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BOUNDS ON THE SERRE COHOMOLOGY 
OF PROJECTIVE VARIETIES 

MARKUS BRODMANN, Zurich 

(Received September 19, 1984) 

Summary.-An elementary method for giving bounds on the Serre cohomology of projective 
varieties is presented and some applications are given. 

Keywords: Serre cohomology, bounds on Serre cohomology, cohomology groups of vector 
bundles, very ample divisors. 

0. INTRODUCTION 

This note presents a few results out of a list which will be published elsewhere in 
a more complete form. We want to show the usefulness of a very elementary method 
for giving bounds on the Serre cohomology of projective varieties. The same method 
applies to local cohomology of graded modules. The method bases on an idea we 
used in [1] to prove the finiteness of certain local cohomology modules. In [2] we 
showed how this method furnishes a lifting principle for the finiteness of (local 
or Serre-) cohomology. In this note we present a further development of the 
mentioned techniques. They furnish bounds on the cohomology groups of vector 
bundles similar to those of Elencwaig-Forster [3]. They also will give an estimate 
on the left vanishing order of the first cohomology of a very ample divisor on a normal 
complete variety X of dimension > 1. In fact, a more general statement will be given. 
As for terminology and notations see Hartshorne [5]. Least integer parts are 
denoted by [ ] . 

A. A GENERAL ESTIMATE 

Let X _= Pd be a projective scheme over an algebraically closed field k. We write 
X = Proj (A), where A = © An is a graded homomorphic image of the rjolynomial 

n ^ O 

ring k\x0, ..., xd~]. Let 2F be a coherent sheaf over X, which we write as induced by 
a finitely generated graded A-module M = ©M„: 3F = M. Our goal is to give 
some bounds on the growth of the functions 

ti(X, &(n)) = dim* (Hl(X, &(n)) . 
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Here Hl(Xy <§) denotes the f-th Serre Cohomology of X with coefficients in a sheafs. 
Let fe A! be a form of degree 1. We write Hffor the corresponding hyperplane 

section Proj (AJfA) of X, and let i: Hf c * I b e the inclusion map. We say that / 
(or Hf) is general with respect to 2F if Hf n Ass (&) = 0. We may assume that M 
has no torsion with respect to the maximal ideal m = A>0 of A. Then / is general 
with respect to 2F iff/ is regular with respect to M. Then, for all n e Z we have short 
exact sequences 

0 -> M(n) f > M(n + 1) -> M(n + 1)//M(n) -> 0 . 

Observing that (M(n + l)\fM(n))~ = ((A\fA) ®AM(n + 1))~ = i*(P(n + 1)|H/) = 
= ' • ( ^ U / H + 1)) we thus get exact sequences 

0 -> #-(n) /(w)> J^(n + 1) -> t ^ l f l / n + 1)) - 0 . 

Applying cohomology we get exact sequences: 

(*) ... W~\Hf, S?\Hf(n + 1)) - ff (X, Jf(n)) / = H ' ( Y ' / ("» fffff,, SF\Hf(n + 1)) . 

We now consider a linear system ffl of hyperplane sections, whose dimension is N. 
So we may write 

* = {Hf\feV-{0}}, 

where V £ Ax is a vector space of dimension JV + 1. We say that .?f is in general 
position with respect to J5" if all Hfe3tf are general with respect to J5". 

We now define the numbers 

r\n) = max {dim* (ker [/: H\X, S?(n)) -> H\X, S?(n + 1))]) | / e V - {0}} , 

s'(«) = max {dim* (coker [/: H\X, S*(n)) -> tf'(X J fy + 1))]) | / e V - {0}} . 

Clearly r''(n) = h\X, SF(n)), s\n) = hf(X, #"(n + 1)). 

(1) Proposition. 

(i) r\n) < h\X, SF(n)) => h\X, Jf(n)) - n \ X jr(n + 1)) = r'(n) - V-J- 1 • 
\_r\n) + 1J 

(ii) s\n) < h\X, S?(n + 1)) => h''(X, J*(n)) - «'(Jf, ^ (n + 1)) = 

• k») + -J 
Proof. (Sketch) only (i): Write U = H\X, S?(n)), W= H\X,SF(n + 1)). We 

find/0, ...,fNeAt such that/0, . . . , /Nis a basis of V. Fix a fc-base of U and a fc-base 
of Wand let M, = (m$) be the matrix which corresponds to the linear m a p / : U -» 
-> W. Put u = h(X, S?(n)) = dim U, w = dim n(X, Jr(n + 1)). Mf is a u x w -
matrix. Let fe V — {0}. Then we write / = Yf-tfi- M") = Z a f^ i is the matrix 
which corresponds to / : U -* W. M(a) is a matrix of rank _« — r'(n). Let T0, ..., Tiv 
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w < rl( 

be indeterminates and let T ^ k\T0,..., 7^] =:B be the ideal spanned by the 
(w — r\n)) x (u — r^n^-minors of M(T) = ^FfMf. J is a homogeneous ideal and 

codimp*(V+(I)) = (w - u + r'(n) + 1) (r'(n) + 1) , 

where V+(I) ^ PN = Proj (I*) is the projective set defined by I. As M(a) is of 
rank — u — r\n), we have V+(I) = 0. From this we get 

N < (w - u + r\n) + 1) (r'(n) + 1) , 
thus 

K) !/(») +iJ 
To apply this result we first introduce 

h\tf, &\*(n)) =Def. min {h\Hf, &\Hf(n) \fe V- {0}}. 

In fact this value is generic, e.g. attained for an open set of members Hf of Jf. 
We introduce the left (right, respectively) vanishing order for Hl on 2F as: 

nKj = inf {n e Z \ H\X, 3?(n + 1)) * 0} , 

m*- = sup {meZ\ H\X, &(n - 1)) * 0} (eZ u { + oo}), 

thereby using the convention inf(0) = oo, sup (0) = — oo. Moreover, we put 
u+ = max {0, u) (u e R) and set 

n ^ = inf {n^lHf\HfEJf} . 

™p\x> = sup {ml^{Hf\ HfeJ4f. 

Then, using the exact sequences (*) and (1) we get 

(2) Proposition. Let 34? be general with respect to 2F and let i _ 0, n0 e Z. Then 

\[h\X, &(n0)) + £ W-\tf,F\Jm))-
n < m <. no 

Һ\X, &(n)) й 

- (min {n0, n^^} - n)+ N]+ , 

if i > 0 and n < n0 ; 

[hi(X,F(n0)) + £ hX*,*\Jm)) 
no<m^n 

- (n - max {n0, m^^ - 1})+ N]+ , 

if / = 0, 7i = n0 . 

(3) Remark. The importance of this result is that it gives bounds on the function 
h\X, ^(')) in terms of its value for a particular argument n0 and in terms of the 
behaviour of the cohomology of restrictions to the hyperplanes in #?. In an earlier 
paper we gave a much less specific bound in the case N = 1 which already turned 
out to be useful. Namely, it provided an immediate proof of the vanishing theorem 
of Severi-Zariski Serre, (cf. [2]). 
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B. BUNDLES 

To test our estimate we give an application to vector bundles over Pd. We start 
with some notations: Z+ denotes the set of non-negative integers. We put: 

B = {s:Z->Z+}, 

B+ = {s e B | s{n) = 0, Vn > 0} , 

B~ = {s e B | s(n) = 0, Vn < 0} , 

5° = fl+ n F . 

Moreover, if s e B, we define 

vs = inf {n e Z | s(n + 1) # 0} , /zs = sup {n e Z | s(n - 1) * 0} . 

Then, for Q E Z+ we define two operators 

T C :B + ->B + , Ue:B--+B~ by 

r f<n) = [ Z < m ) - ( v s - n ) + o ] + , ( 5 E 5 + ) , 

Ue s{n) = [ £ s{m) - (n - /.. + 1)+ £?] + , (s e B~) , 

Note that 
Te>Ue:B°-*B° if e > 0 , 

Te(0) = Ue(0) = 0. 

Now, let d > 1 and let $ be a bundle over PjJ which is of generic splitting type 
(al9..., ar) = (a)eZr(a1 = a2 ... = ar). Let cl5 c2 be the first two Chern classes . 
of£. 

Finally, introduce the generic span of S, defined as 

a = a! — ar. 

(3) Lemma. There is a bound 5 = d(o, cl9 c2) depending only on a, ct and c2 

such that each linearly embedded projective plane P2 <=* Pd satisfies 

hl(P2, <?\p2) = 5 . 

Proof. As cr, c1 and c2 are not affected under restriction to projective planes, we 
may put d = 2. But then we may complete the proof by the Riemann-Roch theorem 
for bundles, cf. [3]. 

Then, introduce the functions 

p(n) = (r(n + 1 + a) - cx)+ e B~ , 

g(n) = (-r(» + 1 + a) + C l )
+ e B+ , 
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and 

«(») 

[[ð+ __ p(m)-(-p(i)-ô-l-n)+2y if n < 0 , 
nśmśO 

|[ő + ___ q(m) - (q(Ö) + ð + n)+ 2] + if n > 0 . 
0<m£п 

Clearly s belongs to B° and has a graph of the type sketched below. 
Using these notations we get: 

linear linear 

(4) Proposition. 

(0 
h»(P\£(n))< __ (n + aJ + d) (__<», c.; i.)), 

ni",«»))_. __ ("""j1 '"1) (<^>^;»)); 
h'(Pd, 4n)) ^ Td_2 o ... o 3__2 o tf__.__ o ... o U! s(n) . 

(") (o<.<_5 • / ^ 1 ' —TTTTT— 

(5) Remark. s(n) is piecewise polynomial in n. Moreover, its coefficients are 
polynomials in c, c_, c2. So our result extends a theorem of Forster-Elencwaig, [3], 
which shows that h\Pd, S) is bounded by a (polynomial) estimate depending only 
on c_, c2 and cr. If $ is stable, <r may be estimated by c_ and c2. Then the bounds 
depend only on cl5 c2. 

C VERY AMPLE DIVISORS 

We choose X _= PJ_ as reduced and of pure dimension t > 1. Then the set of all 
closed points x eX for which the first local cohomology Hmxx((9XtX) =J= 0, is finite: 

Z := {x eX | x closed, Hmxx(GXtX) * 0} = {*_,..., xr} . 
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Moreover, we have 

n = n(x)'-=i("Lj0x,x))<«> 
i = l 

If X is normal (or — more generally — satisfies S2), then n(X) = 0. Now it is easy 
to verify that 

hl(X, 0x(n)) = h\(9x(n)) = n(X) for all n <$ 0 . 

Our goal is to find a bound on n for which this equality holds. To give such a bound 
we introduce the following number: 
depth' (X) = min {i > 1 | H^JPx,^} * ° fo r some closed point xeX} (> 1) . 

Then we have 

(6) Proposition. Let X be reduced and of pure dimension > 1. Assume that X — Y 
is connected for each closed set Y c X with dim (Y) = 1. 

Then 

(i) \i = h\Ox(n)) = max {fi, h\Ox(n + 1) - depth' (X) + 1} , n < 0 ; 

(7) Corollary. Let X be an irreducible complete variety of dimension > 1 and 
let ££ be a very ample invertible sheaf on X. Then 

h\X,<e») = li for all n<\- * W " " 1 . V ; ^ ^ " L depth' (X) - 1J 

We give an idea of the proof of (6) in case when X is an irreducible surface. In 
this case depth' (X) = 2. By a reduction argument, which we do not give here, we 
may restrict ourselves to the case when ju(X) = 0. We choose V _= Ax as a fe-space 
dimension 2 such that X n Hf is reduced and connected (this is possible by a Bertini 
argument, [4]) for allfe V — {0}. Then (*) gives rise to sequences 

0 -> H°(&x(-1)) -> H°(&x) _ J U H°(0H/) - A W " 1)) -^ H\&x) 
= 0 =fc =k 

and 

if n < 0 : fl^^fl^n-l^fl'Wn)) 
^ 0 

So, for all n < 0 we have r'(n) = 0. As N = 1 we thus get by (1) for all n < 0 with 

I I ' ^ I I ) ) > 0 the inequality h\&x(n)) <. /.'(fl^n + 1)) - | - 1 = h\&x(n + 1)) - 1. 

If h\&x(n)) = 0 for some n < 0, then rJ(n - 1) = 0 shows that h\Qx(n - 1)) = 0. 
This proves our claim. 
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As an application of (7) we get 

(8) Corollary. Let X be an irreducible complete variety of dimension > 1 which 
satisfies the second Serre condition S2. Then, for each very ample invertible sheaf $£ 
on X we have 

H\X, <£n) = 0 , if n = -hl(X, 0X) . 
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Souhrn 

MEZE PRO SERREOVU KOHOMOLOGII PROJEKTIVNÍCH VARIET 

M A R K U S BRODMANN 

Je podána elementární metoda získání mezí pro Serreovu kohomologii projektivních variet 
a jsou ukázány některé její aplikace. 

Pe3K>Me 

rPAHHUM flJIfl KOrOMOJIOrHM CEPPA nPOEKTHBHMX MHOIOOBPA3HH 

M A R K U S BRODMANN 

B CTaTbe H3Jio»ceH 3jieMeHTapHbiíi MeTOfl .ZJJM nojiyHeHHH rpaHHii JXJUL KoroMOJiornií Ceppa 
npoeKTHBHbrx MHoroo6pa3Hií H yKa3aHM HeKOTOpbie ero npHJio»ceHHH. 
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