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INEQUALITY BETWEEN SIDES AND DIAGONALS OF A SPACE 
n-GON AND ITS INTEGRAL ANALOG 

PAVEL PECH, Ceske Budejovice 

(Received October 18, 1988) 

Summary. The inequality between sides and diagonals of a closed space n-gon in EN is estab
lished. This inequality is generalized to the integral inequality. These inequalities imply the 
well-known discrete and integral Wirtinger's inequalities. 
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1. INTRODUCTION 

In 1980 L. Gerber [ l ] proved the following statement: 
Let $4 = A0, Al9..., -4„_i be a closed space n-gon in a Euclidean space EN 

of arbitrary dimension N. Then 

"Z\AvAv+2\
2 ^4cos2-"j]\AvAv+1\

2 . 
v = 0 7!v = 0 

The equality holds if and only if s/ is a plane affine-regular n-gon, i.e. the affine 
image of a regular n-gon. 

In the present paper we will show that this statement is a special case of Theorem 1. 
Theorem 1 gives an inequality between arbitrary diagonals of a space n-gon and its 
sides. This inequality is generalized to the continuous case in Theorem 2. The main 
result is the inequality (5) and its discrete analog (l). In the latter part we deal with 
the well-known Wirtinger's inequality [2]. Theorems 3 and 4 state that the discrete 
and integral Wirtinger's inequalities follow from the inequalities (l) and (5). 

The proofs are based on using the Fourier series expansion of periodic functions 
and its discrete analog, the finite Fourier series [3]. 

2. FUNDAMENTAL INEQUALITY - THE DISCRETE CASE 

Theorem 1. Let s$ = A09 Al9..., -4,.-i be a closed space n-gon in EN
9 let A„+k — Ak 

for all k = 0 , 1 , 2 , . . . . Then for all p = 0, 1, . . . ,n - 1, 
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(i) Z | V v + J 2 d .I|AVAV+1|
2. 

v = 0 ' I . 71 I v = 0 

\ s i n ; / 

For p = 2, 3 , . . . , n — 2, equality is attained if and only if s4 is a plane affine-
regular n-gon or, for N = 1, its 1-dimensional projection. (For p = 0, 1, n — 1 
equality occurs always). 

The special case N = 1 is then 

Theorem 1*. Let x0, x1? ...,xn^x be n real numbers and let xn+k = xk for k = 
= 0 , 1 , 2 , . . . . Then for all p = 0, \,...,n - 1, 

/ S i n ^ \ - 1 

(2) Z (*,+- - O2 = . Z (^+1 - O 2 . 
v = 0 I . 7T I v = 0 

\ s l n ; / 

For p = 2, 3 , . . . , n — 2, equality is attained if and only if 
2TC „ . 2TC _ _ , < 

xv = A cos v h B sin v h C , v = 0 , 1 , . . . , n — 1 
n n 

where A, B, C, are real constants. 
First we shall prove that Theorem 1 and Theorem 1* are equivalent. 
We assume Theorem 1* holds. Let Av = (xv0, xvl,..., xVtN-t) be the cartesian 

coordinates of vertices of an n-gon stf. For every n-tuple (x0j,x1j,...9xn-1j) the 
inequality (2) holds obviously. By summing these inequalities we get (1) including 
the case when equality holds. Conversely, let Theorem 1 hold. Putting Av = 
= (xv, 0 , . . . , 0) for v = 0 , 1 , . . . , n - 1 in (l) we get (2). 

Proof of Theorem 1. According to the previous statement it suffices to prove 
the theorem for N = 2. 

Let s& = (z0, zu ..., zn_i) be a plane closed n-gon, where zv are complex numbers, 
v = 0 , 1 , . . . , n — 1. We denote 

nk = (co^col, ..--©JT1) where cok = ekA2n/n, k = 0, 1, . . . , n - 1 . 

The system J70, JIl9..., TIn-i forms an orthogonal basis for the unitary vector 
space Cn of all n-tuples of complex numbers since 

ir..ir.-^v-.-'-{;;[;;:: 
Hence there exist numbers S0, 3 ! , . . . , 9n_! such that zv = Z^/c60^ v = 0 , 1 , . . . , n — 1 

or symbolically, s4 = Zfy.#*- A discrete analog of Parseval's relation of completeness 
k 
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gives an important equality 

ZI-.|2 = »ZM2-
v = 0 k=0 

For all p = 1, 2,..., n — 1 we obtain 

(3) II-.*,--..2 
[sinp - ' 

n 

7C 
•ZI-. + i - - . . 2 -

sin 

» I N 2 

= /.ZM 2 K-iľ 

7Г 

sin p -

к-iľ-l—^|.к-ľ2 

sin -

• / n\2 I • n\2 

sin kp -\ ls\np-\ 

sin k - / 
n / 

since for all p = 1,2,.,, n — 1 and k = 1,2,, 

. 7C 
sin - , 

n I 

. - 1 

< 0 

(4) 

/sin kT -\ 

\ sin k 

sm T 
< n 

. 71 
sin -

n 

holds, with equality for k = 1 or k = n — 1. In order to prove the inequality (3) 
notice that the function 

Up.^cosx) = sin px 

sin X 

which occurs in (4) is the well-known TchebychefTs orthogonal polynomial of the 
second kind. Then inequality (4) follows immediately from the properties of these 
polynomials [4]. Equality in (3) holds if and only if 9k = 0 for all k = 2, 3, ..., n — 2. 
It means the n-gon has the form 

s/ = V o + V ? i +S / J _ 1 J/, I _ 1 . 

It is easily shown that stf is an affine-regular n-gon. 

Remark. 1. For p = 2 we get the inequality from Introduction. L. Gerber proved 
it using the method of Lagrange multipliers. We are also able to prove Theorem 1 
by this method. 
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2. Putting p = 2, n = 4 in (1) we get the well-known property of parallelogram 
(with sides a, b, c, d and diagonals e,f) 

a2<+ b2 + c
2 + d2 = e2 + f 2 . 

3. FUNDAMENTAL INEQUALITY - THE CONTINUOUS CASE 

Theorem 2. Let f(x) be a smooth function with period 2TT. Then for all real t, 

(5) f2"[/(*) " / ( * + t)]2 dx ^ 4 sin2 - f / ' ( x ) 2 dx . 
Jo 2 Jo 

Equality is attained if and only iff(x) = A cos x + B sin x + C, wfc r̂e A, B, C 
are rea/ constants (for t = 0 equality holds always). 

Proof. We shall prove the theorem using a Fourier series expansion of f(x). 
We have 

a °° 
(6) f(x) = — + YJ (ak c o s kx + bk sin kx) , 

2 fc = i 
OO 

f'(x) ~ YJ (kbk c o s kx ~~ feafe
 S i n fex) , 

fc=i 

a °° 
f(x + t) = — + £ (Afc cos kx + Bfc sin kx), 

2 t = i 

where 

f̂c = ak *c o s kt + bk- sinkf, Bk= bk* coskf — afc• sinkr. 

Parseval's relation of completeness gives 

, 2 oo 

so that 

We get 

ßV'(*)2dx = Я f f c K + Ь2), 
fc=l 

£ " [ / ( * ) - Д * + <)ľ dx = я Д U sin2 | (a 2 + Ы)\. 

4 sin2 í £ > ( x ) 2 dx - £ П [/ (x) - /(x + , ) ] 2 dx = 

=4я Ž. [(fc2 sin2 \ ~sin2 fcø (fl2 + ъгÅ = ° 
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since for all real x, 

k2 sin2 x - sin2 kx = 0 , k = 0, 1, 2 , . . . 

with equality for k = 0 or k = 1. 
This inequality follows from the properties of TchebychefTs polynomials of the 

second kind. It can be also proved by induction. 
Equality in (5) holds if and only if f(x) in (6) satisfies ak = bk = 0 for all k = 

= 2 , 3 , . . . , i.e. 

f(x) = A cos x + B sin x + C , A, B, C = const. 

Mow we will show that the inequality (2) is a discrete analog of the integral in
equality (5). 

Assume the function f is the same as in Theorem 2. Write 

tv = v — , v = 0, 1, . . . , n - 1 
n 

and use Theorem 1* with xv = f(tv). 
By the Mean Value Theorem we have 

*v + i "~ xv = f \iv) 9 £ e Vv> tv+1) • 
n 

We express (2) in the form 

E \m -/(<. + * * ) T - s — f-T w ^ • 
v = o \ n/ n . 9 7U \ n / v = o n 

u \ /-J sin - ' 

n 

Setting t = p . 2njn and passing to the limit for n -» oo, we obtain the inequality (5). 

4. SOME REMARKS ON WIRTINGER'S INEQUALITY 

In this section we show relations holding between the inequalities (2), (5) and 
Wirtinger's inequality. 

Let us recall the integral Wirtinger's inequality: 
Let f(x) be a smooth function with period 2n satisfying 

J2*/(*)dx = 0. 
Then 

(7) J2V'(*)2d^JoV2(*)d*, 
equality holding if and only if f(x) = A cos x + B sin x, where A, B are real 
constants. 
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This theorem was stated by W. Blaschke [5], but it is likely that it had been known 
before. 

The discrete version of Wirtinger's inequality is as follows: 
n - i 

Let x0, Xj , . . . , xn_i, xn = x0 be reals with £ xv = 0. Then 
v = 0 

(8) " _ 1 ( x v + l - x „ ) 2 ^ 4 s i n 2 - " i 1 x 2 . 
v = 0 M v = 0 

Equality holds if and only if xv = A cos v(27r/rc) + B sin V(2TC/W), where v = 
= 0, 1,. . . , n — 1, A, _ = const. 

We can extend this theorem similarly as Theorem 1*: 
Let srf = A0, Aj,..., _4n_i, A,, = A0 be a closed n-gon in EN with its center of 

gravity <it the origin of the coordinate system. Then 

(9) " l | A v A v + 1 | 2 ^ 4 s i n 2 ^ " i ; 1 | A v | 2 
_ ^ V ^ 

П v = 0 

Equality holds if and only if s/ is a plane affine-regular n-gon. 
The case N = 2 of this theorem was given by B. H. Neumann [6]. 
K. Fan, O. Taussky, J. Todd [7] showed that the inequality (8) is the discrete 

analog of (7). 

5. CONNECTIONS WITH WIRTINGER'S INEQUALITY 

First we will prove 

Lemma. For an arbitrary closed n-gon stf = A0, Al, ..., >4,.-i in EN with its 
center of gravity at the origin of the coordinate system the equality 

(10) "_' |AVAV + P | 2 = 2n"_X|Av|2 

p,v = 0 v = 0 

holds where An + k = Akfor k = 1, 2, . . . . 

Proof. Let us express the squares of distances by means of a scalar product. We 
obtain 

"_' |A V A V + P | 2 - 2n"_V v |
2 = "E (AV+P - A,)2 - 2 n " _ A 2 = 

p,v = 0 l v = 0 p,v = 0 v = 0 

= "_ (A2

V+P - 2Ay+pAv + A2

V) - 2n"x A2 = - 2 n "_ AV+PAV = 
jp,v = 0 v = 0 p,v = 0 

= - 2 n " _ ( A v £ A v + p ) = 0 . 
v = 0 p=0 

Now we shall prove: 
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Theorem 3. The discrete Wirtinger's inequality is a consequence of the set of 
inequalities (1). 

Proof. Let __/ = A0, Au . . . , An^t be a closed n-gon in EN with its center of gravity 
at the origin of the coordinate system. Summing the inequalities (1) for p = 0, 1, . . . 
..., n — 1 we get 

I | A v A v + p | 2 ^ y A — n - . £ | A V A V + ] |
2 . 

p,v = 0 P = O l . 71 I v = 0 

\ s i n - / 

From here, in view of the equality £ sin2 p(Kln) ~ n\--> w e obtain 
p = 0 

n - 1 M " - 1 
V U /* I2 < 

p,v = 0 _ . 7 K v = 0 
2 sin 

I И v ^ v . l l 

and, using (10) from the previous lemma, the inequality (9). 
In the next theorem we will prove an analogous relation between the integral in

equality (5) and the integral Wirtinger's inequality (7). 

Theorem 4. The inequality (5) implies the integral Wirtinger's inequality (7). 

Proof. Letf(x) be a smooth function with period 2TC satisfying 

J 0

2V(*)dx = 0 . 

Integrating inequality (5) we get 

(11) r!\f(x)-f(x + t)fdxdt^4 
J 0 J 0 

On the left-hand side of (11) we have 

sin2 - d í 
2 

E(*)2 dx 

4тг J 2 V 2 ( x ) dx - 2 J 2* [/(x) J 2 V ( x + t) d<] dx = 4тr J 2 */ 2 (*) dx . 

On the right-hand side of (11) we get 

л2я 

s i n 2 - d í f'(xf dx = 4я f'(x)2 dx 

Dividing both sides of (l 1) by 4TT we get the inequality (7). 
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Souhrn 

NEROVNOST MEZI STRANAMI A ÚHLOPŘÍČKAMI PROSTOROVÉHO 
n-ÚHELNÍKA A JEJÍ DISKRÉTNÍ ANALOGIE 

PAVEL PECH 

V článku je uvedena nerovnost mezi stranami a úhlopříčkami uzavřeného prostorového 
n-úhelníka v EN. Tato nerovnost je zobecněna na integrální nerovnost. Tyto nerovnosti implikují 
známou diskrétní a integrální Wirtingerovu nerovnost. 

Authoťs address: Katedra matematiky, pedagogická fakulta, Jeronýmova 10, 371 15 České 
Budějovice. 
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