense in R. For x such that $f(x)=0$, there are clearly sequences $\left\{x_{n}^{\prime}\right\}$ and $\left\{x_{n}^{\prime \prime}\right\}$ such that $x_{n}^{\prime} \searrow x, x_{n}^{\prime \prime} \rtimes x$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f\left(x_{n}^{\prime}\right)=\lim _{n \rightarrow \infty} f^{\prime}\left(x_{n}^{\prime \prime}\right)=f(x) . \tag{f}
\end{equation*}
$$

If x is given such that $f(x) \neq 0$, then $x \in P_{k j}$ for some k and some j. Since $h_{k j} \in \mathscr{D} \mathscr{B}_{1}$ on $\left(a_{k j}, b_{k j}\right)$, by (1), there exist sequences $\left\{x_{n}^{\prime}\right\}$ and $\left\{x_{n}^{\prime \prime}\right\}$ such that $x_{n}^{\prime} \searrow x, x_{n}^{\prime \prime} \nexists x$ and

$$
\lim _{n \rightarrow \infty} h_{k j}\left(x_{n}^{\prime}\right)=\lim _{n \rightarrow \infty} h_{k j}\left(x_{n}^{\prime \prime}\right)=h_{k j}(x)
$$

Now $h_{k j}(x)=f(x) \neq 0$. We may assume that $h_{k j}\left(x_{n}^{\prime}\right) \neq 0 \neq h_{k j}\left(x_{n}^{\prime \prime}\right)$ for every n. Then, in view of (iv), the sequences $\left\{x_{n}^{\prime}\right\}$ and $\left\{x_{n}^{\prime}\right\}$ are in $P_{k j}$ and hence $f\left(x_{n}^{\prime}\right)=$ $=h_{k j}\left(x_{n}^{\prime}\right)$ and $f\left(x_{n}^{\prime \prime}\right)=h_{k j}\left(x_{n}^{\prime \prime}\right)$ for every n. Thus $\left(1_{\mathrm{f}}\right)$ also holds for this case and, by (1), $f \in \mathscr{D}$.

It remains to show that $f+g \in \mathscr{D}$ for every $g \in \mathscr{A}$. Let $g \in \mathscr{A}$ and $x \in R$ be given. We want to establish the inequalities in (2) with h replaced by $f+g$. We shall prove the inequalities in which $t \rightarrow x+$ is involved. The others can be proved analogously. There are two cases.

Case 1: $x \notin D, g$ is continuous at x and hence

$$
\begin{aligned}
& \varliminf_{t \rightarrow x+}(f+g)(t)=\varliminf_{t \rightarrow x+} f(t)+g(x), \\
& \lim _{t \rightarrow x+}(f+g)(t)=\lim _{t \rightarrow x+} f(t)+g(x) .
\end{aligned}
$$

From this and the fact that $f \in \mathscr{D}_{\mathscr{B}_{1}}$, the desired inequalities follow. That is,
$\left(2_{\mathrm{f}+\mathrm{g}}\right) \quad \varliminf_{t \rightarrow x+}(f+g)(t) \leqq f(x)+g(x) \leqq \lim _{t \rightarrow x+}(f+g)(t)$.
Case 2: $x \in D$, there is a first integer n_{0} such that $x \in D_{n_{0}}$.
If $n_{0}>1$, then $x \notin D_{n_{0}-1}$, and $\omega(g, x)<2^{-\left(n_{0}-1\right)}$. This implies

$$
g(x)-\frac{1}{2^{n_{0}-1}} \leqq \varliminf_{t \rightarrow x+} g^{\prime}(t) \leqq \varliminf_{t \rightarrow x+} g(t) \leqq g(x)+\frac{1}{2^{n_{0}-1}}
$$

Also, $x \in D_{n_{0}} \subset R-G_{n_{0}}$. By ($\mathrm{v}+$), there are sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ decreasing to x such that

$$
\lim _{n \rightarrow \infty} h_{n_{0}}\left(x_{n}\right)=-\lambda_{n_{0}}=-\frac{1}{2^{n_{0}-2}}
$$

and

$$
\lim _{n \rightarrow \infty} h_{n_{0}}\left(y_{n}\right)=\lambda_{n_{0}}=\frac{1}{2^{n_{0}-2}} .
$$

Clearly we can assume that $h_{n_{0}}\left(x_{n}\right) \neq 0 \neq h_{n_{0}}\left(y_{n}\right)$ for every n. Thus x_{n} and y_{n} are in the set $\bigcup_{j} P_{n_{0} j}$ and $f\left(x_{n}\right)=h_{n_{0}}\left(x_{n}\right), f\left(y_{n}\right)=h_{n_{0}}\left(y_{n}\right)$ for every n. The above equalities imply that

$$
\varliminf_{t \rightarrow x+} f^{\prime}(t) \leqq-\frac{1}{2^{n_{0}-2}} \text { and } \lim _{t \rightarrow x+} f(t) \geqq \frac{1}{2^{n_{0}-2}}
$$

Now

$$
\begin{aligned}
& \varliminf_{t \rightarrow x+}(f+g)(t) \leqq \varliminf_{t \rightarrow x+} f(t)+\lim _{t \rightarrow x+} g(t) \\
& \leqq-\frac{1}{2^{n_{0}-2}}+g(x)+\frac{1}{2^{n_{0}-1}}<g(x), \\
& \lim _{t \rightarrow x+}(f+g)(t) \geqq \lim _{t \rightarrow x+} f(t)+\underline{\lim }_{t \rightarrow x+} g(t) \\
& \geqq \frac{1}{2^{n_{0}-2}}+g(x)-\frac{1}{2^{n_{0}-1}}>g(x) .
\end{aligned}
$$

By (i), $x \notin \bigcup_{k=1}^{\infty} \bigcup_{j} P_{k j}$ and hence $f(x)=0$. The inequalities $\left(2_{\mathrm{f}+\mathrm{g}}\right)$ follow.
If $n_{0}=1$, then $x \in D_{1}=R-G_{1}$. It should be noted that for each j (such that $\left(a_{1 j}, b_{1 j}\right)$ is a component of $\left.G_{1}\right), \lambda_{j n}>M_{j n}+n$. By (vi) and the way we have defined h_{1}, there exists $t_{j n} \in I_{j n}$ such that

$$
\begin{array}{ll}
h_{1}\left(t_{j n}\right)> & M_{j n}+n \\
& \text { if } n \text { is even }, \\
h_{1}\left(t_{j n}\right)<-M_{j n}-n & \text { if } n \text { is odd } .
\end{array}
$$

Clearly $t_{j n} \in P_{1 j}$ for each j, each n, and hence h_{1} in the above inequalities can be replaced by f. Since $D_{1}=R-G_{1}$ is a nowhere dense closed set, there exists a sequence $\left\{a_{1 j_{n}}\right\}_{n=1}$ such that $a_{1 j_{1}} \geqq a_{1 j_{2}} \geqq \ldots$ and $\lim _{n \rightarrow \infty} a_{1 j_{n}}=x$. (If $x=a_{1 j_{0}}$ for some j_{0}, then $j_{1}=j_{2}=\ldots=j_{0}$.) Let $x_{n}=t_{j_{n} n}$, where $t_{j_{n} n}$ are as chosen above. Then $\left|g\left(x_{n}\right)\right|<M_{j_{n} n}$ and hence

$$
\begin{array}{ll}
f\left(x_{n}\right)+g\left(x_{n}\right)>\quad n & \text { if } n \text { is even } \\
f\left(x_{n}\right)+g\left(x_{n}\right)<-n & \text { if } n \text { is odd }
\end{array}
$$

Consequently, $\underline{l i m}_{t \rightarrow x+}(f+g)(t)=-\infty$ and $\lim _{t \rightarrow x+}(f+g)(t)=+\infty$. Again, $\left(2_{\mathrm{f}+\mathrm{g}}\right)$ follows. The proof is completed.

Remark. In the above construction, the sets $P_{k j}$ can be chosen null in the sense of Lebesgue. Then the function f equals zero except on a first category set of Lebesgue measure zero.

References

[1] A. M. Bruckner: Differentiation of Real Functions. Springer-Verlag, Berlin-New York 1978.
[2] A. M. Bruckner, J. G. Ceder, R. Keston: Representations and approximations by Darboux functions in the first class of Baire. Rev. Roum. Math. Pures et Appl., 13 (1968), 1246-1254.
[3] J. Ceder, T. Pearson: A survey of Darboux Baire 1 functions, Real Anal. Exchange 9 (1983-1984), 179-194.
[4] C. Kuratowski: Topologie, Vol 1, Warszawa, 1958.
[5] L. Mišik: Zu zwei Sätzen von W. Sierpinski, Rev. Roum. Math. Pures et Appl., 12 (1967), 849-860.

Souhrn
 REPRESENTACE BAIROVÝCH FUNKCÍ Z DANÉ MNOŽINY VE TVARU SOUČTU゚ BAIRE-DARBOUXOVÝCH FUNKCÍ SE SPOLEČNÝM ČLENEM

H. W. Pu, H. H. Pu

Autoři dokazují, že Mišíkủv výsledek o reprezentaci Bairových α-funkcí ($\alpha>1$) z dané množiny ve tvaru součtu Baire-Darbouxových funkcí se společným členem může být rozšířen na případ $\alpha=1$, jestliže uvažovaná množina je konečná, a udávají protipřiklad, je-li tato množina nekonečná.

Резюме

ПРЕДСТАВЛЕНИЕ ФУНКЦИЙ БЭРА ИЗ ДАННОГО МНОЖЕСТВА В ВИДЕ СУММЫ ФУНКЦИЙ БЭРА-ДАРБУ С ОБЩИМ ЧЛЕНОМ

H. W. Pu, H. H. Pu

Авторы доказывают, что результат Мишика о представлении α-функций Бэра ($\alpha>1$) из данного множества в виде суммы функций Бэра-Дарбу с общим членом можно распространить на случай $\alpha=1$, если рассматриваемое множество конечно, и приводят контрпример в противоположном случае.

Authors' address: Department of Mathematics, Texas A \& M University, College Station, Texas, U.S.A.

