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On zero-dimensionality of subgroups

of locally compact groups

Dmitrii B. Shakhmatov

Abstract. Improving the recent result of the author we show that indH = 0 is equivalent
to dimH = 0 for every subgroup H of a Hausdorff locally compact group G.
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All topological groups considered in this note are assumed to be Hausdorff.
A subset of a topological space is said to be clopen if it is both open and closed.
A topological space X is zero-dimensional if it has a base consisting of clopen sets
(i.e. if indX = 0), and X is strongly zero-dimensional if every (locally) finite open
cover of X consisting of functionally open sets has a finite disjoint clopen refine-
ment (i.e. if dimX = 0). Strongly zero-dimensional spaces are zero-dimensional
[1, Theorem 6.2.6] but not vice versa [1, Example 6.2.20]. However, the implica-
tion can be reversed for totally bounded groups: Recently, the author proved that
a zero-dimensional subgroup of a compact group is strongly zero-dimensional [3,
Corollary 3.4]. The aim of our note is to extend this result over subgroups of locally
compact groups.

Theorem. A zero-dimensional subgroup of a locally compact group is strongly

zero-dimensional.

In the proof of this theorem, we need the notion of R-factorizable group [4]:
A topological group G is R-factorizable if for every real-valued continuous function
f : G → R defined on G there exist a topological group H with a countable base,
a continuous homomorphism π : G → H and a continuous mapping ϕ : H → R

such that f = ϕ ◦ π. The following proposition formally improves [3, Theorem 3.3]:

Proposition. A zero-dimensional topological group having an open R-factorizable

subgroup is strongly zero-dimensional.

Proof: LetH be an open R-factorizable subgroup of a zero-dimensional topological
group G. Being a subspace of a zero-dimensional space G, H is zero-dimensional,
and since H is R-factorizable, it is strongly zero-dimensional by [3, Theorem 3.3].
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582 D.B.Shakhmatov

Observe that H is clopen in G, as is every open subgroup of any topological group
[2, Chapter 2, Theorem 5.5]. Since G can be covered by disjoint clopen copies of H
(namely, by some translations of H) and H is strongly zero-dimensional, G is also
strongly zero-dimensional [1, Theorem 6.2.13]. �

Proof of Theorem: Let H be a zero-dimensional subgroup of a locally compact
group G, and let U be an open neighbourhood of the neutral element of G having
compact closure U in G. Then G∗, the smallest subgroup of G that contains U , is
σ-compact. As a subgroup of a σ-compact group, H∗ = H ∩G∗ is R-factorizable [4,
Corollary 1.13]. Since H∗ contains the non-empty open set U ∩H and is a subgroup
of H , H∗ is open in H [2, Chapter 2, Theorem 5.5]. Now, Proposition finishes the
proof. �

In conclusion, let us mention that, quite surprisingly, the following question
remains open:

Question. Is there a normal zero-dimensional group which is not strongly zero-
dimensional?

Even if we drop “normal” here, the answer to this question seems to be unknown.
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