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Fixed points of asymptotically regular mappings

in spaces with uniformly normal structure

Jaros law Górnicki

Abstract. It is proved that: for every Banach spaceX which has uniformly normal structure
there exists a k > 1 with the property: if A is a nonempty bounded closed convex subset
of X and T : A → A is an asymptotically regular mapping such that

lim inf
n→∞

|||T n||| < k,

where |||T ||| is the Lipschitz constant (norm) of T , then T has a fixed point in A.
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1. Introduction.

The concept of uniformly normal structure is due to A.A. Gillespie and
B.B. Williams [7]. A Banach space X has uniformly normal structure if

N(X) = sup{rA(A) : A ⊂ X, convex, diamA = 1} < 1,

where

rA(A) = inf {sup{‖x − y‖ : y ∈ A} : x ∈ A} .

It was proved in [4], [2] that N(X) ≤ 1−δX(1); thus ε0(X) < 1 implies uniformly
normal structure. In the paper [11] X.T. Yu proved that if X is a uniformly smooth

space (or more generally, limt↓0 ρX(t)t
−1 < 1

2 ), then X has a uniformly normal
structure. Also, in [12] it was proved that uniformly normal structure does not
necessarily imply that the space has good geometric properties.
The concept of asymptotic regularity is due to F. Browder and V. Petryshyn [1].

A mapping T : X → X is said to be asymptotically regular if

lim
n→∞

‖T n+1x − T nx‖ = 0

for all x ∈ X .
If T is nonexpansive, then Tλ := λ · I + (1 − λ) · T is asymptotically regular for

all 0 < λ < 1 (see [6]).
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Recently P.K. Lin in [10] has constructed a uniformly asymptotically regular
Lipschitzian mapping acting on a weakly compact subset of l2 which has no fixed
point.
E.A. Lifshitz (see [5]) associated with each metric space (M, d) a constant

κ(M) ≥ 1. Define Lifshitz characteristic κ0(X) to be the infimum of κ(C) where
C ranges over all nonempty closed bounded convex subsets of the Banach space X .
D.J. Downing and B. Turett [5] proved the following

Theorem 1. Let X be a Banach space.

(1) Then ε0(X) < 1 if and only if κ0(X) > 1.
(2) If γ > 1 satisfies γ(1− δX (γ

−1)) = 1, then γ ≤ κ0(X).

In [8] the present author proved the following

Theorem 2. Let X be a Banach space with the Lifshitz characteristic κ0(X) > 1
and let C be a nonempty bounded closed convex subset of X . If T : C → C is an

asymptotically regular mapping such that

lim inf
n→∞

|||T n||| < κ0(X),

then T has a fixed point in C.

2. Main result.

The main result of this paper is interesting in the Banach spaces X which satisfy
the conditions: ε0(X) ≥ 1 and N(X) < 1 (cf. [3]).
We start with the following

Lemma 1 [3]. Let X be a Banach space with N(X) < 1. Then for every bounded
sequence {xn} there exists a point z ∈ conv{xn}, such that:
(i) lim sup

n→∞
‖z − xn‖ ≤ N(X) · lim

s→∞
sup{‖xn − xm‖ : n, m ≥ s},

(ii) for every y ∈ X , ‖z − y‖ ≤ lim sup
n→∞

‖y − xn‖.

Lemma 2 [9]. Let A be a nonempty closed convex subset of a Banach space X and

let {ni} be an increasing sequence of natural numbers. Assume that T : A → A is

an asymptotically regular mapping such that for some m ∈ N, T m is continuous. If

r̂(x) = lim sup
i→∞

‖x − T niu‖ = 0

for some u ∈ A and x ∈ A, then Tx = x.

Theorem 3. Let A be a nonempty bounded closed convex subset of a Banach

space X which has uniformly normal structure, i.e. N(X) < 1. If T : A → A is an

asymptotically regular mapping such that

lim inf
n→∞

|||T n||| = k < [N(X)]−1/2 ,
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then T has a fixed point in A.

Proof: Let T : A → A and let {ni} be a sequence of natural numbers such that

lim inf
n→∞

|||T n||| = lim
i→∞

|||T ni ||| = k < [N(X)]−1/2 .

Consider the sequence {T nix} for an x ∈ A. Let z(x) be a point satisfying Lemma 1
for {T nix}. Let r(x) = lim sup

i→∞
‖T nix − x‖. By the condition (i) of Lemma 1, we

have
(1)
lim sup

i→∞
‖T nix − z‖ ≤ N(X) · lim

s→∞
sup{‖T nix − T njx‖ : ni, nj ≥ s} ≤

≤ N(X) · lim sup
i→∞

(

lim sup
j→∞

‖T nix − T njx‖
)

≤

≤ N(X) · lim sup
i→∞

(

lim sup
j→∞

(‖T nix − T ni+nj x‖+ ‖T ni+njx − T njx‖)
)

≤

≤ N(X) · lim sup
i→∞

(

lim sup
j→∞

(|||T ni ||| · ‖x − T njx‖ +
ni−1
∑

v=0

‖T nj+v+1x − T nj+vx‖)
)

≤

≤ N(X) · lim sup
i→∞

|||T ni ||| · lim sup
j→∞

‖x − T njx‖ =

= k · N(X) · lim sup
j→∞

‖x − T njx‖.

Moreover, for i > 1, we have

(2)

‖T niz − z‖ ≤ lim sup
j→∞

‖T niz − T njx‖ ≤

≤ lim sup
j→∞

(

‖T niz − T ni+njx‖ + ‖T ni+nj x − T njx‖
)

≤

≤ lim sup
j→∞

(

|||T ni ||| · ‖z − T njx‖+
ni−1
∑

v=0

‖T nj+v+1x − T nj+vx‖
)

≤

≤ |||T ni ||| · lim sup
j→∞

‖z − T njx‖.

By (1) and (2)

(3) r(z) ≤ k2 · N(X) · r(x) = a · r(x), with a < 1.

Define a sequence {xm} in the following way: x1 is an arbitrarily chosen point of A,
xm+1 = z(xm). Then {xm} is a Cauchy sequence. In fact, we have

‖xm+1 − xm‖ ≤ ‖xm+1 − T nixm‖+ ‖T nixm − xm‖ ≤
≤ ‖xm+1 − T nixm‖+ r(xm).
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Taking the limit superior as i → +∞,

‖xm+1 − xm‖ ≤ lim sup
i→∞

‖xm+1 − T nixm‖+ r(xm) ≤

≤ k · N(X) · r(xm) + r(xm) = [1 + k · N(X)] · r(xm).

Hence, by (3)

‖xm+1 − xm‖ ≤ [1 + k · N(X)] · r(xm) ≤ [1 + k · N(X)] · am · r(x1)→ 0

as m → +∞. Let x0 = limm→∞ xm. Finally

‖x0 − T nix0‖ ≤ ‖x0 − xm‖+ ‖xm − T nixm‖+ ‖T nixm − T nix0‖ ≤
≤

(

1 + |||T ni |||
)

· ‖x0 − xm‖+ ‖xm − T nixm‖.

Taking the limit superior as i → +∞ on both sides we get

lim sup
i→∞

‖x0 − T nix0‖ ≤ (1 + k) · ‖x0 − xm‖+ r(xm) ≤

≤ (1 + k) · ‖x0 − xm‖+ am · r(x1)→ 0

as m → +∞. Therefore, by Lemma 2, Tx0 = x0. �

For James spaces XM =
(

l2, | · |M
)

, where | · |M = max{‖·‖2, M ·‖·‖∞}, (M ≥ 1)
we have

1)

ε0(XM ) =

{

2 · (M2 − 1)1/2 for M <
√
2,

2 for M >
√
2,

and ε0(XM ) < 1 if and only if M <
√
5
2 ;

2) for 1 ≤ M <
√
5
2 , the condition γ < [N(XM )]

−1/2 is weaker than γ < γ0,

where γ0 is the unique solution of x
(

1− δXM
( 1x )

)

= 1;

and

N(XM ) =
M√
2
for 1 ≤ M ≤

√
2, [3].

Combining these results we get the following

Corollary 1. Let A be a nonempty bounded closed convex subset of a James

space XM , 1 ≤ M <
√
2. If T : A → A is an asymptotically regular mapping such

that

lim inf
n→∞ |||T n||| <

21/4√
M

,

then T has a fixed point in A.
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