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113 (1988) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 1, 60—73 

COMPACT IMBEDDING OF WEIGHTED SOBOLEV SPACE 
DEFINED ON AN UNBOUNDED DOMAIN I 

BoHUMfR OPIC, Praha 

(Received October 16, 1985) 

Summary. The paper deals with compact imbedding of the weighted Sobolev space WQ'P(Q, S) 
(S is a collection of weight functions) defined on an unbounded domain in the space of functions 
LP(Q, Q) (Q is a weight function). This imbedding is investigated as the limit case of the compact 
imbeddings of Sobolev spaces defined on bounded domains. 

Keywords: Weighted Sobolev space, weighted Lebesgue space, compact imbedding, weight 
function. 

AMS Classification: 46E35. 

1. INTRODUCTORY REMARKS 

Let Q be a domain in RN. By the symbol iV(Q) we denote the set of all measurable, 
a.e. in Q positive and finite functions Q = Q(X), XEQ. The elements of iT(Q) will 
be called the weight functions. 

Let p E <1, oo), Q E iV(p). We define the space U(Q, Q) as the set of all measurable 
functions u = u(x), XEQ, such that 

(1-0 hU,t-[JHxtQ{x)áx) i , p < oo . 

For Q(X) = 1 we obtain the usual Lebesgue space LF(Q); in this case we write \\u\\PtQ 

instead of ||u||P)fi>(?. Obviously the space U(Q,Q) with the norm (1.1) is a Banach 
space. 

Let k E N and let a collection of weight functions 

S = {waE<r(Q); \x\ = k} 

be given (here a is a multiindex). By the symbol Wk,p(Q, S) we denote the set of all 
measurable functions u defined a.e. in Q which have on Q distributional derivatives 
Dxu, |a| ^ k, such that 

| | D a u L f i > W a < oo • 
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If 

W . - | ' ' e L k ( Q ) , | a | ^ f c , * ) 

we can easily verify that the space Wk'p(Q, S) with the norm 

|ft|£fc 

is a Banach space. 
Now, let us assume that 

(1.3) w.eLUfl), |«|gfc. 
Then the inclusion 

Co°(Q) c W*''(fl, 5) 

holds so we can introduce the so called "nulled space" Wk
0'

p(Q, S) as the closure of 
the set C0(Q) with respect to the norm (1.2). The norm in this space is again given 
by (1.2). 

If M is a subspace of a linear space X, we write M c: c X. 
Let X and Y be normed linear spaces. The symbol \X, Y] will denote the space of 

all bounded linear operators mapping X into Y. For A e [K, y ] we define 

UAH = sup \\Axl . 
11*11 £i 

Further, let Y be a Banach space. The operator A e [K, y ] is called compact if 
A({xeX; ||x|| = 1}) is totally bounded in y(i.e. if cl(A({xeX; \\x\\ = l})) is compact 
in y). 

If X cz y and the natural injection of X into y is compact we write XQQ Y. The 
symbol X <-± y denotes the fact that X and yare isomorphic. 

The aim of this paper is to derive conditions on the collection S of weight functions 
and on the weight Q, which guarantee that the natural injection of Wk

0'
p(Q, S) into 

U(Q,Q) is compact if the domain Q is unbounded. The method which was used 
for a special weight function in [ l ] is generalized to suit our purpose. 

2. PRELIMINARIES 

In the subsequent sections we shall use these assertions: 

2.1. Lemma. Let X be a normed linear space and let Ybe a Banach space. Let 
{An)n=1 be a sequence of compact operators in [X, Y] such that 

An-> A in [X, Y] (i.e. \\A - An\\ -> 0 for n -> oo) . 

Then A is compact. 

2.2. Lemma. Let Z be a normed linear space, X ac Z,X = Z. Let Ybe a Banach 

*) p* denotes the number p/(p — 1) with the convention s/0 = oo for s e R \ {o}. 
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space and A e [X, Y] a compact operator. Then there exists a unique operator 
Ie\Z, Y] such that 

a) A is compact, 

b)A\x = A.*) 

2.3. Remark. If the operator A in Lemma 2.2 is the identical map from X into 7, 
then A is the identical map from Z into Y. 

2.4. Lemma. Let ae R, me N. Let us further suppose that fe C(m)((a, oo)) and 
let suppf be a compact set. Then 

(2.1) / ( ^ T ^ f V f 1 / ^ ) ^ for te(a,n). 
( m - l ) ! j f 

2.5. Remark. Lemma 2.1 is an easy modification of Lemma III.1.5 in [2]. The 
proofs of the other assertions in this section are left to the reader. 

3. COMPACT IMBEDDING OF WEIGHTED SOBOLEV SPACES 

3.1. Using the Cartesian coordinates 
The points x = (xi9..., xN) e RN will sometimes be written in the form x = 

= (x', xN), where x' = (xl9..., x^_x) e ^ ' U f g c RN
9 then we denote by PN(Q) 

the projection of the set Q into the hyperplane xN = 0. 
Let us suppose the following two conditions: 

CI. Q is an unbounded domain in RN, Q cz ( - a , a)*"1 x (—a, oo) where a > 0. 

C2. WKp(Qn, S) Q G Lp(Qn, Q) V/I G A/,**) where Qn = {xe Q; xN < n} for neN. 
We shall investigate under what additional assumptions 

(3.1.1) Wk
0>

p(Q,S)QQLp(Q,o) 

holds. 
Let us define the operators 

(3.1.2) /„: Wk
0>

p(Q, S) - Lp(Q, Q) , neN, 

by 

*) A\x denotes the restriction of the operator/? to K. 
**) It is sufficient to assume 

M* G G £p(a„> <?) V«e/V, 
where 

A/ n ={«;«=v | n n , veW^(Q,S)} 
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M(X) , xeQn 

(3.1.3) M(x) = ( 
X), x e Q \ Qn . 

3.1.1. Lemma. The operators In, neN, defined by means of (3.L2) and (3.1.3) 
are compact. 

Proof. As the space Il(Q, Q) is complete, it is sufficient to prove that the set 

Mn = {Inu; u e Wk
0>

p(Q, S), \\u\\kfPfa,s = 1} 

is totally bounded in Il(Q, Q), i.e. that for each e > 0 the set Mn has a finite e-net 
in U(Q, Q). 

The condition C2 implies that the set 

Mn = {v; veWk'p(Qn,S), \\v\\ktPtan,s = 1} 

is totally bounded in If(Qn, g) and therefore this set has a finite e-net in If(Qn, Q) 
for each e > 0. 

Let e > 0 and let 
{v1,...,v1} 

be a finite e-net of the set Mn. Then the set 

{w],...,wn}, 
where 

,v)(x), xeQn, j = 1 , . . . , i , 

"5to = ( 
x0, xeQ\Qn 

is a finite e-net of Mn because for u e W0
,P(Q, S), ||w||Jfe>PifliS = 1, we have 

min \\lnu - wnj\\p,a,e = min ||u - vlj\\P9aH§Q < e 

as u\aneAin. 

Further, by the symbol X let us denote the set C0(Q) with the norm ||*||x = 

= ||# ||fc,P,«,s a n c l le t u s consider the operator 

(3.1.4) I:X->H(Q,Q) 

defined by 

(3.1.5) Iu = u, ueX. 

In virtue of Lemma 2.2 and Remark 2.3 one can show that (3.LI) holds if and only 
if the operator I is compact. To investigate the compactness of/ we shall use Lemma 
2.1. Therefore we shall try to approximate the operator J by the compact operators 
Jn = In\x (ln are the operators defined by means of (3.1.2) and (3.L3)). 
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Let us investigate when 

(3.1.6) Jn->I in [X, Y] 

holds, where we take for the sake of simplicity Y -= U(Q, Q). 
We easily get 

||7 - Jn\ = sup \\lu - Jnu\\Y = sup ||w - Inu\\Y = 
IMU-U IMix£i 

= sup \\u\\p^0ntQ= sup ||fi||Pfflfliff, 
\Mx*l lMlx.S-

where Qn = {x e Q; xN > n). This yields: (3.1.6) holds if and only if 

(3.1.7) sup ]| ii ||p n„ Q -> 0 for n -> oo . 
IMU î 

In addition to CI, C2 we shall suppose that the following condition is fulfilled: 

C3. There exist numbers C > 0, m, n0e N, 1 ^ m ^ fc, and nonnegative 
measurable functions \i: (n0, oo) -> R, v: (n0, oo) -> W, f: PN(Qno) -> /ft such that 

(3.1.8) 0(x) ^ Cp(xN)Z(x') for a.e. xeG" 0 ; 

(3.1.9) v(x„) £(x') ^ Cwi0 0fm)(x) for a.e. xeQn°; 

(3.1.10) h(n) = h(n; \i, v, p, m) = 

"n(t) \\(s - t)"-' v - 1 !^)! ; .^ . , , , d* - 0 for n -> oo . І 
We shall investigate the validity of (3.1.7). Let ueX and n = n0, where n0 is the 

number from the condition C3. We extend the function u outside Q by zero (then, 
clearly, u e C%(RN)) and put £(x') = 1 for x' e RN~X \PN(Qn°). Using the Fubini 
theorem, in view of (3.1.8), we get for n = n0 

(3.1.11). HS.«",c= f Hx)\"Q(x)dx^ 

= C f [" p i i ( x \ xN)\' /i(xN) dx„l «(x0 dx'. 

For a fixed x' e RN~* we denote 

(3.L12) /(f) = w(x\f), r e ^ . 

Evidently fe C0(R). Let the number m be from the condition C3. Applying Lemma 
2.4 we obtain 

(3.1.13) |/(01 =g - r - ! — ["(5 - O- 1 l/(m)(s)ld- . < *ff. 

First, let p e (1, oo). Then using the Holder inequality we get for t e (n, oo) 
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IДOI ^ ( - ^ Ь j ] ( Г | / ( и ) ( s ) | p v ( s ) d s ) 1 / p 

/ Г ( s _ ,)(«»-ÍWP-U)P [v^s)]-1^"1) d s V 

S(^(ÍГ > ( S ) I"W Љ) '"-
. ( Г(s - ,)««-»/(*--))'[vís)]"1"'-" dяV 

l)/p < 

Raising this inequality to the p-th power, multiplying by the function n(t) and in
tegrating by t from n to oo we obtain 

(3.1.14) J"|/(0|' K0 * = [ ( ^ Z l J i J * W J V"}WIF * ) * , 

where the function h is defined in (3.1.10). The relations (3.1.11), (3.1.12), (3.1.14) 
and (3.L9) imply 

(3.1-15) MS,-*,- = 

-c [ ( ^ I * ( n ) L LT 1^u(x' fv(s) ds] * ° d x ' -
- c2 [o^l)i\h{n) \jDX u(x)|P Wx{x) dx' 

where a = (0,..., 0, m). From (3.L15) we conclude 

1 
(3.1.16) sup H U ^ C ^ 

»llxSi (m - 1)! 
й1/p(n) . 

Now let p = 1. Then from (3.LI3) for t e (n9 oo) we have 

|/(0| = r - L

T - [ess sup (s - O - V ' t o ] f V ' W I v(s) ds • 
(m - 1)! S>. J„ 

Multiplying this inequality by the function n(t) and integrating by t from n to oo we 
obtain 

(3.1.17) n / ( t ) | KO dt =S r—t-r- h(n) [ l/ ( m ) (s) | v(s) ds , 
Jn ( m - 1 ) ! J n 

where 

(3.1.18) h(n) = h(n; JI, v, 1, m) = 
/*00 

= ju(t) [ess sup (5 - t)"1"1 v_1(s)] df = 
Jn -•>-

I KOlKs-tr^v-1^)!!^,..)^ 
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From (3.1.17) we again get (3.1 A6). 
We have just proved: 

3.1.2. Theorem. Let the conditions C1-C3 be fulfilled. Then 

(3.1.19) W0>
P(Q9S)QQLP(Q9Q). 

3.1.3. Remark. If the condition (3.1.10) in C3 is replaced by the assumption 

(3.1.10*) g(n) = g(n; ji9 v, p9 m) = 

f°°n rHf\vi1/piip 

=• ( 5 - 0 " " 1 . d ^ O for /i->oo 
J n|] LV (S )J llpVr.oo) 

and if we suppose that, in addition to all the assumptions of Theorem 3.1.2, 

(3.1.20) the function jx is nondecreasing on (n09 oo), 

then (3.1.19) holds again.*) 

3.1.4. Example. Let Q satisfy the condition CI. Let further pe <1, oo), k = 1, 
ft > 0, a < p. For x e Q w e define 

(3.L21) wy(x) = 1 for |y| = 1 , y * (0 , . . . , 0, 1) , 

(3.1.22) w(0 0 J ) (x) = ePx» , Q(X) = f*" . 

Let S = {wy; |y| ^ 1}. Because 

Wl >p(Qn9 S) T± W1 >p(Qn) , Lp(Qn9 Q) +± Lp(Qn) , neN, 

we obtain from the well-known (unweighted) imbedding theorem 

W{ >p(Qn9 S) QQ Lp(Qn9 Q)9 neN**) 

and so the condition C2 is satisfied. If we choose m = 1, C = 1, n0 GN, £(*') = 1 
for x' e PN(Qno)9 

ti(s) = e*s, v(s) = ^ \ s e (n0, oo) , 

we can see that (3.1.&) and (3.1.9) from C3 are satisfied, too. 
Let us investigate the validity of (3.1.10). We easily get that 

fc(n) = lPziy~1_l_e(«-/>)», p e < l , o o ) , n^n0, 

V P ) / » - « 
and therefore h(n) -> 0 for n -> oo. Then Theorem 3.1.2 implies 

(3.1.23) Wi
0-"(Q,S)QQU(n,e). 

*) Let us remark that 0 ^ h(n) g g(n)-+ 0, n-> oo. 
**) As we work with the „nulled space" W0*

P(.G, 5), we can assume without loss of generality 
that Qn e C0'1 for each ne N. 
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3.1.5. Remark. In Example 3.1.4 we do not have to choose the weight functions vvy 

for |y| = 1, y * (0 , . . . , 0, 1) by (3.1.21). It is sufficient that 

Wi>p(Qn,S)+±Wl'p(Qn), neN. 

From this relation we see that (3.1.21) can be replaced by 

(3.1.24) wy(x) = J*" , xeQ, \y\ = 1 , y * (0 , . . . , 0, 1) , 

where Sy are some real numbers. 

3.1.6. Example. Let Q satisfy the condition CI, Pe<l, oo), k,meN, k = V 
1 = nx —̂ fc, jS > 0, a < p. For x e Q we define 

(3.1.25) w y ( x ) - = ^ f \y\ = k, y * (0 , . . . , 0, m) , 

where <5y are some real numbers, 

(3.1.26) w(0 0,m)(x) = e ^ > Q(X) = e"» . 

Let 5 -= {vvy; |y| ^ fc}. Analogously as in Example 3.1.4 we can verify that the con
ditions C2 and (3.1.8), (3.L9) are satisfied (we choose /x(s) = eas, v(s) = ePs and 

«(*•) = i). 
We shall investigate the validity of (3.1.10) from C3. We choose £ in such a way 

that 0 < £ < min (/?, /? — a). Evidently, there exists a number nieN such that 

(3.1.27) s (m_1)p
 = ets for s > nt, *) 

so that for n = max (n0, 2̂1) (the number n0 is from the condition C3) we have 

*(») = | > ) |(s - 0 - X v - 1 ^ ) ! ^ , . . , dt ^ 

^ fV||«w"e-""||;.i(,.a))dr = 

~~ * *' l e<«+«-«- -> 0 for n -> oo . 
( ^ ) /? — a — £ 

From Theorem 3.1.2 we obtain (3.1.19). 

For x e RN and e e R let us define 

iXN , xN > 1 , 

-M - ( 
H , % ^ 1 

3.1.7. Example. Let .Q satisfy the condition CI, Pe<l, oo), k,meN, fc = 1, 

*) Example 3.1.6 generalizes Example 3.1.4. If m = 1, then it is possible to choose e = 0. 
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1 = m ^ k, P > mp — 1, a < /? — mp. For x e Q we put 

(3.1.28) wy(x) = z j x ) , |y| = fc, y * (0 , . . . , 0, m) , 

where Sy e ^ , 

(3.1.29) w(0> _ 0>m)(x) = zp(x) , e(x) = za(x) . 

Let 5 = {wy; \y\ = k}. Analogously as in Example 3.1.4 we can verify that the con
dition C2 is satisfied. If we choose C = 1, n0 e N, £(x') = 1 for x' e PN(Qn°), 

ji(s) = s" , v(s) = sp , se (n0, oo) , 

we can see that {3.1.8) and (3.1.9) from C3 are satisfied, too. 
Let us investigate the validity of (3.1.10). We easily obtain 

^J>) 11^-^-^(5)11^^^ = 
/*co 

- r I I s S l lp*-(r-oo) a f -

= [ ^--—- ) . yf-P + rnp ^ Q f o f ^ 0 0 < 

\jS — mp + 1/ /? — a — mp 

From Theorem 3.1.2 the imbeding (3.1.19) follows. 

3.1.8. Remark, (i) If Q is an unbounded domain, Q cz (—a, a)1*'1 x (— oo, a), 
where a > 0, then it is possible to reduce this case to that investigated in Theorem 
3.1.2 by a transformation of variables 

/ = x', yN= -xN. 

(ii) The case when Q is an unbounded domain, 

Q cz (— a, a)*"1 x R(a > 0) and inf {xN; xeQ} = — oo , sup {xN; x e Q} = +oo, 

can be investigated analogously as in Theorem 3.1.2 with the only difference of 
cutting the domain Q at both ends, i.e. for n e N we define 

Qn = {xe Q; \xN\ < n) , Qn = {xeQ; \xN\ > n) . 

(iii) Theorem 3.1.2 describes the situation when the weight function Q or w(0> 0jm) 

can be bounded from above or from below, respectively, by the product of a positive 
constant and two nonnegative measurable functions one of which depends on the 
variable xN only while the other depends only on x' and the domain is unbounded 
in the direction of the xN axis. Let us remark that any of the variables xt, x2, ---,xN 
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can play the role of the variable xN. It is even possible to study the case when some 
curvilinear coordinate takes the role of the variable xN. In Section 3.2 we shall 
discuss the case of spherical coordinates. 

3.2. USING THE SPHERICAL COORDINATES 

We shall consider spherical coordinates (r, 0) in RN, where r = \x\ is the distance 
from the point x to the origin and O = xj\x\ is a point on the unit sphere E = 
= {xe RN; \x\ = 1}. If g c RN, then P£(g) will denote the projection of the set g 
into the unit sphere E, i.e. 

PE(Q) = {OeE; 3r > 0, ( r , 6 > ) e g ) . 

Let Wk'p(Q, S), U(Q, Q) and X be as in Section 3.1. Throughout this section we 
consider the following two conditions: 

CI*. Q is an unbounded domain in RN. 

C2*. Wk'p(Qn,S)QQLp(Qn,o) VneN, where Qn = {xeQ; \x\ < n) for neN. 
Again, we shall look for additional assumptions implying 

(3.2.1) Wk
0>

p(Q,S)QQLp(Q,Q). 

Denote Qn = {x e Q; \x\ > n} for neN. Analogously as in Section 3.1 we can prove: 
If 

(3.2.2) sup ||u||p nn e -+ 0 for n -> oo , 

then (3.2.1) holds. 
Moreover, suppose that the following condition is fulfilled: 

C3*. There exist numbers C > 0, m,n0eN, 1 = m = k and nonnegative 
measurable functions jx: (n0, oo) -> R, 

v: (n0, oo) -> R , f: PE(Qn°) -+ R 

such that 

(3.2.3) Q(X) = CH(\X\) t ( ± \ fora .e . x e Qn° ; 

(3.2.4) v(|x|) Z f^-\ = C min wa(x) for a.e. xeQno; 
\\x\/ |a|=m 

(3.2.5) h(n) = h(n; JI, v, p, m) = 

= r»(r)\\(s-r)m-lv-1'p(s)||;..Cr.co> dr — 0 for n -* oo . 
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Now we shall investigate the validity of (3.2.2). Let ueX and n ^ n0, where n0 

is the number from the condition C3*. We extend the function u outside Q by zero 
(then, clearly, u e C%(RN)) and take £(<9) = 1 for 0 e E \ PE(Qn°). In view of (3.2.3), 

(3.2.6) \\4U»,o= f Hx)\pQ(x)dx = 
J Si" 

= C f I" V\u(r, 0)|" n(r) r v _ 1 drl £(&) do for n = n0 . 

For a fixed 0 e E we denote 

(3.2.7) /(r) = u(r, 0) , r > 0 . 

Evidently / e C°°((0, oo)), and supp/ is a compact set. Let the number m be from 
the condition C3*. Applying Lemma 2.4 we obtain 

(3.2.8) f(r) = Z " 1 ) " P°(5 - r y - V ^ d s , r > 0 , 
( m - 1)!J, 

which implies 

(3.2.9) |/(r)| At1/P(r) r(N-1)/p
 = —— - y}"(r) Hs - r )"- 1 |/C">(s)|-<"-->/' ds . 

Analogously as in Section 3.1 we obtain from (3.2.9) 

(3.2.10) [V( r)M r) rN" l d ' - = 

= [ j - r i ) j j *W { V°(-)lf <-) -"-1 ds > 
where the function h is defined in (3.2.5). The relations (3.2.4), (3.2.6), (3.2.7) and 
(3.2.10) imply 

\\p,nn,Q = 

s c [ ( ^ i ) ! I " ( n ) Ш ľ ř " ( s ' ) ľ v ( s ) s "" d s ] { ( )d s 

s c г [ ( ^ j i I Ч Ł L | D * " w l ' ^ ) d ) < s 

s c 2 [ ( ^ ľ " w l " 1 5 ' 
hence 

(3.2.11) sapjul £C2»—^l h1/p(n), n = «„ 
11-IUši (m - 1)! 
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This and (3.2.5) yield (3.2.2). 
From the above consideration we have 

3.2.1. Theorem. Let the conditions C l * - C 3 * be fulfilled. Then 

(3.L12) W0'
P(Q,S)QQU(Q,Q). 

3.2.2. Remark, (i) The function h from (3.2.5) coincides with the function h from 
(3.1.10). Therefore we get analogous results here as in Section 3.L Especially, if 
m = 1, n(r) = ra, v(r) = r^ for r e (n0, oo), then h(n) -> 0 for n -> oo if ft > p — 1, 
a < fi — p (cf. Example 3.L7). Consequently, the number j5 is always positive 
(because p e <1, oo)). If we assume in addition that 

(3.2A3) the function fi(r) rN~l is nondecreasing on (n0, oo) 

we get a larger interval for jS — see Example 3.2.3. 
(ii) If the condition (3.2.5) in C3* is replaced by the assumption 

(3.2.5*) g(n) = g(n; /i, v, p, m) = 

-Í (s - rf 
LФ)J 

ÍІP 

dr -* 0 for n ~> co 
p*,(r,co) 

and if suppose that, in addition to all the assumptions of Theorem 3.2.1, (3.2A3) 
is fulfilled, then (3.2A2) holds again. 

Really, let us suppose (3.2.13). Then from (3.2.8) we obtain 

(s - ry-1\fm\s)\(i
1"(s)si-N-1)''ds \f(r)\^l!'(ryN-1)"'S 

and further we get 

(3.2.14) 

1 

( m - 1 ) ! , 

{/(rУџ^Ѓ-1 dr й 

- [(^ЬyTg{n) ľ 1 / ( и ) ( s ) 1 ' ' v ( s ) sN"ds • 
The relations (3.2.4), (3.2.6), (3.2.7) and (3.2.14) imply 

1 
!ІP,Й",Í = < c2 

l(m - l)!j 
hence 

(3.2.15) sup l u l l ^ , , < C2" 
(m - 1)! 

9(n)\\u\\x, 

9llp(n). 

This and (3.2.5*) yield the desired assertion, 
(iii) Let us remark that while the functions h and g in Section 3A (see (3.1.10) 
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and (3.1.10*)) satisfied 

(3.2.16) h(n) = g(n) for n = n0 , 

the functions h and g given by (3.2.5) and (3.2.5*) need not generally satisfy the 
inequality (3.2.16) (here, the function ii(r) rN~x is nondecreasing in contradiction 
to Section 3.1, where jx(r) was nondecreasing). 

For XERN and e e R let us take 

,\x\*9 | x | > l , 
(3.2.17) «.(*) = / 

4 |x| = l . 

3.2.3. Example. Let O be an unbounded domain in RN
9 p e <1, oo), k = 1, e G R 

(3.2.18) j g > l - N + p, a e <l - N, /? - P) . 

For x e n w e define 

e(*) = ^ M > wco 0)(*) = *»«(*) > 
wyvx) = co^x) for |y| = I . 

Let S = {wy; |y| = 1}. 
We can easily verify that the conditions CI*, C2*, and (3.2.3), (3.2.4) from the 

condition C3* are satisfied (in the condition C3* we take m = 1, C = 1, n0 EN, 
Z(G) = 1 for 0 e PE(Qno), n(r) = r\ v(r) = rp for r e (n0> oo)). 

Let us now investigate the validity of (3.2.5*). For n e N, n = /i0, we have 

5(„) = f ( . -rJ-ir^T'T dr = 
• J . LHS)J llp*,<r.») 

- ( ' - 1 - V " - . — i — „ - ^ , 
VjS - a - p + 1/ p - a- p 

hence a(n) -> 0 for w -> oo. One can easily verify that (3.2A3) is satisfied as well. 
Therefore, from Remark 3.2.2 (ii) we get 

(3.2.19) Wl
0>>(Q9S)QQU(Q,Q). 

If we use Theorem 3.2.1, we obtain (3.2A9) for 

(3.2.20) 0 > p - 1 , a < p - p. 

Let us compare (3.2.18) with (3.2.20). In contrast to (3.2A8) where the interval 
for P is larger for N > 2, the interval for a in (3.2.18) is smaller. The interval for a can, 
of course, be extended by means of the following remark. 

3.2.4. Remark. Let Q be an unbounded domain in RN
9 cci9a2e R9 a2 ^ ax. For 

x e Q let us take 
Qi(x) = o)ai(x) , i = 1, 2 . 
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Then 
(3.2.21) L"(#> C-) Q I-"(^, C?i) • 

The proof is easy: For |x| = 1 we have |*|«- = |x|«« and hence g2(*) = Ql(x) for 
x 6 Q1. Consequently, for u e U(Q, Qi) we have 

N:*... = ii"!;** + N;*.... - N U - +M;.*... = 
This yields (3.2.21). 

^ N ; ^ i + N;^>« - N ; ^ • 

3.2.5. Remarks. From Example 3.2.3 and Remark 3.2.4 we get: 
(3.2.19) holds if 

P > min (1 — -V + p, p — 1) , a < ft - p. 
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Souhrn 

KOMPAKTNOST VNOŘENÍ VÁHOVÉHO SOBOLEVOVA PROSTORU 
DEFINOVANÉHO NA NEOMEZENÉ OBLASTI I 

BOHUMÍR OPIC 

Článek se zabývá kompaktním vnořením váhového Sobolevova prostoru WQ,P(Q, S) (S je 
systém váhových funkcí) definovaného na neomezené oblasti do prostoru funkcí LP(Q, Q) (Q je 
váhová funkce). Dané vnoření je vyšetřováno jako limitní případ kompaktních vnoření Sobole-
vových prostorů definovaných na omezených oblastech. 

Резюме 

КОМПАКТНОЕ ВЛОЖЕНИЕ ВЕСОВОГО ПРОСТРАНСТВА СОБОЛЕВА, 
ОПРЕДЕЛЕННОГО В НЕОГРАНИЧЕННОЙ ОБЛАСТИ 

Вон^м^я ОРЮ 

В работе исследуется компактность вложения весового пространства Соболева Ф^ф, 5) 
(8 — система весовых функций), определенного в неограниченной области, в пространство 
функций ЬР(Ц9 о) (^-весовая функция). Это вложение рассматривается как предельный случай 
компактных вложений пространств Соболева, определенных в ограниченных областях. 

Ашког'з аМгезз: Ма1ета1юку й81ау С8А^ Йкпа 25, 115 67 РгаЬа 1. 
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