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ON REPRESENTATIONS OF BAIRE FUNCTIONS 
IN A GIVEN FAMILY AS SUMS OF BAIRE DARBOUX FUNCTIONS 

WITH A COMMON SUMMAND 

H. W. Pu, H. H. Pu, College Station 

(Received September 3, 1984) 

Summary. The authors show that Misik's result on representation of Baire of-functions (a > 1) 
from a given family as sums of Baire Darboux functions with a common summand can be 
extended to the case tf = 1 provided the family considered is finite, and give a counterexample 
if the family is infinite. 
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1. In 1967 [5], Misik proved the following theorem. 

Theorem M. If si is a countable family of Baire a functions and a > 1, then 
there exists a Baire a function f such that f + g has the Darboux property for 
every g e si. 

In other words, if si is a countable family of Baire a functions and a > 1, then the 
functions in si can be represented as sums of two Darboux Baire a functions with 
a common summand. Naturally we want to know whether Theorem M is still true 
if a = 1. This question has been raised by Ceder and Pearson [3]. In this paper, 
an example is given to show that a common summand cannot be expected for the 
case a = 1 if si is infinite. Furthermore, we prove that if si is finite, then the con
clusion of Theorem M remains valid even if a = 1. 

Throughout this paper, we shall use R to denote the real line, J ^ the family of 
Baire 1 functions, @ the family of Darboux functions and S J ^ the family 3SX n $>. 

2. In the proof of our theorem, a result from [2] proved by Bruckner, Ceder and 
Keston will be used. We state their lemma and some facts from its proof as a lemma 
here. 

Lemma. Let D be a first category set in R, (a, b) an open interval (— oo ^ a < 
< b fg +oo), 0 < X g +oo. Then there exist an h e ^ J ^ on (a, b) and a first 
category subset P of (a, b) such that P n D = 0, the closure P = P u {a, b}, 
\h(x)\ < Xfor every x e (a, b), {x: h(x) 4= 0} c P and 
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lim h{x) = lim h(x) = — X , 
x-*a+ x->Ь — 

Пm h{x) = Hm h(x) = X . 
x-Z>-

Moreover, let x0 = y0 be a fixed point in (a, b), let {xn}n = 0 and {yn}„ = 0 be strictly 
monotone sequences such that xn \ a and yn S* b, In = \xn,xn_^\ and Jn = 
= [y„-i, y„] for n = 1,2,.... If {Xn}n=i is a sequence of positive real numbers 
such that Xn /* X, then h can be chosen such that 

sup h(I„) = sup h(Jn) = Xn if n is even , 

inf h(ln) = inf h(Jn) = —Xn if n is odd . 

Also, we shall use the following criterions for a function in 38 x to be Darboux. 
They were proved by Young, Sen and Massera (see [1], p. 9). 

Let he^t. Then 
(1) he @ if and only if for each x, there exist sequences {xn} and {xn} such that 

xn \ x, xn /* x, and 

lim h(xn) = lim h(x^) = h(x). 
n-+oo n-+oo 

(2) h e Q) if and only if for each x, we have 

Hm h(t) = h(x) =mh(t) 
f-*x+ f-»x + 

and 
lim h(t) = h(x) = ImT h{t). 

f-+x- r-*x-

3. First we give the example mentioned in § 1. Let g be defined as follows: 

g(x) = 0 if x is irrational, 

= 1 if x = 0, 

= - if x = - is a nonzero rational 
q 1 

number in reduced form with q > 0 . 

Let gn = ng for n = 1,2,.... Clearly lim gn(t) = 0 for every n and every x, and stf = 
f-*x 

= {gn}n is a countable family of Baire 1 functions. Suppose that f is a function such 
thatf + gn is Darboux for every n. We now show thatf£ 08u 

Since f + gn e $), we have, for every x, 

lira ( / + g„) (t) fZ f(x) + gn(x) < IiH ( / + gn) (t) . 
r-+x r-*x 
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In particular, since lim gn(i) = 0, we have, for x = pjq, 
f-*x 

Bm/(0 =- Em (/ + 0-) (0 ^ /(*) + " • 
f-x t-*x q 

This holds for every n. Thus I1m/(f) = +00 for every x. It follows that / is not 
f-*x 

continuous at any point. Consequently,/^.^. 

Theorem. Let s/ be a finite family of Baire 1 functions. Then there exists a Baire 
1 function f such that f + g is Darboux for every g es/. 

Proof. We use co(g, x) to denote the oscillation of a function a at a point x. For 
each positive integer i, let D/g) = {x: co{g, x) = 2~*} and Dt = \J{D/g): g e s/}. 
Since st is finite and $4 c &u each Di is a nowhere dense closed set. It follows that 

00 

D = U Dt is a first category set. 
i = i 

Similar to the proof of Proposition 1 in [2], we shall use induction to construct 
a series of functions and prove that the sum is the desired function / Since we need 
to modify their construction and we do not use the theorem appearing on p. 294 
of Kuratowski [4] that is used in [2], we present the construction here. 

The construction involves a sequence of open residual sets {Gk}k
aLi. Each Gfc has 

components {(akj, bkJ)}j (j runs from 1 to 00 or to a certain integer depending on fc). 
Let Xx = +00 and Xk = 2~(fc~2) if fc ^ 2. We take D as above, (a, b) = (akJ, bkj), 
X = Xk. By Lemma, there exist hkj e Q)^1 on (akj, bkj) and a first category set Pkj 

in (akj, bkJ) such that 

(i) PfcynD = 0, 

(ii) PkJ = Pkjv{akJ,bkj}, 

(iii) \hkJ(x)\ < Xk for every x e (akj, bkJ), 

(iv) {x: hkJ(x) * 0} c PkJ, 

(v) Hm hkJ(x) = lim hkj(x) = — Xk, and 
x->akj+ x-*bkj-

Bm hkJ(x) = Em hkj(x) = A*. 
x -*ak - j+ x - + f c k j -

For the case fc = 1, we require more from each hXj. This will be made clear later. 
For each fc, we define hk on R by 

hk(x) = hkj(x) if x e (afc;, bkj) for some I , 

= 0 if x $ Gk , 

and set Pfc = U {JPy Clearly hk e $x and Pk is a first category set disjoint from D„ 
i=ij 

Moreover, by (ii), 

(ü+) ЦPtj <= ((JPkj) U (Ä - Gк) foreachfc. 
j J 
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Also, since each Gk is an open residual set, the sets {akJ}j and {bkJ}j are dense in 

R — Gk. Using (v), we can easily show 

(v + ) Jim hk(t) = Hm hk(t) = -Xk and 
t->x+ t-*x — 

Iim hk(t) = Iirn hk(t) = Xk at each x e R - Gfc . 

Let Gx = R — D x and a component (a i ; , b1J) be fixed. Let the intervals ( a u , 6 U ) , 

I,„, Jjn (n = 1, 2,...) correspond to (a, b), In, Jn in Lemma. For each n, (IJn u JJn) n 

n Dx = 0, and hence co(g, x) < % for every x e IJn u JJn and every ge si. Since 

each jTyrt u J^ is a compact set, there exists MJn > 0 such that \g(x)\ < MJn for every 

xeljn u Jjn and every g e stf. With no loss of generality, we assume that MJX _ 

_ My2 _ • • Let Ai = +oo, Ajrj = 2MJn + n correspond to X and Art in Lemma. 

Then htJ can be chosen to satisfy the conditions (i) — (v) (for fc = 1) and 

(vi) sup hXj(IJn) = sup hXj{Jjn) = Xjn if n is even , 

inf h1J(Ijn) = inf h1J(JJn) = —XJn if n is odd . 

By (i i+), Pi c P! u (R - Gx) = Px u Dx and hence Dx u Px = Dj u Px is 

closed. 

We now proceed with the induction step. Assume that for some k ^ 1, we have 

constructed an open residual set Gfc, the associated functions hhJ (j runs through the 

enumeration of the components of Gfc) and hfc, the associated first category sets Pfc,-

and Pfc such that Dfc u Pfc is closed. Clearly Dfc+1 u Pfc is a closed first category set. 

We take G f c + 1 = R — (Dk+1 u Pfc). The associated functions and sets are as described 

above. To complete the induction, we need to show that Dfc+1 u Pfc+1 is closed. 

By (ii + ) and the choice of G f c + 1, 

UП + i ,y c (UIVw) u (Dк + 1 u Pк) = Dк+1 u Pк + 1 . 
J 

Since Dfc + 1 u Pfc is closed, Dfc + 1 u Pfc = Dfc + 1 u Pfc = Dfc + 1 u Pfc. Consequently, 

P>k + \ v Pk+i => Dk + i vPkv[)Pk+1J = Dk+1 uP f c + 1 . 

j 

This implies that Dfc+1 u Pfc+1 is closed. Thus we have constructed the series 

00 

Z K{x) 
k=\ 

by induction. 

It can be easily seen from the definition of hk and (iii) that this series converges 

uniformly on R. Therefore we can define a function/on R by letting 

k = \ 

and claim that fe^v 
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Now we show that fe £2. This will be used later. From the construction, we see 
that the sets Pkj are mutually disjoint. Thus, owing to (iv), we have 

f(x) = hkj(x) if x e Pkj for some k and some j , 

= 0 if x£\J \JPkj. 
k = i j 

00 

Since (J (JPkJ is a first category set, {x:/(x) = 0} is dense in R. For x such that 
k=i j 

f(x) = 0, there are clearly sequences {xn} and {xn} such that xn \ x, xn s x and 

Of) \\mf(x'n) = \lmfKx'n)=f(x). 
n-»oo n-»oo 

If x is given such that/(x) + 0, then x e Pkj for some k and some j . Since hkJ e ^ J ^ 
on (akJ, bkj), by(l), there exist sequences {x̂ } and {x'n} such that xn \ x, xn ? x and 

lim hkj(x'n) = lim hkj(x"n) = hkJ(x) . 
n-+oo JI-+OO 

Now hkj(x) = f(x) # 0. We may assume that hkj(x'n) # 0 4= hkj(x'n) for every n. 
Then, in view of (iv), the sequences {x'n} and {x'n} are in Pkj and hence f(x'n) = 
= hkj(x'n) and/(x^) = hkj(xn) for every n. Thus (lf) also holds for this case and, by (1), 
fe®.K 

It remains to show that/ + g e Q) for every g e stf. Let g e s/ and x e R be given. 
We want to establish the inequalities in (2) with h replaced by / + g. We shall prove 
the inequalities in which t -> x+ is involved. The others can be proved analogously. 
There are two cases. 

C a s e l : x $ D, g is continuous at x and hence 

l im(/+g)(0 = I1m/(0 + gW, 
f-+JC+ f-+JC + 

m(f+g)(t) = mf(t) + g(x). 
f -*JC+ f-->JC + 

From this and the fact tha t /e _#^l5 the desired inequalities follow. That is, 

(2f+g) lim (/ + g) (t) = f(x) + g(x) = IIH (/ + g) (t) . 
t-*x+ t-+x + 

Case 2: x e D, there is a first integer n0 such that x e D,.0. 
If n0 > 1, then x 4 Dno_1(and co(g, x) < 2_( ' ,0"1). This implies 

d(x) - v r r = lim KO = J™ 0(0 = #(*) + 
2Wo"1

 r-^+ ,-* + 2"0-1 

Also, xeDno a R — Gno. By (v+), there are sequences {xn} and {yn} decreasing 
to x such that 

lim hjxn) = -A„0 = - — -
n-+oo _• 
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and 

1 
lim hno(yn) = Л„0 = 

)no-2 

Clearly we can assume that hno(xn) + 0 4= hno(yn) for every n. Thus xn and yn are 
in the set []Pnoj and/(x„) = hno(xn), f(yn) = hno(yn) for every n. The above equalities 

/ 
imply that 

!im/(0 = - ^r- 2 and B S / f O ^ - l . . 
f->x+ Z f - * x + --. 

Now 
lim (/ + g) (0 ^ lim/(0 + JI5T g(0 

f->.* + f - + x + f->x + 

= ; + g(x) + — r < g(x), 

fim" (/ + g) (0 ^ Imi/(f) + Hm g(f) 
f-*JC+ f->x + f-->jc + 

-̂  ' + g(x) : > g(x). 
— 2«o-2 y v 1 2 " 0 " 1 

ao 

By (i), x <£ (j \JPkj and hence f(x) = 0. The inequalities (2f+g) follow. 
fc=i / 

If n0 = 1, then x e D± = R — G-. It should be noted that for each j (such that 
(aij, 6iy) is a component of Gx), Xjn > Mjn + n. By (vi) and the way we have defined 
hl9 there exists tjn e IJn such that 

hi(tjn) > Mjn + n if n is even , 

hiitjn) < ~ ^ / » " w if w is odd . 

Clearly tjn e Ptj for each j , each n, and hence hi in the above inequalities can be 
replaced by / . Since D1 = R — Gt is a nowhere dense closed set, there exists a se
quence {aijn}nz=i such that aUl = aiJ2 ^ . . . and l ima U n = x. (If x = aljo for 

n-+co 

some j 0 , then j \ = j 2 = ... = j0.) Let x„ = tjn„, where i*iri„ are as chosen above. 
Then |g(x„)| < Mjnn and hence 

f(xM) + g(xn) > n if n is even , 

f(x„) + g(xn) < -n if n is odd . 

Consequently, Hm ( / + a) (f) = — oo and fim ( / + g) (t) = +oo. Again, (2f+g) 
t-*x+ t->x + 

follows. The proof is completed. 

Remark. In the above construction, the sets P^- can be chosen null in the sense 
of Lebesgue. Then the function /equals zero except on a first category set of Lebesgue 
measure zero. 
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Souhrn 

REPRESENTACE BAIROVÝCH FUNKCÍ Z DANÉ MNOŽINY 
VE TVARU SOUČTŮ BAIRE-DARBOUXOVÝCH FUNKCÍ 

SE SPOLEČNÝM ČLENEM 

H. W. Pu, H. H. Pu 

Autoři dokazují, že MiŠíkův výsledek o reprezentaci Bairových oř-funkcí (ct > 1) z dané mno
žiny ve tvaru součtu Baire-Darbouxových funkcí se společným členem může být rozšířen na 
případ oř = 1, jestliže uvažovaná množina je konečná, a udávají protipříklad, je-li tato množina 
nekonečná. 

Резюме 

ПРЕДСТАВЛЕНИЕ ФУНКЦИЙ БЭРА ИЗ ДАННОГО МНОЖЕСТВА 
В ВИДЕ СУММЫ ФУНКЦИЙ БЭРА-ДАРБУ С ОБЩИМ ЧЛЕНОМ 

Н. XV. Р ^ Н. Н, Р^ 

Авторы доказывают, что результат Мишика о представлении -̂функций Бэра (а > 1) из 
данного множества в виде суммы функций Бэра-Дарбу с общим членом можно распростра
нить на случай об = 1, если рассматриваемое множество конечно, и приводят контрпример 
в противоположном случае. 

АшНоп9 аМгевз: ОераПтеШ оГ Ма1пета1кз, Техаз А & М Шгуегзку, СоПеве 8шюп, 
Техаз, и 5. А. 
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