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Summary. In this paper we present some conditions under which a weakly monotone Darboux 
function/: 72—> R2 is continuous. 
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It is well known that every weakly monotone Darboux function f:R-+R is 
continuous (see for example [2, Theorem 2, p. 94]). This fact is also true iff is a real 
function defined on a topological space more general than the real line (see [3], [6]). 
It is easy to see that if the functions considered assume their values in R2 then the 
above theorem is false. In the present paper we investigate conditions under which 
a weakly monotone Darboux function f: I2 -> R2 is continuous. 

We use the following basic definitions and notation. By the symbol K(x0, 3) we 
will denote the open circle in the plane with the centre at x 0 and the radius 5. The 
closure of any set A will be denoted by A or cl A, the interior of this set by Int A, 
the interior of A in the subspace K by Int x A and the boundary of A by Fr A. The 
symbol Ad will stand for the set of all accumulation points of the set A. By Q we will 
denote the distance on the plane. We say that a family 8F is dense in R2 if cl ( \J A) = 

Ae& 

= R2. The symbol \a, b] || L denotes that the segment [a, fe] is paralel to the line L 
in the plane, while K || £f(K 1. £f), where 9* is a family of parallel lines, denotes 
that K is parallel (vertical) to every line of this family. 

To avoid ambiguity and misunderstandings as concerns the notions used in the 
present paper, we introduce the following definitions. 

Definition. A function f: X - • Y (where X, Y are arbitrary topological spaces) 
is called monotone relative to the family 2F of subsets of Y, if the setf_1(F) is con
nected in X for every F e 3F. 

Definition. Let C0(C, S0) denote the class of all open and connected (connected, 
singleton) subsets of Y. Then a function f:X -> Y is called almost monotone (mo
notone, weakly monotone) iff is monotone relative to C0(C, S0). 
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In many papers a weakly monotone function is also known as "monotone" ([7] 
and [ l ] , but in [ l ] the author additionally assumes t h a t / i s a continuous function) 
or a "semi-monotone" ([8]) function. Our terminology is similar to that in [3] (see 
also [6]). 

Definition [4]. We say that / : X -> Y (where X and Y are arbitrary topological 
spaces) is a Darboux function (or possesses the Darboux property) if/(C) is a con
nected set for every connected set C c X. 

In many papers a Darboux function is also known as a connected function ([3], 

[6])-
We shall consider the functions defined and assuming their values in R2. Let / 

denote the interval [0, 1]. 

Theorem 1. / / a Darboux function f: I2 -> R2 is almost monotone then it is a con
tinuous and weakly monotone function. 

Proof. First, we shall show tha t / i s a continuous function. Let x0 eI 2 , a = / ( x 0 ) , 
and let e > 0 be an arbitrary number. We shall prove that there exists S > 0 such 
that 
(*) f(K(x0, 6)) c K(a, e) . 

Consider the set A = R2 \ cl (K(a, |e)). 
If f1(A) = 0, then/(x) G cl (K(a, ^e)) for every x e I 2 and so the condition (*) 

is fulfilled. 
Thus, l e t / _ 1 ( A ) =|= 0. Since A is an open and connected set, f~1(A) is connected 

ml2. 
We will prove that x0 $ cl ( ( / " l(A)). Suppose on the contrary that x0 e cl (f~*(A)). 

Thus f~*(A) u {x0} is a connected set and so f(f~*(A) u {x0}) is connected, which 
is impossible 

There exists S > 0 such that 

K(xo,5)n/"1(A) = 0< 

Therefore 
/(K(x0 , S)) c cl (K(a, ie)) c K(a, e) 

and (*) is proved. 
Now, we shall show that / is weakly monotone. Assume, to the contrary, that 

there exists cce R2 such that/"*(a) is not connected. Thus / _ 1 (a ) = AKJ B, where A 
and B are disjoint, nonempty and closed sets i n / _ 1 ( a ) . S ince / "^a ) is a closed set, 
A and B are closed (in I2) as well. Therefore there exist open sets U, V such that 
A c U9 B c Vand U n V= 0. 

Let ex = 1. Consider the open circle K(a, e j and the inverse image f~l(K(<x, e j ) . 
We have 

r\K{*> ci)) n U * 0 4= r\K{*, cj) n V 
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and so there exists an element xt such that 

x 1 G / - 1 ( K ( a , 6 1 ) ) \ ( U u V ) . 

Suppose that we have defined the sequence xl9 ...,xn-t. Put en = i0(a,/(*,,-1))-
Consider the open circle K(a, en) and its inverse image / _ 1 (K ( a , en)). Then 

r\K(a9 en)) n U * 0 - J - / " 1 ^ « ) n F 

and so there exists an element xn e / _ 1 (K ( a , en))\(U u V). 
Continuing this procedure we obtain two sequences, {K(a, en)} and {xn}. From 

the sequence {xn} we select a subsequence {xkn} converging to some x. It is easy to 
see that ekn -> 0 and consequently limf(xkn) = a, where, by virtue of the continuity 

n->oo 

of/, a = f(x) and so x e / _ 1 ( a ) . This is impossible because {xn} czI2\(Uu V). 
The contradiction completes the proof. 

It is known ([3]) that a function/: I2 -» K which is Darboux and weakly monotone 
is also continuous. On the other hand, it is not difficult to give an example of a func
t ion / : I2 -* R2 which is Darboux and weakly monotone but not continuous. Before 
presenting the next theorem we formulate a definition and some lemmas. 

Definition. We say that a set A c R2 is directionally convex if there exists a line L 
such that for every elements a, ft e A, the condition [a, ft] || L implies [a, b] c A. 

Lemma A (K. M. Garg [3]). Let X be a topological space, Y a Tt-space and 
f: X -> Y a Darboux function. Then, ifCc Ypossesses closed components then the 
inverse image f~x(C) possesses closed components, too. 

Lemma B (R. J. Pawlak [6]). Let f: X -> Y be a connected function, where X 
is a connected and locally connected space, Ya T^space. If 

1° a set K cuts Yinto sets A and B 
and 

2° / _ 1 (K ) is a connected set, 
then the sets f~x(A\j K) and f~1(Bu K) are connected. (We say that a nonvoid 
set K cuts a topological space X ifX\K = A\J B, where A and B are nonempty open 
and disjoint sets.) 

Let L(f, x0) denote the set of all cluster values o f / a t x0. 

Theorem 2. Let f:l2 -• R2 be a Darboux and weakly monotone function. Then f 
is a continuous function with a directionally convex image if and only if f is mono
tone relative to a dense (in R2) set £f of parallel lines such that 

(*) IntKL(/ ,x) = 0 

for every line K || Sf and x e / _ 1 ( K ) . 
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Proof. For simplicity we shall write A instead of A n I2. 
Sufficiency. First, we shall show thatf" 1(L) is a connected set for every line L || Sf. 
The density of Sf irtiplies that there exist two sequences {K„} and {Mn} of lines of Sf 

such that Q(Kn+l9 L) < Q(KK, L) and Q(M„+1, L) < Q(M„, L) for every n; moreover, 
00 00 

U Kn and U Mn are contained in the two different open halfplanes determined 
* = 1 n = l 

by L, and the sequences converge to L. 
Let Pn denote the closed strip bounded by Kn and Mn, and Hi — the closed 

halfplane generated by Kn such that L c£ II1. According to Lemmas A, B we infer 
tha t f ' ^ I I 1 ) is closed. It is easy to see thatf -1(P„) is closed. According to Lemma B, 
f~l(Hl u Pw) is a connected set. Moreove r , f " 1 ^ 1 n P„) =/"1(.KJ I) is a connected 
set and sof -1(Pw) is connected, too (see [5]); consequen t ly^" 1 ^ ) is a continuum. 
This means that 

r\L) = c\rw 
n = l 

is a continuum. 
Now, we shall show that the image f(I2) is directionally convex. Let L be an ar

bitrary line of Sf and let a, b ef(/2) be such that [a, 6] || L. The elements a, b 
determine a line K || L. According to the first part of this proof f~x(K) is con
nected and so f(f~1(K)) is connected. We infer that a, b Gf(f_1(K)) c K and hence 

[a, fc]c/(/-'(*))-f(7
2). 

Now, we shall prove that f is continuous. Let x el2, a = f(x)9 and let s be an 
arbitrary positive number. We shall show that there exists 5 > 0 such that 

(1) f(K(x, 6)) cz K(a, e) . 

Let J denote the interval vertical to the direction of Sf with the end-points belonging 
to the boundary Fr (K(a, s)) and such that a e J. Let Pl9 f}2 be different points of J 
such that Q(P19 a) = \s = 0(/?2, a). Let Ll9 L2 be the parallel lines such that L1 || Sf99 

L2\Sf and pieL1,p2eL2. 
Let K be the line parallel to Sf and such that a e K. Let K+, K~ denote the half-

lines of K determined by a. By y1 and y2 we denote the points of intersection of the 
half-lines K" and K+ with the lines determined by the points of intersection of Lx 

with Fr (K(pl9 &)) and L2 with Fr (K(02, \s))9 respectively. 
Then, according to (*), there exist a" e [yi9 a) \ L(f, x) and a + e (a, y2] \ L(f, x). 

Let Kl9K2 be the lines vertical to Sf such that a"" e K t and a+ GK2. By a,y we 
denote the point of intersection of K{ and Li (for i, f = 1 2). In this way the points 
a ^ , a12, a21, a22 determine a rectangle P such that a e P and 

(2) Int P c K(a, e) . 

It is easy to see that the intervals [ a n , a 1 2 ] , [a21, a2 2] are vertical to Sf. 
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We shall show that 

(3) * * C r , ( [ « i i , « i 2 ] ) ) ' . 

Indeed, suppose, on the contrary, that there exists a sequence {xn} such that {x„} 
converges to x, xn 4= x for n = 1,2,. . . and {xn} cf1([aLll9ct12'\). Since / ~ 2 ( 2 ) 
is a connected set for any z e [ a n , a 1 2 ] , f1(z) is closed by Lemma A. Of course, 
x$f1(z) an (* s o x *s n o t a n accumulation point of any level / _ 1 ( z ) , where ze 
e [ a l l 5 a 1 2 ] . It is not difficult to see that there exists a subsequence of {xn} such that 
f(xt) + /(xy) f° r l + .1- Suppose that {xn} is this subsequence. Let {/(**„)} ^ e a SUD" 
sequence of {f(xn)} such that {/(^n)} converges to some a*. Obviously a* =f= a". 
Consider the midpoint m(a*, a") of the interval with the end-points a* and a~. 
Let M || Sf be the line such that m(a*, a") e M. Let H denote the closed half-plane 
determined by M and a* e H. Thus x 6 / _ 1 (H ) . This contradiction proves (3). 

Analogously, we can prove that x £ ( / _ 1 ( [a 2 1 , a22]))d. 
Thus there exist 8X > 0 and S2 > 0 such that K(x, St) nfi([(XliU a12]) = 0 

and K(x, 82) n / _ 1 ( [ a 2 1 , a22]) = 0. At the same time f1(Ll u L2) is a closed set 
(see Lemma A) and x ^f1(Li u L2), hence there exists S3 > 0 such that K(x, <53) n 
n / " 1 ^ u L2) = 0. Let 5 = min (8U <52, (53). Then 

/(K(x, 5)) n Fr P = 0 . 

This together with the connectedness of/(K(x, S)) yields 

/(K(x, 8)) c l n t P c K(a, a) 

and so the condition (l) is fulfilled. This completes the proof of sufficiency. 
Necessity. According to our assumptions there exists a line M such that the image 

/(I2) is directionally convex with respect to M. Consider the family Sf of all lines 
K || M. We shall show that / is monotone relative to Sf. It is sufficient to prove that 
fx(K) is a connected set for K^Sf. Assume, to the contrary, that there exists a line 
KeSf such tha t / _ 1 (K ) = A u B, where A and B are disjoint, nonempty and closed 
i n / _ 1 ( K ) . Since/ - 1(K) is a closed set then A and B are closed in I2. Consequently, 
if C = K n / ( / 2 ) then C = f(A) u / ( B ) and there exists p ef(A) n / ( B ) . Consider 
the level f\p). It is easy to see that f\P) n A * 0 and /"^(jS) n H * 0, which 
contradicts the weak monotonicity of / The contradiction obtained completes the 
proof of necessity. 
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Souhrn 

O SPOJITOSTI A MONOTÓNNOSTI DARBOUXOVSKÝCH FUNKCÍ 

HELENA PAWLAK 

V článku jsou odvozeny podmínky pro to, aby slabě monotónní darbouxovská funkce 
/: I2 -> R2 byla spojitá. 

Pe3K>Me 

O HEIIPEPBIBHOCTH H MOHOTOHHOCTH OyHKUJlH flAPBy 

HELENA PAWLAK 

B CTaTbe HafiACHbi ycrcoBHH AJIH Tóro, HTO6BI cna6o MOHOTOHHaa <I>yHKmifl flapoy f: I2 —> R2 

6biJia HenpepbiBHOH. 
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