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A Parseval equation and a generalized

finite Hankel transformation

Jorge J. Betancor, Manuel T. Flores

Abstract. In this paper, we study the finite Hankel transformation on spaces of genera-
lized functions by developing a new procedure. We consider two Hankel type integral
transformations hµ and h∗

µ connected by the Parseval equation

∞X
n=0

(hµf)(n)(h∗

µϕ)(n) =

Z
1

0

f(x)ϕ(x) dx.

A space Sµ of functions and a space Lµ of complex sequences are introduced. h∗

µ is

an isomorphism from Sµ onto Lµ when µ ≥ − 1
2
. We propose to define the generalized

finite Hankel transform h′

µf of f ∈ S′

µ by

〈(h′

µf), ((h∗

µϕ)(n))∞n=0〉 = 〈f, ϕ〉, for ϕ ∈ Sµ.

Keywords: finite Hankel transformation, distribution, Parseval equation

Classification: 46F12

1. Introduction and preliminaries.

Finite Hankel transforms of classical functions were first introduced by I.N. Sned-
don [14] and later studied by other authors [3], [4], [7], [15]. More recently, A.H. Ze-
manian [18], J.N. Pandey and R.S. Pathak [11] and R.S. Pathak [12] extended these
transforms to certain spaces of distributions as a special case of the general theory on
orthonormal series expansions of generalized functions. L.S. Dube [5], R.S. Pathak
and O.P. Singh [13] and J.M. Méndez and J.R. Negŕın [10] investigated finite Hankel
transformations in other spaces of distributions through a procedure quite different
from that one which was developed in [18] and [12]. All previous authors employ
a method usually known as the kernel method.
Specifically, L.S. Dube [5] investigated finite Hankel transformation of the first

kind given by

(hµf)(n) =

∫ 1

0
xJµ(λnx)f(x) dx, n = 0, 1, 2 . . .

for µ ≥ −12 , where Jµ denotes the Bessel function of the first kind and order µ and
λn, n = 0, 1, 2 . . . , represent the positive roots of Jµ(x) = 0 arranged in ascending
order of magnitude [17, p. 596].
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For µ ≥ −12 and α ≥ 1
2 , he introduced the space Uµ,α of finitely differentiable

functions on (0, 1) such that

ρ
µ,α
k (ϕ) = sup

0<x<1
|xα−1B∗k

µ ϕ(x)| < ∞, for every k ∈ N,

where B∗
µ = x−µDx2µ+1Dx−µ−1.

Uµ,α is equipped with the topology generated by the family of seminorms

{ρ
µ,α
k }∞k=0. Thus Uµ,α is a Fréchet space. The dual space of Uµ,α is denoted by

U ′
µ,α and it is endowed with the weak topology.

For f ∈ U ′
µ,α, the generalized finite Hankel transform of f is defined by

(1) F (n) = 〈f(x), xJµ(λnx)〉, for n = 0, 1, 2 . . . .

Our objective in this paper is to define the finite Hankel transformation hµ on
new spaces of generalized functions by developing a new procedure. The method
that we develop in this work can be seen as a finite analogue to the one investigated
by J.M. Méndez [8] for the infinite Hankel transformation.
We introduce the finite Hankel type transformation h∗µ by

(h∗µf)(n) =
2

J2µ+1(λn)

∫ 1

0
Jµ(λnx)f(x) dx, n = 0, 1, 2 . . .

when µ ≥ −12 .
The transformations hµ and h∗µ are closely connected. They satisfy the Parseval

equation

(2)

∞
∑

n=0

(hµf)(n)(h∗µϕ)(n) =

∫ 1

0
f(x)ϕ(x) dx

when µ ≥ −12 and f and ϕ are suitable functions.
We define a space Sµ of functions and a space Lµ of sequences and we prove that

h∗µ is an isomorphism from Sµ onto Lµ provided that µ ≥ −12 .

The generalized finite Hankel transformation hµf of f ∈ S′
µ, the dual space of Sµ,

is defined through

(3) 〈(h′µf), ((h∗µϕ)(n))∞n=0〉 = 〈f, ϕ〉, for ϕ ∈ Sµ.

Notice that (3) appears as a generalization of the Parseval equation (2).
We show that the conventional finite Hankel transformation hµ and the general-

ized finite Hankel transformation given by (1) are special cases of our generalized
transformation.
Finally we present some applications of the new generalized finite Hankel trans-

formation.
Throughout this paper, µ denotes a real number greater or equal to −12 .
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Let us take note here of some properties of Bessel functions that we shall use
quite a few times in this work (see [17]).
The behaviours of Jµ near the origin and the infinity are the following ones:

Jµ(x) = O(xµ), as x → 0+,(4)

Jµ(x) ≃

(

2

πx

)1/2[

cos(x −
1

2
µπ −

1

4
π)

∞
∑

m=0

(−1)m(µ, 2m)

(2x)2m
−(5)

− sin(x −
1

2
µπ −

1

4
π)

∞
∑

m=0

(−1)m(µ, 2m+ 1)

(2x)2m+1

]

, as x → ∞,

where (µ, k) is understood as in [17, p. 198].
The main differentiation formulas for Jµ are

d

dx
(xµJµ(xy)) = yxµJµ−1(xy),(6)

d

dx
(x−µJµ(xy)) = −yx−µJµ+1(xy),(7)

for x, y > 0. By combining (6) and (7), it can be easily inferred

(8) BµJµ(x) = −Jµ(x), for x > 0,

where Bµ = x−µ−1Dx2µ+1Dx−µ.

2. The spaces Sµ and Lµ and the finite Hankel transformation.

In this section, we introduce a space Sµ of functions and a space Lµ of complex
sequences and we investigate the finite Hankel transformation h∗µ on them.

We define Sµ as the space of all complex valued functions ϕ(x) on (0, 1] such
that ϕ(x) is infinitely differentiable and satisfies for every k ∈ N

(i) B
∗k
µ ϕ(1) = 0,

(ii) xµ+1B
∗k
µ ϕ(x)→ 0 and x2µ+1 d

dx (x
−µ−1B

∗k
µ ϕ(x))→ 0, as x → 0+,

and

(iii) x−1/2B
∗k
µ ϕ(x) ∈ L(0, 1).

Sµ is endowed with the topology generated by the family of seminorms {‖ ‖k}
∞
k=0,

where

‖ϕ‖k =

∫ 1

0
x−1/2|B∗k

µ ϕ(x)| dx, for ϕ ∈ Sµ and k ∈ N.

Notice that ‖ ‖0 is a norm. Sµ is a Hausdorff topological linear space that verifies the
first countability axiom. Moreover, the operator B∗

µ defines a continuous mapping

from Sµ into itself. S′
µ is the dual space of Sµ and it is equipped with the usual

weak topology.
The following result will be useful in the sequel.
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Proposition 1. If f(x) is a function defined on (0, 1) such that x1/2f(x) is bounded
on (0, 1), then f(x) generates a member of S′

µ through the definition

〈f(x), ϕ(x)〉 =

∫ 1

0
f(x)ϕ(x) dx, ϕ ∈ Sµ.

Proof: The result easily follows from the inequality

|〈f(x), ϕ(x)〉| ≤ ‖ϕ‖0 sup
0<x<1

|x1/2f(x)|, ϕ ∈ Sµ.

�

The spaces Uµ,α defined by L.S. Dube [5] are related to Sµ as follows:

Proposition 2. Let µ ≥ −12 and α ≥ 1
2 . Then Sµ ⊂ Uµ,α and the topology of Sµ

is stronger than that induced on it by Uµ,α.

Proof: Let ϕ ∈ Sµ. In virtue of the conditions (i) and (ii), we can write

xα−1B∗k
µ ϕ(x) = xα+µ

∫ x

1
t−2µ−1

∫ t

0
uµB

∗k+1
µ ϕ(u) du dt

for every x ∈ (0, 1) and k ∈ N.
Therefore

|xα−1B∗k
µ ϕ(x)| ≤ xα+µ

∫ 1

x
t−µ−(1/2) dt

∫ 1

0
u−1/2|B

∗k+1
µ ϕ(u)| du ≤

≤ xα−(1/2)
∫ 1

0
u−1/2|B

∗k+1
µ ϕ(u)| du ≤

∫ 1

0
u−1/2|B

∗k+1
µ ϕ(u)| du

for every x ∈ (0, 1) and k ∈ N.
Hence, for every ϕ ∈ Sµ and k ∈ N,

sup
0<x<1

|xα−1B∗k
µ ϕ(x)| ≤ ‖ϕ‖k+1 ,

and Sµ is contained in Uµ,α and the inclusion is continuous. �

From Proposition 2, we can deduce that if f ∈ U ′
µ,α, then the restriction of f

to Sµ is a member of S
′
µ.

We now define Lµ as the space of all complex sequences (an)
∞
n=0 such that

limn→∞ anλ2kn = 0, for every k ∈ N, where λn, n = 0, 1, 2, . . . , represent the
positive roots of the equation Jµ(x) = 0 arranged in ascending order of magnitude.

The topology of Lµ is that generated by the family of norms {γ
k
µ}

∞
k=0, where

γk
µ((an)

∞
n=0) =

∞
∑

n=0

|an|λ
2k
n , for (an)

∞
n=0 ∈ Lµ and k ∈ N.

Notice that γk
µ((an)

∞
n=0) < ∞ for every (an)

∞
n=0 ∈ Lµ. Thus Lµ is a Hausdorff

topological linear space that satisfies the first countability axiom. L′
µ denotes the

dual space of Lµ and it is endowed with the weak topology.
In the following proposition, we introduce continuous operations in Lµ and L′

µ.
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Proposition 3. Let (bn)
∞
n=0 be a complex sequence such that |bn| ≤ Mλℓ

n for

every n ∈ N and for some ℓ ∈ N and M > 0. Then the linear operator

(an)
∞
n=0 −→ (anbn)

∞
n=0

is a continuous mapping from Lµ into itself.

Moreover, the operator in L′
µ, B → (bn)

∞
n=0B, where

〈(bn)
∞
n=0B, (an)

∞
n=0〉 = 〈B, (anbn)

∞
n=0〉, for (an)

∞
n=0 ∈ Lµ,

is a continuous mapping from L′
µ into itself.

Proof: It is sufficient to see that

γk
µ((anbn)

∞
n=0) ≤ M

∞
∑

n=0

|an|λ
2k+ℓ
n ≤ M1γ

k+ℓ
µ ((an)

∞
n=0),

for (an)
∞
n=0 ∈ Lµ and k ∈ N,

M1 being a suitable positive constant. �

By proceeding as in the proof of the last proposition, we also can establish
following

Proposition 4. If (bn)
∞
n=0 is a complex sequence satisfying the same conditions

as in Proposition 3, then (bn)
∞
n=0 generates a member of L

′
µ by

〈(bn)
∞
n=0, (an)

∞
n=0〉 =

∞
∑

n=0

anbn, for (an)
∞
n=0 ∈ Lµ.

The fundamental theorem in our theory of a generalized finite Hankel transforma-
tion asserts that the conventional finite Hankel transformation h∗µ is an isomorphism
from Sµ onto Lµ. The proof of this fact is the next object:

Theorem 1. For µ ≥ −12 , the finite Hankel transformation h∗µ is an isomorphism

from Sµ onto Lµ.

Proof: Let ϕ ∈ Sµ. As it is known, h
∗
µϕ = (an)

∞
n=0, where

an =
2

J2µ+1(λn)

∫ 1

0
Jµ(λnx)ϕ(x) dx, for every n ∈ N.

In virtue of the operational rule (6), we can write for every n ∈ N

λ2nan =
2λ2n

J2µ+1(λn)

∫ 1

0
Jµ(λnx)ϕ(x) dx =

=
2λn

J2µ+1(λn)

∫ 1

0

d

dx
(xµ+1Jµ+1(λnx))x−µ−1ϕ(x) dx =

=
2λn

J2µ+1(λn)

{

Jµ+1(λnx)ϕ(x)]10 −

∫ 1

0
xµ+1Jµ+1(λnx)

d

dx
(x−µ−1ϕ(x)) dx

}

.
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Moreover, according to (4) Jµ+1(λnx)ϕ(x)]10 = 0 since ϕ(1) = 0 and

limx→O+ xµ+1ϕ(x) = 0.
Hence

(9) λ2nan = −
2λn

J2µ+1(λn)

∫ 1

0
xµ+1Jµ+1(λnx)

d

dx
(x−µ−1ϕ(x)) dx.

Now, by invoking (7), one has

λn

∫ 1

0
xµ+1Jµ+1(λnx)

d

dx
(x−µ−1ϕ(x)) dx =

= −

∫ 1

0

d

dx
(x−µJµ(λnx))x2µ+1

d

dx
(x−µ−1ϕ(x)) dx =

= −Jµ(λnx)xµ+1 d

dx
(x−µ−1ϕ(x))]10 +

∫ 1

0
B∗

µϕ(x)Jµ(λnx) dx.

Also in this case by (4), the limit terms are equal to zero because Jµ(λn) = 0,

ϕ ∈ C∞((0, 1]), limx→0+ x2µ+1 d
dx (x

−µ−1ϕ(x)) = 0.
Therefore

(10) λn

∫ 1

0
xµ+1Jµ+1(λnx)

d

dx
(x−µ−1ϕ(x)) dx =

∫ 1

0
B∗

µϕ(x)Jµ(λnx) dx.

By combining (9) and (10), we obtain

anλ2n = −
2

J2µ+1(λn)

∫ 1

0
B∗

µϕ(x)Jµ(λnx) dx, for every n ∈ N.

An inductive procedure allows us to establish that

(11) λ2kn an = (−1)
k 2

J2µ+1(λn)

∫ 1

0
B∗k

µ ϕ(x)Jµ(λnx) dx, for every n, k ∈ N.

From (11), according to Riemann–Lebesgue Lemma ([17, p. 457]), one follows to

J2µ+1(λn)λ
2k
n an → 0, as n → ∞.

Moreover by (5), there exists a positive constant M such that

λ2kn |an| ≤ MJ2µ+1(λn)λ
2k+1
n |an|,

and then λ2kn an → 0, as n → ∞, for every k ∈ N.
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Also, for certain Mi > 0, i = 1, 2,

∞
∑

n=0

λ2kn |an| =

∞
∑

n=0

2

J2µ+1(λn)λ4n
|

∫ 1

0
B

∗k+2
µ ϕ(x)Jµ(λnx) dx| ≤

≤ M1

∞
∑

n=0

λ
−5/2
n

∫ 1

0
|
√

λnxJµ(λnx)|x−1/2|B
∗k+2
µ ϕ(x)| dx ≤

≤ M2

∞
∑

n=0

λ−2n

∫ 1

0
x−1/2|B

∗k+2
µ ϕ(x)| dx.

Hence, since
∑∞

n=0 λ−2n < ∞, we get

γk
µ((an)

∞
n=0) ≤ M3‖ϕ‖k+2

for every k ∈ N and ϕ ∈ Sµ and for some M3 > 0.
This inequality proves that the linear mapping h∗µ is continuous from Sµ into Lµ.

Let now (an)
∞
n=0 ∈ Lµ and define τµ((an)

∞
n=0)(x) = ϕ(x) =

∑∞
n=0 anxJµ(λnx),

for x ∈ (0, 1].
By (4) and (5), we have

∞
∑

n=0

|anxJµ(λnx)| ≤ Mx1/2
∞
∑

n=0

|an|, x > 0

for a suitable M > 0. Therefore ϕ(x) ∈ C(0,∞). In a similar way we can prove
that ϕ ∈ C∞(0,∞).
Moreover, by invoking (8), we obtain

B∗k
µ ϕ(x) =

∞
∑

n=0

(−1)kanλ2kn xJµ(λnx), for x > 0 and k ∈ N.

Then B
∗k
µ ϕ(1) = 0, for each k ∈ N.

We also can infer

|xµ+1B∗k
µ ϕ(x)| ≤ M1x

µ+(3/2)
∞
∑

n=0

|an|λ
2k
n , for x > 0 and k ∈ N,

and from (4), (5) and (6),

|x2µ+1
d

dx
(x−µ−1B∗k

µ ϕ(x))| ≤ M2x
2µ+2

∞
∑

n=0

|an|λ
2k+2+µ
n , for x > 0 and k ∈ N.

Here M1 and M2 denote suitable positive constants. Hence

lim
x→0+

xµ+1B∗k
µ ϕ(x) = lim

x→0+
x2µ+1

d

dx
(x−µ−1B∗k

µ ϕ(x)) = 0, for every k ∈ N.



634 J.J. Betancor, M.T.Flores

On the other hand, since the series defining B
∗k
µ ϕ(x) is uniformly convergent in

x ∈ (0, 1), there exists a positive constant M3 such that

∫ 1

0
x−1/2|B∗k

µ ϕ(x)| dx ≤ M3

∞
∑

n=0

|an|λ
2k
n , for every k ∈ N.

Therefore τµ is a continuous mapping from Lµ into Sµ.
Finally, we infer from [17, p. 591] that (τµ · h∗µ)ϕ = ϕ, for ϕ ∈ Sµ, and (h

∗
µ ·

τµ)(an)
∞
n=0 = (an)

∞
n=0, for (an)

∞
n=0 ∈ Lµ. Thus the proof is finished. �

3. The generalized finite Hankel transformation.

We define the generalized finite Hankel transformation h′µ on S′
µ as follows:

(12) 〈(h′µf), ((h∗µϕ)(n))∞n=0〉 = 〈f(x), ϕ(x)〉, for every ϕ ∈ Sµ.

Notice that (12) appears as a generalization of the Parseval equation (2).
From Theorem 1.10–2 in [19] and Theorem 1, we immediately obtain

Theorem 2. For µ ≥ −12 , the generalized finite Hankel transformation h′µ is an

isomorphism from S′
µ onto L′

µ.

In the following proposition, we establish that the conventional finite Hankel
transformation hµ is a special case of the generalized finite Hankel transformation
defined in (12).

Theorem 3. Let f(x) be a function defined on (0, 1) such that x1/2f(x) is bounded
on (0, 1). Then ((hµf)(n))∞n=0 agrees with (h

′
µf) as members of L′

µ.

Proof: The conventional finite Hankel transformation of f is defined by

(hµf)(n) =

∫ 1

0
xJµ(λnx)f(x) dx, for n ∈ N.

Then, since x1/2f(x) is bounded on (0, 1), and by (4) and (5) we can write

|(hµf)(n)| ≤ Mλ
−1/2
n

∫ 1

0
|
√

λnxJµ(λnx)| dx ≤ M1λ
−1/2
n , for n ∈ N,

where M and M1 are certain positive constants.
Therefore, in virtue of Proposition 4, ((hµf)(n))∞n=0 generates a member of L

′
µ

by

〈((hµf)(n))∞n=0, (an)
∞
n=0〉 =

∞
∑

n=0

(hµf)(n)an =

∞
∑

n=0

an

∫ 1

0
xJµ(λnx)f(x) dx =

=

∫ 1

0
f(x)

∞
∑

n=0

anxJµ(λnx) dx, for every (an)
∞
n=0 ∈ Lµ.
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The last equality is justified since the series
∑∞

n=0 anx1/2Jµ(λnx) is uniformly

convergent on (0, 1) and x1/2f(x) is bounded on (0, 1).
We can also write

〈((hµf)(n))∞n=0, ((h
∗
µϕ)(n))∞n=0〉 =

=

∫ 1

0
f(x)

∞
∑

n=0

(h∗µϕ)(n)xJµ(λnx) dx =

∫ 1

0
f(x)ϕ(x) dx

for every ϕ ∈ Sµ.
Hence, according to Proposition 1, we conclude

〈((hµf)(n))∞n=0, ((h
∗
µϕ)(n))∞n=0〉 = 〈f(x), ϕ(x)〉, for ϕ ∈ Sµ,

and ((hµf)(n))∞n=0 = (h
′
µf) as members of L′

µ. �

As it was showed in Section 2, if f ∈ U ′
µ,α, then the restriction of f to Sµ is in S′

µ.

Hence, if f ∈ U ′
µ,α, we can define two generalized finite Hankel transformations of f .

We now prove that the generalized finite Hankel transform of f given by (1) is equal
(in the sense of equality in L′

µ) to the generalized finite Hankel transform of f as

given by (12).

Theorem 4. Let µ ≥ −12 , α ≥ 1
2 and f ∈ U ′

µ,α. Then

〈(F (n))∞n=0, (an)
∞
n=0〉 = 〈(h′µf), (an)

∞
n=0〉, for every (an)

∞
n=0 ∈ L′

µ,

where F (n) = 〈f(x), xJµ(λnx)〉, for every n ∈ N.

Proof: According to Theorem 1.8–1 in [19], since f ∈ U ′
µ,α, there exist r ∈ N and

M > 0 such that

|〈f(x), xJµ(λnx)〉| ≤ M max
0≤k≤r

sup
0<x<1

|xα−1B∗k
µ (xJµ(λnx))|, for every n ∈ N.

Hence, from (4), (5) and (8), we infer that

(13) |F (n)| ≤ M max
0≤k≤r

sup
0<x<1

|xα−1λ2kn xJµ(λnx)| ≤ M1λ
2r
n

for a certain M1 > 0. By invoking Proposition 4, (13) proves that (F (n))∞n=0
generates a member of L′

µ through

〈(F (n))∞n=0, (an)
∞
n=0〉 =

∞
∑

n=0

F (n)an, for (an)
∞
n=0 ∈ Lµ.

To show our assertion we must establish that

(14)
∞
∑

n=0

F (n)an = 〈f(x),
∞
∑

n=0

anxJµ(λnx)〉, for (an)
∞
n=0 ∈ Lµ.
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Let (an)
∞
n=0 ∈ Lµ. As it is easy to see,

(15)

∞
∑

n=0

F (n)an = 〈f(x),

m
∑

n=0

anxJµ(λnx)〉 +

∞
∑

n=m+1

an〈f(x), xJµ(λnx)〉

for every m ∈ N.
We can deduce from (13) that

|

∞
∑

n=m+1

an〈f(x), xJµ(λnx)〉| ≤ M1

∞
∑

n=m+1

|an|λ
2r
n , for every m ∈ N

with M1 > 0. Then

(16) lim
m→∞

∞
∑

n=m+1

an〈f(x), xJµ(λnx)〉 = 0.

Moreover, for every k ∈ N and x ∈ (0, 1), we get

|xα−1B∗k
µ [

∞
∑

n=m+1

anxJµ(λnx)]| ≤

≤ xα−1
∞
∑

n=m+1

|anxJµ(λnx)|λ2kn ≤ M2x
α−(1/2)

∞
∑

n=m+1

|an|λ
2k
n

for a suitable M2 > 0.
Hence

sup
0<x<1

|xα−1B∗k
µ [

∞
∑

n=m+1

anxJµ(λnx)]| ≤ M2

∞
∑

n=m+1

|an|λ
2k
n , for every k ∈ N,

and
∑∞

n=m+1 anxJµ(λnx)→ 0, as m → ∞, in Sµ, because (an)
∞
n=0 ∈ Lµ.

Therefore, since f ∈ S′
µ,

(17) lim
m→∞

〈f(x),

∞
∑

n=m+1

anxJµ(λnx)〉 = 0.

By combining now (15), (16) and (17), we obtain (14).
From (14), we can conclude

〈(F (n))∞n=0, ((h
∗
µϕ)(n))∞n=0〉 = 〈f(x),

∞
∑

n=0

(h∗µϕ)(n)xJµ(λnx)〉 = 〈f(x), ϕ(x)〉 =

= 〈(h′µf), ((h∗µϕ)(n))∞n=0〉, for ϕ ∈ Sµ,

and the proof is complete. �
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4. Applications.

We firstly prove an operation-transform formula for the generalized finite Hankel
transformation that will be useful in applications.

Proposition 5. Let P be a polynomial and f be in S′
µ. Then

(h′µP (Bµ)f) = P (−λ2n)(h
′
µf).

Proof: If f ∈ S′
µ, we have

〈(h′µP (Bµ)f), ((h
∗
µϕ)(n))∞n=0〉 = 〈P (Bµ)f, ϕ〉 = 〈f, P (B∗

µ)ϕ〉 =

= 〈(h′µf), ((h∗µP (B∗
µ)ϕ)(n))

∞
n=0〉 = 〈(h′µf), (P (−λ2n)(h

∗
µϕ)(n))∞n=0〉 =

= 〈P (−λ2n)(h
′
µf), ((h∗µϕ)(n))∞n=0〉, for every ϕ ∈ Sµ.

We consider the functional equation

(18) P (Bµ)f = g,

where g is a given member of S′
µ, P is a polynomial such that P (−λ2n) 6= 0, for

every n ∈ N, and f is unknown generalized function but required to be in S′
µ.

By applying the generalized finite Hankel transform to (18) and according to
Proposition 5, we can prove that (18) is equivalent to

P (−λ2n)(h
′
µf) = (h′µg).

Hence it is not difficult to see that the functional f defined by

〈f, ϕ〉 = 〈g,

∞
∑

n=0

1

P (−λ2n)
(h∗µϕ)(n)xJµ(λnx)〉 for ϕ ∈ Sµ,

is in S′
µ and it is the solution for (18). �
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