Časopis pro pěstování matematiky

Anton Dekrét

Vector fields and connections on $T M$

Časopis pro pěstování matematiky, Vol. 115 (1990), No. 4, 360--367
Persistent URL: http://dml.cz/dmlcz/118414

Terms of use:

© Institute of Mathematics AS CR, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

VECTOR FIELDS AND CONNECTIONS ON TM

Anton Dekrét, Zvolen

(Received November 28, 1988)

Abstract

Summary. In this paper we describe the set $C_{\Gamma}^{\infty} T M$ of all vector fields Z on $T M$ which determine, by first order natural procedures, connections on $T M$. We construct all natural differential operators of the first order from $C_{\Gamma}^{\infty} T M$ into the space of all connections on $T M$.

Keywords: vector field, connection, differential operator.
AMS Subject Classification: 53B05, 58A20.

1. INTRODUCTION

It is well known, see [3], [7], that every spray on a smooth manifold M determines a linear connection without torsion on $T M$. This fact was extended to the case of arbitrary differential equations of the second order on M, see $[1 ; 8]$. We have constructed all connections on $T M$ (non linear in general), naturally associated in the first order with a differential equation of the second order. Now we study the problem of a geometrical construction of connections on $T M$ by any vector field on $T M$. This is possible only in some cases. We characterize the set $C_{\Gamma}^{\infty} T M$ of such vector fields and construct all natural differential operators of the first order from $C_{\Gamma}^{\infty} T M$ into the space of all connections on $T M$. Our considerations are in the category C^{∞}.

Let $C^{\infty} Y$ denote the set of all-smooth sections of a fibre manifold $\pi: Y \rightarrow M$. We recall some equivalent definitions of a connection Γ on Y that we will use.

1. Let $J Y$ be the space of all 1-jets of local sections of Y. A chart $\left(x^{i}, y^{\alpha}\right)$ on Y induces the chart $\left(x^{i}, y^{\alpha} . y_{i}^{\alpha}\right)$ on $J Y$. A connection on Y is a section $\Gamma: Y \rightarrow J^{1} Y$, $\bar{x}^{i}=x^{i}, \bar{y}^{\alpha}=y^{\alpha}, \bar{y}_{i}^{\alpha}=\Gamma_{i}^{\alpha}(x, y)$. The local functions Γ_{i}^{α} on $T M$ on $T M$ will be called the Christoffel functions of Γ.
2. A connection Γ on Y is given by a 1 -form h_{Γ} on Y with values in $T Y$ such that $h_{\Gamma}(X)=0$ for $X \in V Y$ and $T \pi(Z)=T \pi h_{\Gamma}(Z)$ for any $Z \in T Y$, where $T f$ denotes the tangent map of $f: M \rightarrow N$ and $V Y$ is the space of vertical vectors on Y. Put $v_{\Gamma}:=\operatorname{Id}_{T Y}-h_{\Gamma}$. The forms h_{Γ} and v_{Γ} are said to be the horizontal and vertical forms of Γ, respectively. In terms of coordinates, $h_{\Gamma}=\mathrm{d} x^{i} \otimes \partial / \partial x^{i}+\Gamma_{j}^{\alpha} \mathrm{d} x^{j} \otimes$ $\otimes \partial / \partial y^{\alpha}$. It is clear that h_{Γ} can be interpreted as an element of $C^{\infty}\left(T(T M) \otimes T^{*} M \rightarrow\right.$ $\rightarrow T M)$.

Since $J Y \rightarrow Y$ is an aifine bundle associated with the vector bundle $V Y \otimes T^{*} M \rightarrow$ $\rightarrow Y$, we conclude that if Γ is a connection on Y and $\gamma \in C^{\infty}\left(V Y \otimes T^{*} M \rightarrow Y\right)$ then $\Gamma+\gamma$ is also a connection on Y.

2. $T(T M)$-VALUED FORMS ON TM AND CONNECTIONS ON TM

Let $p_{M}: T M \rightarrow M$ denote the tangent vector projection onto M. Let $p_{M}^{*} T M$ be the p_{M}-pull-back of $T M$. Then $C^{\infty}\left(T M \otimes_{T M} T^{*} M \rightarrow T M\right)$ carries the algebra structure of all vector bundle morphisms on $p_{M}^{*} T M$ over $\mathrm{id}_{T M}$, i.e. if $a, b \in C^{\infty}(T M \otimes$ $\left.\otimes{ }_{T M} T^{*} M \rightarrow T M\right)$ then $a . b$ denotes the composition of the maps a and b. We will use the identification $C^{\infty}\left(V T M \otimes T^{*} M \rightarrow T M\right) \equiv C^{\infty}\left(T M \otimes_{T M} T^{*} M \rightarrow T M\right)$, which is implied by the canonical identification $V T M \equiv T M \times{ }_{M} T M \equiv p_{M}^{*} T M$.

A local chart $\left(x^{i}\right)$ on M induces the charts $\left(x^{i}, x_{1}^{i}\right)$ on $T M$ and $\left(x^{i}, x_{1}^{i}, \mathrm{~d} x^{i}, \mathrm{~d} x_{1}^{i}\right)$ on $p_{T M}: T T M \rightarrow T M$. In these charts the canonical involution i_{2} and the canonical morphism v on $T(T M)$ are of the form $i_{2}\left(x^{i}, x_{1}^{i}, \mathrm{~d} x^{i}, \mathrm{~d} x_{1}^{i}\right)=\left(x^{i}, \mathrm{~d} x^{i}, x_{1}^{i}, \mathrm{~d} x_{1}^{i}\right)$ and $v=\mathrm{d} x^{i} \otimes \partial / \partial x_{1}^{i}$.

Denote by $C_{v}^{\infty}\left(T(T M) \otimes T^{*}(T M) \rightarrow T M\right)$ the space of all $T(T M)$ - valued forms A on $T M$ such that the restriction of the map $A: T(T M) \rightarrow T(T M)$ to $V T M$ is a vector bundle morphism on $V T M$ over id ${ }_{T M}$. In coordinates, $A=a_{j}^{i}\left(x, x_{1}\right) \mathrm{d} x^{j} \otimes$ $\otimes \partial / \partial x^{i}+\left(e_{j}^{i}\left(x, x_{1}\right) \mathrm{d} x^{j}+h_{j}^{i}\left(x, x_{1}\right) \mathrm{d} x_{1}^{j}\right) \otimes \partial / \partial x_{1}^{i}$ and then $v . A=a_{j}^{i} \mathrm{~d} x^{j} \otimes \partial / \partial x_{1}^{i}$, $A \cdot v=h_{j}^{i} \mathrm{~d} x^{j} \otimes \partial \mid \partial x_{1}^{i}$. It means that $v, v . A, A . v$ can be considered as elements of $C^{\infty}\left(T M \otimes{ }_{T M} T^{*} M \rightarrow T M\right)$.

Let V, W be vector spaces. Let $B \in\left(W \otimes W^{*}\right) \otimes\left(V \otimes V^{*}\right)$. Denote by B_{0} the linear map $W \otimes V^{*} \rightarrow W \otimes V^{*}$ given by the tensor contraction of $B \otimes X, X \in W \otimes V$. We say that B is regular if B_{0} is regular. A form $A \in C_{v}^{\infty}\left(T(T M) \otimes T^{*}(T M) \rightarrow T M\right)$ is said to be connection admissible if $\alpha=\mathrm{id}_{T M} \otimes_{T M} v . A-A \cdot v \otimes_{T M} \mathrm{id}_{T M} \in$ $\in C^{\infty}\left(\left(T M \otimes_{T M} T^{*} M\right) \otimes{ }_{T M}\left(T M \otimes{ }_{T M} T^{*} M\right) \rightarrow T M\right)$ is regular. Obviously, the map $\alpha_{0}: C^{\infty}\left(T M \otimes_{T M} T^{*} M\right) \rightarrow C^{\infty}\left(T M \otimes_{T M} T^{*} M\right)$ is of the form

$$
\begin{equation*}
\bar{y}_{j}^{i}=\left(\delta_{s}^{i} a_{j}^{u}-h_{s}^{i} \delta_{j}^{u}\right) y_{u}^{s} . \tag{1}
\end{equation*}
$$

Let $C_{r}^{\infty}\left(T T M \otimes T^{*} T M\right)$ denote the space of all connection admissible forms. We will prove that the connection admissible $T(T M)$-valued 1-forms on $T M$ determine connections on $T M$. First, we will construct a connection by means of a connection admissible form A. Denote $\bar{A}:=A \otimes{ }_{T M} \mathrm{id}_{T M}-\mathrm{id}_{T T M} \otimes v . A=$ $=\left(a_{j}^{i} \delta_{s}^{k}-\delta_{j}^{i} a_{s}^{k}\right) \mathrm{d} x^{j} \otimes \partial\left|\partial x^{i} \otimes \mathrm{~d} x^{s} \otimes \partial / \partial x^{k}+e_{j}^{i} \delta_{s}^{k} \mathrm{~d} x^{j} \otimes \partial\right| \partial x_{1}^{i} \otimes \mathrm{~d} x^{s} \otimes \partial \mid \partial x^{k}+$ $+\left(h_{j}^{i} \delta_{s}^{k}-\delta_{j}^{i} a_{s}^{k}\right) \mathrm{d} x_{1}^{j} \otimes \partial / \partial x_{1}^{i} \otimes \mathrm{~d} x^{s} \otimes \partial / \partial x^{k}$. Then for the coordinate form of $\bar{A}_{0}: T(T M) \otimes T^{*} M \rightarrow T(T M) \otimes T^{*} M$ we have

$$
\bar{z}_{s}^{i}=\left(a_{j}^{i} \delta_{s}^{k}-\delta_{j}^{i} a_{s}^{k}\right) z_{k}^{j}, \quad Z_{s}^{i}=e_{j}^{i} \delta_{s}^{k} z_{k}^{j}+\left(h_{j}^{i} \delta_{s}^{k}-\delta_{j}^{i} a_{s}^{k}\right) Z_{k}^{j} .
$$

Obviously, there exists a unique $Z_{0} \in C^{\infty}\left(T(T M) \otimes{ }_{T M} T^{*} M \rightarrow T M\right)$ such that v. $Z_{0}=\mathrm{id}_{p^{*}{ }_{M} T M}$ and $\bar{A}_{0}\left(Z_{0}\right)=0$. The coordinate equations of $Z_{0}=\left(z_{k}^{i}, Z_{k}^{i}\right)$ are as follows:

$$
\begin{align*}
& z_{k}^{i}=\delta_{k}^{i} \tag{2}\\
& \left(\delta_{j}^{i} a_{s}^{h}-h_{j}^{i} \delta_{s}^{k}\right) Z_{k}^{j}=e_{s}^{i}
\end{align*}
$$

Since α_{0} is regular, therefore the components Z_{k}^{i} of Z_{0} are equal to those of $\alpha_{0}^{-1}(E)$, where E is a local $(1,1)$-tensor determined by the components $\left(e_{s}^{i}\right)$. By virtue of the property $v, Z_{0}=\operatorname{id}_{P_{M}{ }^{*} T M}, Z_{0}$ is the horizontal form of a connection on $T M$ that will be denoted by Γ_{A}. If $\phi_{s j}^{i q}$ are local components of α_{0}^{-1} then $\Gamma_{j}^{i}=\phi_{s j}^{i q} e_{4}^{s}$ are the Christoffel íunctions of Γ_{A}.

As $v, v . A, A . v \in C^{\infty}\left(T M \otimes_{T M} T^{*} M \rightarrow T M\right)$ we have for example $\varphi=C_{1} v+$ $+C_{2} v . A+C_{3} A . v+C_{4}(v . A) .(v . A)+C_{5}(A . v) .(v . A) \in C^{\infty}(T M \otimes$
$\left.\otimes{ }_{T M} T^{*} M \rightarrow T M\right)$ and consequently $\Gamma_{A}+\varphi$ is a connection on $T M$. In general the following proposition holds

Proposition 1. Let $A \in C_{\Gamma}^{\infty}\left(T(T M) \otimes T^{*} T M \rightarrow T M\right)$. Then the map $A \mapsto \Gamma_{A}+$ $+\varphi(v . A, A \cdot v)$, where φ is a natural operator of zero order from $C^{\infty}(T M \otimes$ $\left.\otimes_{T M} T^{*} M \times{ }_{T M} T M \otimes_{T M} T^{*} M \rightarrow T M\right)$ into $C^{\infty}\left(T M \otimes_{T M} T^{*} M \rightarrow T M\right)$, is a natural operator of zero order from $C_{\Gamma}^{\infty}\left(T T M \otimes T^{*} T M\right)$ into the space $\Gamma T M$ of all connections on TM.

It is possible to prove that every natural operator of zero order from $C^{\infty}\left(T T M \otimes T^{*} T M\right)$ into $\Gamma T M$ is of the form $A \mapsto \Gamma_{A}+\varphi(v . A, A \cdot v)$.

3. CONNECTIONS DETERMINED BY VECTOR FIELDS ON TM

For further use we introduce the notation $f_{i}:=\partial f / \partial x^{i}$ and $f_{\bar{k}}:=\partial f / \partial x_{1}^{k}$ for a function f on TM.

Let $Z=c^{i}\left(x, x_{1}\right) \partial / \partial x^{i}+b^{i}\left(x, x_{1}\right) \partial / \partial x_{1}^{i}$ be a vector field on $T M$, that is a section $Z: T M \rightarrow T(T M), Z\left(x^{i}, x_{1}^{i}\right)=\left(x^{i}, x_{1}^{i}, c^{i}, b^{i}\right)$. Then $T Z\left(x^{i}, x_{1}^{i}, \mathrm{~d} x^{i}, \mathrm{~d} x_{1}^{i}\right)=\left(x^{i}, x_{1}^{i}, c^{i}\right.$, $\left.b^{i}, \mathrm{~d} x^{i}, \mathrm{~d} x_{1}^{i}, c_{k}^{i} \mathrm{~d} x^{k}+c_{k}^{i} \mathrm{~d} x_{1}^{k}, b_{k}^{i} \mathrm{~d} x^{k}+b_{k}^{i} \mathrm{~d} x^{k}\right)$.

Therefore

$$
T Z . v\left(x^{i}, x_{1}^{i}, \mathrm{~d} x^{i}, \mathrm{~d} x_{1}^{i}\right)=\left(x^{i}, x_{1}^{i}, c^{i}, b^{i}, 0, d x_{1}^{i}, c_{k}^{i} \mathrm{~d} x^{k}, b_{k}^{i} \mathrm{~d} x^{k}\right) .
$$

On the other hand, using the T-prolongation of the canonical involution i_{2} we get

$$
\begin{aligned}
& T i_{2}, T Z\left(x^{i}, x_{1}^{i}, \mathrm{~d} x^{i}, \mathrm{~d} x_{1}^{i}\right)=\left(x^{i}, c^{i}, x_{1}^{i}, b^{i}, \mathrm{~d} x^{j}, c_{k}^{i} \mathrm{~d} x^{k}+c_{k}^{i} \mathrm{~d} x_{1}^{k},\right. \\
& \left.\mathrm{d} x_{1}^{i}, b_{k}^{i} \mathrm{~d} x^{k}+b_{k}^{i} \mathrm{~d} x_{1}^{k}\right) .
\end{aligned}
$$

Let $v_{1}: T(T T M) \rightarrow T(T T M)$ be the canonical morphism on $T(T M)$. Then $T i_{2} \cdot v_{1}$. . $T i_{2} . T Z\left(x^{i}, x_{1}^{i}, \mathrm{~d} x^{i}, \mathrm{~d} x_{1}^{i}\right)^{\prime}=\left(x^{i}, x_{1}^{i}, c^{i}, b^{i}, 0, \mathrm{~d} x^{i}, 0, c_{k}^{i} \mathrm{~d} x^{k}+c_{k}^{i} \mathrm{~d} x_{1}^{k}\right)$.

In the case of a vector bundle $\pi: E \rightarrow M$ let $\mathrm{pr}_{\pi}: V E \rightarrow E$ denote the canonical projection on the second factor, $\operatorname{pr}_{\pi}\left(x^{i}, y^{\alpha}, 0, \mathrm{~d} y^{\alpha}\right)=\left(x^{i}, \mathrm{~d} y^{\alpha}\right)$. Then

$$
\begin{aligned}
& \operatorname{pr}_{p_{T M}} \cdot\left(T Z \cdot v-T i_{2} \cdot v_{1} \cdot T i_{2} \cdot T Z\right) \cdot\left(x^{i}, x_{1}^{i}, \mathrm{~d} x^{i}, \mathrm{~d} x_{1}^{i}\right)= \\
& =\left(x^{i}, x_{1}^{i}, c_{j}^{i} \mathrm{~d} x^{j},\left(b_{k}^{i}-c_{k}^{i}\right) \mathrm{d} x^{k}-c_{k}^{i} \mathrm{~d} x_{1}^{k}\right) .
\end{aligned}
$$

It means that $\mathrm{pr}_{p T M} \cdot\left(T Z . v-T i_{2} \cdot v_{1} \cdot T i_{2} \cdot T Z\right)=c_{j}^{i} \mathrm{~d} x^{j} \otimes \partial / \partial x^{i}+$ $+\left[\left(b_{k}^{i}-c_{k}^{i}\right) \mathrm{d} x^{k}-c_{k}^{i} \mathrm{~d} x_{1}^{k}\right] \otimes \partial / \partial x_{1}^{i}$ belongs to $C^{\infty}\left(T(T M) \otimes T^{*} T M \rightarrow T M j\right.$. By a direct coordinate calculus we obtain

Lemma 1. Let $L_{Z}(v)$ be the Lie derivative of the canonical morphism v by' Z. Then

$$
L_{Z^{v}}=-\operatorname{pr}_{p_{T M}} \cdot\left(T Z \cdot v-T i_{2} \cdot v_{1} \cdot T i_{2} \cdot T Z\right) .
$$

A vector field Z on $T M$ will be said to be connection admissible if $-L_{Z^{\prime}}$ is a connection admissible $T(T M)$-form on $T M$. In coordinates, $v .\left(-L_{z} v\right)=L_{Z} v \cdot v=$ $=c_{k}^{i} \mathrm{~d} x^{k} \otimes \partial / \hat{c} x_{1}^{i}$. Therefore Z is connection admissible if and only if

$$
\mathrm{id}_{T M} \otimes_{T M} v \cdot\left(-L_{Z} v\right)-v \cdot L_{\mathbf{Z}} v \otimes_{T M}{ }^{i} \mathrm{~d}_{T M}=\left(\delta_{s}^{i} c_{k}^{u}+c_{\bar{s}}^{i} \delta_{k}^{u}\right)
$$

is regular.
Lemma 2. A vector field Z on $T M$ is connection admissible if and only if there is only the zero solution $x=0$ of the equation

$$
\left(v \cdot L_{Z} v\right) \cdot x=-x \cdot\left(v \cdot L_{Z} v\right)
$$

in the algebra $T M \otimes_{T M} T^{*} M$.
Proof. The map $x_{0}: y_{k}^{i}=\left(\delta_{s}^{i} c_{k}^{u}+c_{\bar{s}}^{i} \delta_{k}^{u}\right) x_{u}^{s}=x_{u}^{i} c_{k}^{u}+c_{\bar{u}}^{i} x_{k}^{u}$ is regular if and only if the equation $x_{u}^{i} c_{k}^{u}+c_{i u}^{i} x_{k}^{u}=0$ has only the zero solution. This completes our proof.

Corollary. If $v . L_{z} v$ is regular then Z is connection admissible if and only if the linear operator $x \mapsto\left(v . L_{Z} v\right)^{-1} . x\left(v . L_{Z} v\right)$ in algebra $T M \otimes \otimes_{T M} T^{*} M$ does not have the eigenvalue -1 .

Remark. If Z is a differential equation of the second order on $M, c^{i}=x_{1}^{i}$, then $-v . L_{Z} v=\mathrm{id}_{p_{M} * T M}$. Therefore in virtue of Lemma 2 every differential equation of the second order is connection admissible.

If Z is connection admissible then the connection $\Gamma_{-L_{Z_{v}}}$ determined by the connection admissible form $-L_{z} v$ will be shortly denoted by Γ_{Z}. Let $C_{\Gamma}^{\infty} T M$ be the space of all connection admissible vector field on $T M$. With regard to Proposition 1 we obtain

Proposition 2. Let $Z \in C_{\Gamma}^{\infty} T M$. Then any map $Z \mapsto \Gamma_{Z}+\varphi\left(v . L_{Z} v\right)$, where φ is a natural differential operator of zero order from $C^{\infty}\left(T M \otimes_{T M} T^{*} M \rightarrow T M\right)$ into itself, is a natural operator of the first order from $C_{\Gamma}^{\infty} T M$ into the space $\Gamma T M$ of all connections on TM.

Now, we will prove that every natural differential operator of the first order from $C_{\Gamma}^{\infty} T M$ into $\Gamma T M$ over $\mathrm{id}_{T M}$ is of the form $Z \mapsto \Gamma_{Z}+\varphi\left(v, L_{Z} v\right)$.

Let $T f: T M \rightarrow T N, T T f: T T M \rightarrow T T N, J T f: J T M \rightarrow J T N, J T(T f): J(T(T M) \rightarrow$ $\rightarrow T M) \rightarrow J(T(T N) \rightarrow T N)$ be the local diffeomorphisms determined by the tangent
prolongation functor T and by the first-jet prolongation functor J applied to a local diffeomorphism $f: M \rightarrow N$. If X or Γ is a vector field or a connection on $T M$ then $T T f(X)$ or $\operatorname{JTf}(\Gamma)$ is a vector field or a connection on $T N$, respectively. Recall that the condition for an operator A from $C^{\infty} T M$ into $\Gamma T M$ to be natural is

$$
A_{N}(\operatorname{TTf}(X))=\operatorname{JTf}\left(A_{M}(X)\right)
$$

for any local diffeomorphism f from M into N and every vector field X on TM. Then A is of the first order if

$$
\left(j_{h}^{1} X_{1}=j_{h}^{1} X_{2}\right) \Rightarrow\left(A X_{1}(h)=A X_{2}(h)\right)
$$

for any $X_{1}, X_{2} \in C^{\infty} T M, h \in T M$.
By the theory of natural functors and operators, see [2], [4], [6], [8], the set of all natural operators of the first order from $C^{\infty} T M$ into $\Gamma T M$ over $T M$ is in a bijection with the space of all natural transformations Φ from $J(T(T M) \rightarrow T M)$ into $J T M$ over $\mathrm{id}_{T M}$. Recall that Φ is a family of maps from $J T(T M)$ into $J T M$ such that $J T f . \Phi_{M}=\Phi_{N} . J T(T f)$ for any local diffeomorhism f from M into N.

We will need the coordinate forms of $J T(T f)$ and $J T f$. Let $\left(x^{i}, x_{1}^{i}\right),\left(x^{i}, x_{1}^{i}, c^{i}, b^{i}\right)$, $\left(x^{i}, x_{1}^{i}, x_{j}^{i}\right),\left(x^{i}, x_{1}^{i}, c^{i}, b^{i}, c_{k}^{i}, c_{k}^{i}, b_{k}^{i}, b_{k}^{i}\right)$ be local charts on TM, TTM, JTM, JT(TM), respectively. Then $\bar{x}^{i}=f^{i}\left(x^{j}\right)$ and

$$
\begin{equation*}
\bar{x}_{1}^{i}=f_{j}^{i} x_{1}^{j} \tag{3}
\end{equation*}
$$

are the equations of $T f$. Adding the equations

$$
\begin{equation*}
\bar{c}^{i}=f_{j}^{i} c^{j}, \quad b^{i}=f_{j k}^{i} x_{1}^{j} c^{k}+f_{j}^{i} b^{j} \tag{4}
\end{equation*}
$$

to those of $T f$ we get the local expression of $T T f$.
Let $\tilde{f}: N \rightarrow M$ be the inverse map to f. Let $g \in J(T(T M) \rightarrow T M), g=$ $=j_{h}^{1}(u \mapsto \sigma(u))=j_{\left(x, x_{1}\right)}^{1}\left(\left(u^{i}, u_{1}^{i}\right) \mapsto\left(u^{i}, u_{1}^{i}, \gamma^{i}\left(u, u_{1}\right), \beta^{i}\left(u, u_{1}\right)\right)\right.$. Then $\bar{g}=J T(T f)(g)=$ $=j_{h}^{1}\left(\bar{u} \mapsto T T f . \sigma(T \tilde{f}(\bar{u}))=j_{\left(\bar{x}, \bar{x}_{1}\right)}^{1}\left(\bar{u}, \bar{u}_{1}\right) \mapsto\left(\bar{u}, \bar{u}_{1}, f_{j}^{i}(\tilde{f}(\bar{u})) \gamma^{i}\left(\tilde{f}(\bar{u}), \tilde{f}_{t}^{s}(\bar{u}) \bar{u}_{1}^{t}\right)\right.\right.$, $\left.f_{j k}^{i}(\tilde{f}(\bar{u})) \tilde{f}_{i}^{j}(\bar{u}) \bar{u}_{1}^{t} \gamma^{k}\left(\tilde{f}(\bar{u}), \quad \tilde{f}_{q}^{p}(\bar{u}) \bar{u}_{1}^{q}\right)+f_{j}^{i}(\tilde{f}(\bar{u})) \gamma^{i}\left(\tilde{f}(\bar{u}), f_{q}^{p}(\bar{u}) \bar{u}_{1}^{q}\right)\right)$. After some calculation we obtain

$$
\begin{align*}
\bar{c}_{j}^{i} & =f_{s p}^{i} \tilde{f}_{j}^{p} c^{s}+f_{s}^{i} c_{p}^{s} \tilde{f}_{j}^{p}+f_{s}^{i} s_{\bar{p}}^{s} \tilde{f}_{t j}^{p} f_{q}^{t} x_{1}^{q}, \tag{5}\\
\bar{c}_{k}^{i} & =f_{i}^{i} c_{\bar{u}}^{i} \tilde{f}_{k}^{u}, \\
\bar{b}_{j}^{i} & =f_{q k s}^{i} \tilde{j}_{j}^{s} x_{1}^{q} c^{k}+f_{q k}^{i} \tilde{j}_{j}^{q} f_{s}^{t} x_{1}^{s} c^{k}+f_{q k}^{i} x_{1}^{q}\left(c_{u}^{k} f_{j}^{u}+\right. \\
& \left.+c_{\bar{u}}^{k} \tilde{p}_{p}^{u} f_{v}^{p} x_{1}^{v}\right)+f_{q u}^{i} \tilde{f}_{j}^{u} b^{q}+f_{q}^{i}\left(b_{p}^{\tilde{f}} \tilde{f}_{j}^{p}+b_{\bar{p}}^{q} \tilde{f}_{s j}^{p} \tilde{f}_{v}^{s} x_{1}^{v}\right), \\
\bar{b}_{k}^{i} & =f_{q s}^{i} \tilde{f}_{k}^{q} c^{s}+f_{q s}^{i} s_{1}^{q} c_{\tilde{u}}^{s} \tilde{j}_{k}^{u}+f_{q}^{i} b_{\bar{s}}^{q} \tilde{f}_{k}^{s}
\end{align*}
$$

where $\tilde{f}_{s}^{i} f_{j}^{s}=\delta_{j}^{i}$ and $\tilde{f}_{u s}^{i} f_{j}^{s} f_{k}^{u}+\tilde{f}_{u}^{i} f_{k j}^{u}=0$. It means that the map $J T(T f)$ is locally determined by (3), (4), (5). It remains to derive the coordinate form of JTf. Let $h=\left(x^{i}, x_{1}^{i}, x_{j}^{i}\right)=j_{x}^{1}\left(\left(u^{i}\right) \mapsto\left(u^{i}, \sigma^{i}(u)\right)\right) \in J T M$. Then $\bar{h}=J T f(h)=j_{\bar{x}}^{1}(\bar{u}) \mapsto$ $\mapsto\left(\bar{u}^{i}, f_{t}^{i}(\tilde{f}(\bar{u})) \sigma^{t}(\tilde{f}(\bar{u}))\right)$, i.e.

$$
\begin{equation*}
\bar{x}_{j}^{i}=f_{t u}^{i} f_{j}^{u} x_{1}^{t}+f_{t}^{i} x_{s}^{t} f_{j}^{s} \tag{6}
\end{equation*}
$$

This equation together with (3) yields $J T f$.
Let $h=\left(x^{i}, x_{1}^{i}, c^{i}, b^{i}, c_{k}^{i}, c_{k}^{i}, b_{k}^{i}, b_{k}^{i}\right)=j_{u}^{1} \sigma \in J(T(T M) \rightarrow T M)$. Being a local vector field on TM, σ locally determines $v \cdot\left(-L_{\sigma} v\right)$. Denote $v .\left(-L_{\sigma} v\right)(u):=h_{r}, h_{r}=$ $=c_{k}^{i} \mathrm{~d} x^{k} \otimes \partial / \partial x^{i} \in T M \otimes_{T M} T^{*} M$. We will say that h is a connection element if

$$
\operatorname{id}_{T_{p_{M}(u) M}} \otimes_{T M} h_{\Gamma}+h_{\Gamma} \otimes_{T M} \operatorname{id}_{T_{p_{M}(u) M}}
$$

is regular. A vector field Z on $T M$ is connection admissible if its jet prolongation $J Z$ states a connection element $J Z(u)$ at every $u \in T M$.

It is easy to see that $J T(T M) \rightarrow M$ is a fibred manifold associated with the principle fibre bundle ($H^{3} M, L_{m}^{3}$) of all frames of the third order on M the structure group of which is the group L_{m}^{3} of all 3 -jets $j_{0}^{3} f$ of all local diffeomorphisms f from R^{m} into R^{m} such that $f(0)=0$. The action of L_{m}^{3} on the type fibre $\left(J T\left(T R^{m}\right)\right)_{0}$ is given by (3), (4), (5).

Quite anologously, $J T M$ is associated with $\left(H^{2} M, L_{m}^{2}\right)$ and the action of L_{m}^{2} on $\left(J T R^{m}\right)_{0}$ is described by the equations (3) and (6).

There is a bijection between the space of all natural transformations Φ from $J T(T M)$ into $J T M$ over $\mathrm{id}_{T M}$ and the set of all L_{m}^{3}-equivariant maps ψ from $\left(J T\left(T R^{m}\right)\right)_{0}$ into $\left(J T R^{m}\right)_{0}$ over $\mathrm{id}_{T R^{m}}$ such that $\pi_{2}^{3} f . \psi=\psi . f$ for all $f \in L_{m}^{3}$, where $\pi_{2}^{3}: L_{m}^{3} \rightarrow L_{m}^{2}$ is the group homomorphism determined by the projection of a 3 -jet onto its 2 -subjet. This means that our goal consists in finding all functions $\Gamma_{j}^{i}=$ $=\psi_{j}^{i}\left(x_{1}^{p}, c^{p}, b^{p}, c_{k}^{p}, c_{k}^{p}, b_{k}^{p}, b_{k}^{p}\right)$ such that

$$
\begin{equation*}
f_{t u}^{i} \tilde{f}_{j}^{u} x_{1}^{u}+f_{t}^{i} \psi_{u}^{t} \tilde{f}_{j}^{u}=\psi_{j}^{i}\left(\bar{x}_{1}^{p}, \bar{c}^{p}, \bar{b}^{p}, \bar{c}_{k}^{p}, \bar{c}_{k}^{p}, \bar{b}_{k}^{p}, \bar{b}_{k}^{p}\right), \tag{7}
\end{equation*}
$$

where $\bar{x}_{1}^{p}, \bar{c}^{p}, \bar{b}^{p}, \bar{c}_{k}^{p}, \bar{c}_{k}^{p}, \bar{b}_{k}^{p}, \bar{b}_{k}^{p}$ are given by (3), (4), (5).
For any homothety $\left(k \delta_{j}^{i}, f_{j p}^{i}=0, f_{j k t}^{i}=0\right) \in L_{m}^{3}$ the relation (7) is of the form

$$
\psi_{j}^{i}\left(x_{1}^{p}, c^{p}, b^{p}, c_{k}^{p}, c_{k}^{p}, b_{k}^{p}, b_{k}^{p}\right)=\Phi_{j}^{i}\left(k x_{1}^{p}, k c^{p}, k b^{p}, c_{k}^{p}, c_{k}^{p}, b_{k}^{p}, b_{k}^{p}\right) .
$$

It implies that the functions ψ_{j}^{i} do not depend on x_{1}^{p}, c^{p}, b^{p}. Now, (7) is satisfied for every $f=\left(f_{j}^{i}=\delta_{j}^{i}, f_{j k}^{i}=0, f_{j k s}^{i}\right) \in \operatorname{Ker} \pi_{2}^{3}$ if and only if $\psi_{j}^{i}\left(c_{k}^{p}, c_{k}^{p}, b_{k}^{p}, b_{k}^{p}\right)=$ $=\psi_{j}^{i}\left(c_{k}^{p}, c_{k}^{p}, f_{q t k}^{p} x_{1}^{q} c^{t}+b_{k}^{p}, b_{k}^{p}\right)$. Therefore ψ_{j}^{i} are independent of b_{k}^{p}. Let $\pi_{1}^{3}: L_{m}^{3} \rightarrow L_{m}^{1}$ be the group homomorphism under which $\pi_{1}^{3}(f)$ is the 1 -subjet of a 3 -jet f. With respect to $f=\left(f_{j}^{i}=\delta_{j}^{i}, f_{j k}^{i}, f_{j k s}^{i}\right) \in \operatorname{Ker} \pi_{1}^{3}$ and for $x_{1}^{i}=0$ the equation of equivariance is of the form

$$
\psi_{j}^{i}\left(c_{k}^{p}, c_{k}^{p}, b_{k}^{p}\right)=\psi_{j}^{i}\left(c_{k}^{p}+t_{k}^{p}, c_{k}^{p}, b_{k}^{p}+t_{k}^{p}\right), \quad t_{k}^{p}=f_{q k}^{p} c^{q} .
$$

Consequently $\psi_{j}^{i}=\psi_{j}^{i}\left(d_{k}^{p}, c_{k}^{p}\right), d_{k}^{p}=c_{k}^{p}-b_{k}^{p}$. Now, for $f \in \operatorname{Ket} \pi_{1}^{3}$ we have

$$
\begin{equation*}
f_{t j}^{i} x_{1}^{t}+\psi_{j}^{i}\left(d_{k}^{p}, c_{k}^{p}\right)=\psi_{j}^{i}\left(d_{k}^{p}-c_{s}^{p} f_{k t}^{s} x_{1}^{t}-f_{s q}^{p} x_{1}^{p} c_{k}^{q}, c_{k}^{p}\right) . \tag{8}
\end{equation*}
$$

Differentating by d_{s}^{k} we deduce that $\partial \psi_{j}^{i} / \partial d_{k}^{p}$ does not depend on d_{k}^{p}, i.e. $\psi_{j}^{i}=$ $=\Phi_{s j}^{i q}\left(c_{k}^{p}\right) d_{q}^{s}+\varphi_{j}^{i}\left(c_{k}^{p}\right)$. Now (8) implies

$$
f_{t j}^{i}=-\Phi_{s j}^{i q}\left(c_{\bar{u}}^{s} \delta_{q}^{p}+\delta_{u}^{s} c_{\bar{q}}^{p}\right) f_{p t}^{u} .
$$

It means that the functions $\phi_{s j}^{i q}\left(c_{k}^{p}\right)$ are defined at $h \in\left(J T\left(T R^{m}\right)\right)_{0}$ if and only if h is a connection element. In this case $\Phi_{s j}^{i q}$ are the components of the tensor Φ which is determined by the inverse map to $\alpha_{0}=\left(\mathrm{id}_{R} \cdot \otimes h_{\Gamma}+h_{\Gamma} \otimes \mathrm{id}_{R^{m}}\right)_{0}$. It establishes an L_{m}^{1}-equivariant map $h_{\Gamma} \mapsto \Phi$ from $R^{m} \otimes R^{m *}$ into $\left(R^{m} \otimes R^{m *}\right) \otimes\left(R^{m} \otimes R^{m *}\right)$, i.e. we have

$$
\Phi_{s j}^{i q}\left(f_{q}^{i} c_{\bar{k}}^{i} \tilde{f}_{u}^{k}\right)=f_{p}^{i} \Phi_{e k}^{p v}\left(c_{\bar{w}}^{r}\right) \tilde{f}_{s}^{e} \tilde{j}_{j}^{k} f_{v}^{q} .
$$

Consequently, the equivariance with respect to the subgroup $L_{m}^{1} \subset L_{m}^{3}$ leads to the equation

$$
f_{q}^{i} \varphi_{r}^{q}\left(c_{k}^{p}\right) \tilde{f}_{j}^{i}=\varphi_{j}^{i}\left(f_{t}^{p} c_{r}^{t} \tilde{f}_{k}^{r}\right) .
$$

This implies that if an L_{m}^{3}-equivariant map from $\left(J T\left(T R^{m}\right)\right)_{0}$ into $\left(J T R^{m}\right)_{0}$ exists then it is of the form $\Gamma_{j}^{i}=\Phi_{s j}^{i q}\left(c_{q}^{s}-b_{q}^{s}\right)+\varphi_{j}^{i}\left(c_{k}^{p}\right)$, where φ_{j}^{i} is an L_{m}^{i}-equivariant map from $R^{m} \otimes R^{m *}$ into itself. We have proved

Proposition 2. Only in the case of a connection admissible vector field Z on $T M$ there is a connection Γ_{Z} on $T M$ naturally associated with Z in the first order. Every natural differential operator of the first order from $C_{\Gamma}^{\infty} T M$ into $Г Т М$ is of the form $Z \mapsto \Gamma_{Z}+\varphi\left(v . L_{Z^{\prime}}{ }^{0}\right)$, where φ is a natural zero-order operator on $C^{\infty}\left(T M \otimes_{T M} T^{*} M\right)$ over $\mathrm{id}_{T M}$.

Remarks. 1. Let Z be a projectable vector field on $T M, c^{i}=c^{i}(x)$. Then $v . L_{Z} v=$ $=0$. Therefore Z is not connection admissible.
2. Let Z be a vector field on $T M$ such that $v . L_{Z} v$ is a homothety on $p_{M}^{*} T M$, v. $L_{Z} v=g\left(x, x_{1}\right) \delta_{j}^{i} \mathrm{~d} x^{j} \otimes \partial \mid \partial x^{i}$. Then $\quad \mathrm{id}_{T M} \otimes v \cdot L_{Z} v+v . L_{Z} v \otimes \mathrm{id}_{T M}=$ $=\left(-2 g\left(x, x_{1}\right) \delta_{s}^{i} \delta_{j}^{u}\right)$. Therefore Z is connection admissible iff $g\left(x, x_{1}\right) \neq 0$. Then $\Phi_{s j}^{i q}=-\left(1 /\left(g\left(x, x_{1}\right)\right)\right) \delta_{s}^{i} \delta_{j}^{q}$ and $\Gamma_{k}^{i}=-\left(1 /\left(2 g\left(x, x_{1}\right)\right)\right)\left(c_{k}^{i}-b_{k}^{i}\right)+\varphi\left(x, x_{1}\right) \delta_{k}^{i}$ where $\varphi\left(x, x_{1}\right)$ is an element of the space $\left\langle g\left(x, x_{1}\right)\right\rangle$ of all real functions on $T M$ generated by $g\left(x, x_{1}\right)$. If Z is a differential equation of the second order on $M, c^{i}=x_{1}^{i}$, $g\left(x, x_{1}\right)=1$, then $\Gamma_{k}^{i}=\frac{1}{2} b_{k}^{i}+c \delta_{k}^{i}, c \in R$, sce [1].
3. Let $C=x_{1}^{i} \partial / \partial x_{1}^{i}$ be the Liouville field on $T M$. Let Z be a homogeneous field on $T M ;[C, Z]=Z, c^{i}=c_{j}^{i}(x) x_{i}^{j}, b^{i}=\frac{1}{2} b_{j k}^{i}(x) x_{1}^{j} x_{1}^{k}$. Then $v . L_{Z} v$ is projectable and it is easy to see that if Z is also connection admissible then the connection Γ_{Z} is linear.
4. In this paper we have dealt with operators of the first order. Our considerations about the connection admissible forms on $T M$ offer nethods for construction of connections associated in higher orders with the vector on $T M$. We will introduce an example of the second order. Let $Z=c^{i} \partial / \partial x^{i}+b^{i} \partial / \partial x_{1}^{i}$ be a vector field on $T M$. Then $\quad L_{Z}\left(-v, L_{Z}\right)=-c_{\bar{s}}^{i} c_{k}^{s} \mathrm{~d} x^{k} \otimes \partial / \partial x^{i}+\left[\left(c_{\bar{s}}^{i} c_{k}^{s}+c_{k s}^{i} c^{s}+c_{\overline{k s s}}^{i} b^{s}-b_{\bar{s}}^{i} c_{k}^{s}\right) \mathrm{d} x^{k}+\right.$ $\left.+c_{\tilde{s}}^{i} c_{k}^{s} \mathrm{~d} x_{1}^{k}\right] \otimes \partial / \partial x_{1}^{i}$ is a $T(T M)$-valued 1 -form on $T M$. By (1) it is connection admissible if and only if $\left(y_{q}^{i} c_{\bar{k}}^{u}+c_{\bar{q}}^{i} y_{k}^{u}\right) c_{\bar{u}}^{q}=0$ implies $y_{q}^{i}=0$. This is true if $\operatorname{det}\left(c_{\bar{u}}^{q}\right) \neq$ $\neq 0$. It means that if $v . L_{Z} v$ is regular then the map $Z \mapsto \Gamma_{L_{Z}\left(v . L_{z} v\right)}$ is an operator
of the second order from $C^{\infty}(T(T M) \rightarrow T M)$ into $\Gamma T M$. Let us note that if Z is a differential equation of the second order then $-v . L_{Z} v=v$.

References

[1] A. Dekrét: Mechanical structures and connection, to appear.
[2] J. Janyška: Geometric properties of prolongation functors, Časopis pěst. mat. 110, (1985), 77-86.
[3] J. Klein: Geometry of sprays. IUTAM-ISIMM Symposium on analytical mechanics, Torino, 1982, 177-196.
[4] I. Kolár: Some natural operators in differential geometry. Proc. Conf. on Diff. Geometry and Applications in Brno, D. Reidel Publ. Company, (1986), 91-110.
[5] D. Krupka: Elementary theory of differential invariants. Arch. Math. (Brno) 14 (1978), 207-214.
[6] P. Libermann, M. Marle: Symplectic Geometry and Analytical Mechanics. D. Riedel Publ. Company, (1987).
[7] A. Nijenhuis: Natural bundles and their general properties. Diff. Geometry in honour of K. Yano, Kinokuniya, Tokio, (1972), 317-334.
[8] M. Crampin: Alternative Lagrangians in particle dynamics. Proc. Conf. on Diff. Geometry and Applications in Brno, D. Reidel Publ. Company, (1986), 1-12.

Súhrn
VEKTOROVÉ POLIA A KONEXIE NA TM
Anton Dekrét

V práci je charakterizovaná množina $C_{\Gamma}^{x} T M$ všetkých vektorových polí na $T M$, ktoré určujú konexie na $T M$. Sú zostrojené všetka prirodzené operátory prvého rádu z $C_{\Gamma}^{\infty} T M$ do priestoru všetkých konexií na $T M$.

Резюме

ВЕКТОРНЫЕ ПОЛЯ И СВЯЗНОСТИ НА ТМ
Anton Dekrét

В настоящей статье харлктеризуется множество $C_{\Gamma}^{\infty} T M$ тех векторных полей на $T M$, которые олрәделяют связности на пространстве $T M$. Построгны все натуральные дифференциальные олераторы первого класса из $C_{\Gamma}^{\infty} T M$ в множество всех связностей на $T M$.

Authorís address: VŠLD, Marxova 24, 96053 Zvolen.

