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ON A LOCAL FORM OF LOBACHEVSKI'S FUNCTIONAL EQUATION 

PAVEL KOSTYRKO, Bratislava 

(Received October 25, 1985) 

Summary. A function f: (A, B) -> R (R — the real line, (A, B) cz R) is said to be locally 
Lobachevskian if for each xe (A, B) there exists S(x) > 0 such that 

Ax+h)f(x-h)=Ax)2 

holds for each h, 0 < h < S(x). In the paper a full description of the family of all locally Loba
chevskian functions is given. 

Keyword: Lobachevski's functional equation. 

AMS (1980) subject classification: 39B40. 

1. INTRODUCTION, DEFINITIONS AND RESULTS 

In the present paper we shall deal with real functions which are denned on a real 
open interval (A, B), — co ^ A < B ^ -f-oo. In the general theory of functional 
equations, Lobachevski's functional equation 

(L) f(x + h)f(x -h)= f(xf , 
is well known (see e.g. [A]). Similarly to the paper [K], where Jensen's functional 
equation in its local form is investigated, we can deal with a local form of Loba
chevski's functional equation. Note that the following local property is introduced 
analogously to [R]. 

Definition 1. A function f: (A, B) -+ R (R — the real line) is said to be locally 
Lobachevskian (IL) at XG (A, B) if there exists S(x) > 0 such that (L) holds for 
each h, 0 < h < S(x). We say that f is locally Lobachevskian if it is ILat xfor each 
x E (A, B). Let LL stand for the family of all locally Lobachevskian functions. 

Obviously, each Lobachevskian function, i.e. a solution of (L), belongs to LL. 
Recall that each Lobachevskian function / is of the form f(x) = cea(x\ where 
a: R -> R is an additive function and c is a real constant. There are functions in LL 
which are not Lobachevskian functions. Such functions are e.g. the functions 
g: R -> R and h: R -+ R defined in the following way: g(x) = — 1 for x e (— oo, 0), 
g(x) = 0 for x e [0, 1] and g(x) = 2X for x e (1, oo); h(x) - - 1 for x e Z (Z - the 
set of integers) and h(x) = 3~2 f c3* for x e (2k - l,2fe)u(2fe,2fe + 1), fe e Z. In what 
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follows a full description of the family LL will be given in terms of Lobachevskian 
functions. 

Definition 2. A set N a (A, B) is said to be a semi-symmetric (ss—) set if 
(i) N is closed; 

(ii) for each xeN there exists 5X > 0 such that for each h, 0 < h < 5X, x + h e N 
or x — h e N. 

Definition 3. ([K]) A set M cz (A, B) is said to be an s-set if 
(i) M is closed and countable; 

(ii) for each x e M there exists 8X > 0 such that for each h, 0 < h < 8X, x + h e M 
if and only if x — h e M. 

Theorem 1. Let feLL. Then Nf = {x e (A, B):f(x) = 0} is an ss-set and for 
each interval (a, b) contiguous to Nf there exists an interval (u, v) c (a, b) such 
that the restriction f\ (u, v) is a Lobachevskian function. 

Theorem 2. Let f: (A, B) -> R. Then the following statements are equivalent: 
(a) feLL; 
(b) there exists an ss-set N such that N = Nf = {x e (A, B):f(x) = 0}; for 

each interval (a, b) contiguous to N there exists a Lobachevskian function g: (a, b) -> 
-> K, an s-set M c (a, b) with the collection {Jn} of contiguous intervals of M 
in (a, b), and a real sequence {an} such that f\ Jn = ang\ Jn holds for each n, and f 
is ILat each xeM. 

2. PROOFS 

In the following proofs we shall use modifications of ideas used in [T] and [K], 

Lemma. Let feLL, f(x) + 0 for each xe(U,V), A ^U < V ^ B. Then there 
exists an interval (u, v) cz (17, V) such that for each subinterval I = [x — 2h, 
x + 2ft] 0f (u, V) we have f(x + 2h)f(x - 2ft)"1 = f(x + ft)2 f(x - ft)"2. 

Proof. Let 5(x) be introduced by Definition 1 and write En = {x e (U, V): d(x) > 
> n " 1 } , n = 1, 2 , . . . . Then, since the sets En cover (U, V), according to the Baire 
Category Theorem there must exist an interval (u, v) cz (U, V) and n such that En 

is dense in (u, v). Without loss of generality we may assume that v — u < n~x. 
Let J cz (u, v). The notation is simplified if we assume that I = [ — 2ft, 2ft], En is 
dense in ( — 2ft, 2ft) and 4ft < n"1 . If so, choose a negative x' in En such that 0 < 
< x' - (-ft/2) < <5(ft)/2, and a positive x" in En such that 0 < x" - ft/2 < <5(-ft)/2. 
This means that 0 < 2x' + ft < 8(h) and 0 < 2x" - ft < 8(-h). Clearly we can 
also achieve that x" + 2x' < 0 and 2x" + x' > 0. 
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Let us define the following intervals: 

-2h, 2x' + 2h] = [x' - (x' + 2h), x' + (x' + 2h)] , 

-2x', 2x' + 2h] = \h - (2x' + h),h + (2x' + h)] , 

2x" + 2x', -2x ' ] = [x" + (x" + 2x'), x" - (x" + 2x')] , 

2x", 2x' + 2x"] = [x' - (2x" + x'), x' + (2x" + x')] , 

2x", 2x" -2h] = [-h - (2x" - h), -h + (2x" - h)] , and 

2x" - 2/t, 2h] = [x" - (2h - x"), x" + (2h - x")] . 

Ii = 

12 = 

13 = 

14 = 

15 = 

16 = 

For feLL, f(x) 4= 0 for each xe(U, V) and J = [r, s] c (U, V), put F(j) = 
= f(r)f(s)f((r + s)/2)-2. It is straightforward to check that each/,(/ = 1,2,...,6) 
is a subinterval of/, that F(lt) = 1 for each J, and that for / we have 

/(-2h)/(2h)-voo2/(-!tr2 = rw.) (-1) ,+1 = -• 
i = l 

It remains to relabel and the proof is complete. 

Proof of Theorem 1. The fact that Nf = {x e (A, B):f(x) = 0} is an ss-set is 
obvious. Let (a, b) be an interval contiguous to Nf and let (u, v) c (a, b) be an 
interval of the type whose existence is guarranteed by Lemma. Choose x e (u, v) 
and h > 0 such that u < x — h < x + h < v. By induction we can verify that 

(*) f(x + h)f(x - h)f(x)~2 = [/(x + h 2-)f(x - h 2-")/(x)"2]4" 

holds for each n = 0, 1, ... . Clearly, for n = 0 (*) is fulfilled. Using Lemma we can 
write 

f(x + h 2~n)f(x - h 2-n)f(x)~2 = 

= f(x + h2~n)f(x)~1 [f(x)f(x - h2-n)-i]~1 = 

= f(x + | h 2-»)2f(x + \h 2~n)~2 [f(x - ih 2-«)2f(x - \h 2-*)"2]-1 = 

= f(x + \h 2'n)2f(x - \h 2~nY2 [f(x + \h 2~n)f(x - \h 2-")-1]"2 = 

= [f(x + \h 2~n)f(x)~^ [f(x)f(x - \h 2-")-1]"4 = 

= [f(x + h2-""1)f(x - h2"w-1)f(x)-2]4. 

This proves (*) for each n = 0, 1 , . . . . If we choose m such that 0 < h 2"m < 8(x) 
then 

f(x + h)f(x - h)f(x)~2 = [f(x + h 2~m)f(x - h 2-m)f(x)~2Ym = 1 . 

Proof of Theorem 2. (a) implies (b): According to Theorem 1 the set Nf is an 
ss-set, hence it is closed. Let (a, b) be a contiguous interval to Nf. If M c (a, b) 
is an s-set, then (a, b) — M = (J Jn, where {/„}„ is a countable collection of mutually 

n 

disjoint contiguous open intervals of M. Further, we shall say that the restriction 
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fl (c, d), (c, d) c (a, b), has an acceptable form if there is a Lobachevskian function 
g: (c, d) -* R, an s-set M c (c, d) with the collection of contiguous intervals {J„}„, 
and a real sequence {an}„ such that f| J„ = a„g| Jn holds for each n. Let (u, u) be 
an interval such that f| (u, v) is a Lobachevskian function (Theorem 1). Choose an 
arbitrary z e (u, v) and put 

y = sup {w:f| (z, w) has an acceptable form} . 

We will prove that y = b. On the contrary, suppose y < b. Obviously y _ v. Let 
5(y) have the meaning from Definition 1. We can suppose without loss of generality 
that z = y — 5(y). Since fx = f[ (y — S(y), y) has an acceptable form, the same is 
true for f2 = ff(y, y + ^(y))- Indeed, it follows from the hypothesis feLL that 
fi(y + h) = f(y)2fi(y - h)~x holds for each h, 0 < h < S(y). Hence f| (z, >; + 
+ S(y)) has an acceptable form — a contradiction. Analogously it can be verified 
thatf| (a, z) has an acceptable form and consequently, alsof| (a, b) has an acceptable 
form. 

The fact that (b) implies (a) is an easy consequence of the structure of the ss-set N 
and of the s-set M (= M(a, b)). 

References 

[A] Aczél, J.: Lectures on Functional Equations and Their Applications, Academic Press, 
New York and London 1966. 

[K] Kostyrko, P.: On a local form of Jensen*s functional equation, Aequationes Math. 30 
(1986), 65-69 . 

[R] Ruzsa, I. Z.: Locally symmetгic functions, Real Anal. Exchange 4 (1978—79), 84—86. 
[T] Thomson, B. S.: On full covering pгopeгties, Real Anal. Exchange б (1980—81), 77—93. 

Súhrn 

O LOKÁLNOM TVARE LOBAČEVSKÉHO FUNKCIONÁLNEJ ROVNICE 

PAVEL KOSTYRKO 

Funkcia /: (A, B) —> R (R — reálna priamka, (A, B) c R) sa nazývá lokálně Lobačevského 
ak pre každé x e (A, B) existuje S(x) > 0 tak, že 

f(x+h)f(x-h)=f(x)2 

platí pře každé h,0<h< S(x). V článku sa podává úplný opis systému všetkých lokálně Loba
čevského funkcií. 
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Резюме 

О ЛОКАЛЬНОМ ВИДЕ ФУНКЦИОНАЛЬНОГО УРАВНЕНИЯ ЛОБАЧЕВСКОГО 

РАУЕЬ КОЗТУККО 

Отображение /:(А, 1?)-> К (К —вещественная прямая, (А, В) с: К) является локально 
отображением Лобачевского, если для каждого хе(А, В) существует е5(*) > 0 так, что 

Ах+к)/(х-к)=/(х)2 

имеет место для всякого к, 0 < к < д(х). В работе дана полная характеристика всех таких 
отображений. 

Ашког'з айАгезз: Ка1ес1га а1§еЬгу а 1еопе бГзе! МЕР ^ К , 842 15 Вга11з1ауа. 
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