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ON A LOCAL FORM OF LOBACHEVSKI'S FUNCTIONAL EQUATION
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Summary. A function f: (A4, B)— R (R — the real line, (4, B) = R) is said to be locally
Lobachevskian if for each x € (A4, B) there exists (x) > 0 such that

Flx+ B f(x — h) = f(x)?

holds for each A, 0 < & < 6(x). In the paper a full description of the family of all locally Loba-
chevskian functions is given.
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1. INTRODUCTION, DEFINITIONS AND RESULTS

In the present paper we shall deal with real functions which are defined on a real
open interval (A,B), —o £ A < B X 4. In the general theory of functional
equations, Lobachevski’s functional equation

(L) fix + B) f(x = h) = f(x)?,

is well known (see e.g. [A]). Similarly to the paper [K], where Jensen’s functional
equation in its local form is investigated, we can deal with a local form of Loba-
chevski’s functional equation. Note that the following local property is introduced
analogously to [R].

Definition 1. A function f: (A, B) - R (R — the real line) is said to be locally
Lobachevskian (IL) at x € (4, B) if there exists 5(x) > O such that (L) holds for
each h,0 < h < §(x). Wesay that f is locally Lobachevskian if it is IL at x for each
x € (A, B). Let LLstand for the family of all locally Lobachevskian functions.

Obviously, each Lobachevskian function, i.e. a solution of (L), belongs to LL.
Recall that each Lobachevskian function f is of the form f(x) = ce’™, where
a: R - R is an additive function and c is a real constant. There are functions in LL
which are not Lobachevskian functions. Such functions are e.g. the functions
g:R - R and h: R - R defined in the following way: g(x) = —1 for x € (— o0, 0),
g(x) = 0 for x € [0, 1] and g(x) = 2* for x € (1, o0); h(x) = —1 for x € Z (Z — the
set of integers)and h(x) = 372* 3*forx € (2k — 1, 2k) U (2k, 2k + 1), k € Z. In what
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follows a full description of the family LL will be given in terms of Lobachevskian
functions.

Definition 2. A set N = (A, B) is said to be a semi-symmetric (ss—) set if
(i) N is closed;
(ii) for each x € N there exists 5, > O such that for each h,0 < h < 5., x + heN
or x — heN.

Definition 3. ([K]) 4 set M < (A, B) is said to be an s-set if
(i) M is closed and countable;
(i) for each x € M there exists 8, > 0 such that for each h,0 < h < ,x + he M
if and only if x — he M.

Theorem 1. Let fe LL. Then N, = {x e (A, B): f(x) = 0} is an ss-set and for
each interval (a, b) contiguous to N, there exists an interval (u,v) < (a, b) such
that the restriction f| (u, v) is a Lobachevskian function.

Theorem 2. Let f:(A, B) - R. Then the following statements are equivalent:

(a) feLL;

(b) there exists an ss-set N such that N = N, = {x € (4, B): f(x) = 0}; for
each interval (a, b) contiguous to N there exists a Lobachevskian function g: (a, b) —»
— R, an s-set M < (a, b) with the collection {J,} of contiguous intervals of M
in (a, b), and a real sequence {a,} such that f| J, = a,g| J, holds for each n, and f
is IL at each x € M.

2. PROOFS

In the following proofs we shall use modifications of ideas used in [T] and [K].

Lemma. Let fe LL, f(x) & 0 for each xe(U, V), A < U < V < B. Then there
exists an interval (u,v) = (U, V) such that for each subinterval I = [x — 2h,
x + 2h] of (u, v) we have f(x + 2h) f(x — 2h)™* = f(x + h)* f(x — h)~2.

Proof. Let §(x) be introduced by Definition 1 and write E, = {x € (U, V): §(x) >
>n"Y, n=1,2,.... Then, since the sets E, cover (U, V), according to the Baire
Category Theorem there must exist an interval (u, v) = (U, ¥) and n such that E,
is dense in (u, v). Without loss of generality we may assume that v — u < n™'.
Let I < (u, v). The notation is simplified if we assume that I = [—2h, 2h], E, is
dense in (—2h, 2h) and 4h < n~*. If so, choose a negative x’ in E, such that 0 <
< x' — (=h/2) < 8(h)/2,and a positive x” in E, such that 0 < x” — h/2 < §(—h)/2.
This means that 0 < 2x’ + h < §(h) and 0 < 2x” — h < §(—h). Clearly we can
also achieve that x” + 2x’ < 0 and 2x" + x" > 0.
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Let us define the following intervals:
I = [-2h,2x" + 2h] = [x' — (x' + 2h), x' + (x' + 2h)],
I, =[-2x",2x" + 2h] = [h — (2x' + h), h + (2x" + h)],
Iy = [2x" + 2x', =2x"] = [x" + (x" + 2x), x" — (" + 2x)],
Iy =[-2x"2x" + 2x"] =[x’ — (2x" + x'), x' + (2x" + x)],
Is =[-2x",2x" —2h] = [—-h — (2x" — h), —h + (2x" — h)], and
I¢ = [2x" — 2h,2h] = [x" — (2h — x"), x" + (2h — x")] .
For feLL, f(x) # 0 for each xe (U, V) and J = [r,s] = (U, V), put F(J) =

= f(r) f(s) f((r + 5)/2)” 2. Itis straightforward to check that each I, (i = 1, 2, ..., 6)
is a subinterval of I, that F(I,) = 1 for each I, and that for f we have

6
f(=2h) f@R) 1 f(R)? f(=h)72 = [TFI) D™ = 1.
i=1
It remains to relabel and the proof is complete.

Proof of Theorem 1. The fact that N, = {x € (4, B): f(x) = 0} is an ss-set is
obvious. Let (a, b) be an interval contiguous to N, and let (u,v) = (a, b) be an
interval of the type whose existence is guarranteed by Lemma. Choose xe(u, v)
and h > O such that u < x — h < x + h < v. By induction we can verify that

(%) flx+h) flx = h)f(x)"% = [f(x + h27") f(x — h27") f(x)~2]*"

holds for each n = 0, 1, ... . Clearly, for n = 0 (x) is fulfilled. Using Lemma we can
write

fox+h27) fx = h27) f(x)7% =
=flx + h27) f(x)7 [f(x) f(x — h27) 7] =
=flx + 327" f(x + $h 27" 2 [f(x — 2R 272 f(x — 3h27") 73] =
=flc+3h27")2 f(x — 3h27") 2 [f(x + 30 27") f(x — 3R 27" 1] 72 =
= [f(x + 3h27") f() " ]* [f(x) f(x — 4h277)71] 7% =
=[fx+h2" Y f(x—h 271 f(x) 24

This proves (x) for each n = 0, 1, .... If we choose m such that 0 < h2™™ < §(x)
then

flx+ ) fx = B f()72 = [fle + h 2™ f(x — h2™™) f(x)72]*" = 1.

Proof of Theorem 2. (a) implies (b): According to Theorem 1 the set N, is an
ss-set, hence it is closed. Let (a, b) be a contiguous interval to N,. If M < (a, b)
is an s-set, then (a, b) — M = J J,, where {J,}, is a countable collection of mutually

disjoint contiguous open intervals of M. Further, we shall say that the restriction
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f| (¢, d), (¢, d) = (a, b), has an acceptable form if there is a Lobachevskian function
g: (¢, d) = R, an s-set M < (c, d) with the collection of contiguous intervals {J,},,
and a real sequence {a,}, such that f| J, = a,g| J, holds for each n. Let (u, v) be
an interval such that f| (4, v) is a Lobachevskian function (Theorem 1). Choose an
arbitrary z € (u, v) and put

y = sup {w: f| (z, w) has an acceptable form} .

We will prove that y = b. On the contrary, suppose y < b. Obviously y = v. Let
6(y) have the meaning from Definition 1. We can suppose without loss of generality
that z < y — 8(). Since f; = f| (v — 8(y), ¥) has an acceptable form, the same is
true for f, = f}(y, » + 8(y)). Indeed, it follows from the hypothesis fe LL that
f2(y + h) = f(»)* fi(y — B)~* holds for each h, 0 < h < §(y). Hence f|(z, y +
+ &(y)) has an acceptable form — a contradiction. Analogously it can be verified
that f| (a, z) has an acceptable form and consequently, also f| (a, b) has an acceptable
form.

The fact that (b) implies (a) is an easy consequence of the structure of the ss-set N
and of the s-set M (= M(a, b)).
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Sﬁh'rn
O LOKALNOM TVARE LOBACEVSKEHO FUNKCIONALNEJ ROVNICE

PAVEL KOSTYRKO

Funkcia f: (4, B)— R (R — redlna priamka, (4, B) = R) sa nazyva lokdlne Lobad&evského
ak pre kazdé x € (4, B) existuje d(x) > 0 tak, Ze
S+ B f(x— B =f(x)?

plati pre kazdé h, 0 < h < 6(x). V &ldnku sa podava uplny opis systému vietkych lokdlne Loba-
&evského funkcii.
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Pe3srome

O JIOKAJIBHOM BUJE ®VYHKIMOHAJIbBHOI'O YPABHEHUS JIOBAYEBCKOI'O

PAVEL KOSTYRKO
Orobpaxenne f: (A4, B)—> R (R — BemectBeHHasi npsmas, (4, B)© R) sABNSeTCA JOKaJbHO
orobpaxerueM JIoGayeBckoro, ecnu s Kaxaoro x € (4, B) cymectsyet d(x) > 0 Tak, uto
S(x+ B flx — B) = f(x)?

MMeeT MECTO AJs Beskoro h, 0 < h < d(x). B paGoTe naHa mojHas XapaKTEPUCTHKA BCEX TaKHMX
0TOOpaXeHmit.
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