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L
p-approximation of Jacobians

Jan Malý

Abstract. The paper investigates the nonlinear function spaces introduced by Giaquinta,
Modica and Souček. It is shown that a function from Cartp(Ω,Rm) is approximated by
C1 functions strongly in Aq(Ω,Rm) whenever q < p. An example is shown of a function
which is in cartp(Ω,R2) but not in cartp(Ω,R2).

Keywords: Sobolev spaces, minors of the Jacobi matrix, weak and strong convergence,
cartesian currents

Classification: 28A75, 73C50

1. Introduction.

Some integrals in the calculus of variation (e.g. arising from nonlinear elasticity)
require nonlinear function spaces for their investigation. The Sobolev spaces with
small exponents do not guarantee the weak lower semicontinuity, whereas for great
exponents the functional is not coercive. If, for example,

F(u) =

∫

Ω
(|Du|p + | detDu|q) dx,

then an appropriate space for studying this functional is one of the nonlinear func-
tion spaces described below.
Let Ω ⊂ RN be an open set with a finite measure. Consider a function u

belonging to the Sobolev space H1,1(Ω,Rm). Then the distributive gradient

Du =
(∂uj

∂xi

)

i=1,...,N
j=1,...,m

is defined almost everywhere. If k ≤ N , α is a multiindex from Jk := {1, . . . , N}k

and β is a multiindex from Jk := {1, . . . , m}k, then M
β
αDu(x) denotes the minor

det
(∂uβj

∂xαi

(x)
)

i,j=1,...,k

(of course, M
β
αDu = 0 if k > m). Further, MkDu(x) ∈ RNkmk

is the multivector

of all minors M
β
αDu(x), where α ∈ {1, . . . , N}k and β ∈ {1, . . . , m}k. Let p =
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(p1, . . . , pN ) be a multiexponent, 1 < pi < ∞ for all i = 1, . . . , N . Following [2], [5]
we say that u ∈ Ap(Ω,Rm), if ‖u‖Ap is finite, where

‖u‖Ap = ‖u‖H1,p1(Ω) +

N
∑

k=2

(

∫

Ω
|MkDu(x)|pk dx

)1/pk

.

Notice that Ap(Ω,Rm) is not a vector space and ‖.‖Ap is not a norm. Let u, un ∈
Ap(Ω,Rm). We say that un → u weakly in Ap, if un → u weakly in H1,p1 and

for each k = 1, . . . , N , and each α ∈ {1, . . . , N}k and β ∈ {1, . . . , m}k, Mβ
αDun →

M
β
αDu weakly in Lpk . Further, we say that un → u strongly in Ap, if un → u

strongly in H1,p1 and for each k = 1, . . . , N , and each α ∈ {1, . . . , N}k and β ∈

{1, . . . , m}k, Mβ
αDun → M

β
αDu strongly in Lpk .

The spaces Ap are too large: they contain elements which are not accessible as
weak limits of smooth functions. Denote (for a moment) by S the set of all C1

functions in Ap(Ω,Rm). Let S be the set of all limits of sequences of functions

from S which are weakly convergent in Ap. Similarly, let S be the set of all limits

of sequences of functions from S which are weakly convergent in Ap. If u ∈ S, then
there are un,k ∈ S and un ∈ S such that un → u weakly in Ap and for fixed n,
un,k → un weakly in Ap. As a consequence of the Banach–Steinhaus theorem we
obtain that ‖un‖Ap ≤ C and ‖un,k‖Ap ≤ C(n). Nevertheless, it does not follow

that the whole family {‖un,k‖Ap} is bounded. Hence, it is not clear whether S = S.
The weak sequential closure of S needs to be defined in a more careful way (see [1],
[2]): the space Cartp(Ω) is defined to be the smallest set in Ap which contains S

and is closed under weak convergence in Ap. If we want to approximate functions
from Cartp by smooth functions, we use transfinite sequences indexed by ordinals.
This situation is difficult to handle. We show that if we reduce the exponents, an
approximation by ordinary sequences (and even strong) is available.

Theorem 1.1. Let Ω ⊂ RN be an open set with |Ω| < ∞ and p > (1, . . . , 1) be
a nonincreasing multiexponent. Let u ∈ Cartp(Ω). Then there exists a sequence
(un)n of C1 functions fromAp(Ω,Rm) with the following property: un → u strongly

in Lq1(Ω) and MiDun → MiDu strongly in Lqi(Ω) for each i = 1, . . . , N and

1 ≤ qi < p.

We do not claim that the approximating sequence is bounded in Ap (it would be
interesting to have such an estimate). Theorem 1.1 will be proved in Section 2.
In Section 3 we show an example of a function which is in cartp but not in

Cartp (for the definitions see [2]). It is not straightforward to prove that u is not
in Cartp according to the definition (using the transfinite process). However, using
the approximation theorem the proof is relatively easy.

2. Proof of the approximation theorem.

Let us say (an auxiliar terminology for the purpose of this proof) that a function
v ∈ Ap has the approximation property if there is a sequence (vn)n of C1 func-
tions from Ap(Ω,Rm) such that vn → v strongly in Lq1(Ω) and MiDvn → MiDv
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strongly in Lqi(Ω) for each i = 1, . . . , N and 1 ≤ qi < p. Obviously, each C1 func-
tion in Ap(Ω,Rm) has the approximation property. It remains to prove that the
collection of all functions with the approximation property is closed under Ap-weak
convergence.

Lemma 2.1. Let (un)n be a sequence of functions from Ap(Ω,Rm) with the ap-
proximation property, which converges weakly in Ap to a function u ∈ Ap(Ω,Rm).
Then u has the approximation property.

Proof: Choose nonincreasing (this is no loss of generality) multiexponents q <

r < p. By the approximation property, there is a sequence ṽn of C1 functions from
Ap(Ω,Rm) such that ṽn → u a.e. and
(2.2)
∫

Ω

(

|ṽn − un|
r1 + |M1Dṽn −M1Dun|

r1 + · · ·+ |MNDṽn − MNDun|
rN

)

dx < 2−n .

Obviously ṽn → u weakly inAr(Ω,Rm). As a consequence of the Banach–Steinhaus
theorem we obtain the estimate

‖ṽn‖Ar ≤ C1 .

Choose ε > 0. We approximate u by a bounded function v ∈ Ap with coordinates
vj = η ◦ uj , where η is a bounded C1 function on R with 0 ≤ η′ ≤ 1. The function
η may be found so close to the identity that

‖u − v‖H1,p < ε

and
∫

Ω
|MkDv − MkDu|pk < ε

for each k ∈ {1, . . . , N}. We write

vn = (η ◦ ṽ1n, . . . , η ◦ ṽN
n ).

Obviously vn → v weakly in Ar(Ω,Rm) and

(2.3) ‖ṽn‖Ar ≤ C1 .

Denote

δ =
1

2
min

k

(

2−qkC
−qk

1 ε
)

rk
rk−qk .

We pick open sets Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω such that

(2.4 a) |Ω \ Ω′′| < δ .

Let g be a function from H1,p1(RN ) which coincides with v in Ω′. By [6, Theo-

rem 3.10.5], there is a C1 function f̃ on RN with values in Rm such that for every
k = 1, . . . , N we have

|{f̃ 6= g}| < δ .
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We find a bounded C1 function f such that f = f̃ in Ω′′ and each coordinate f j

attains the constant value inf η − 1 outside Ω′. By the Yegorov theorem, we find
a closed set F ⊂ Ω′ ∩ {f = g} such that vn → v uniformly in F and

(2.4 b) |Ω′′ \ F | < δ .

We denote G = Ω \ F . We may assume that

sup
F

|vn − v| < 2−n

and

(2.5) |{x ∈ Ω: |vn − v| ≥ 2−n}| ≤ 2−n ,

otherwise we pass to a subsequence. Denote ϕ(x) = dist(x, F ∪ (RN \ Ω′)). Fix
j ∈ {1, . . . , m}. Then the sets

{x ∈ Ω′ ∩ G : f j + λjϕ = vj} , λj ∈ R

are pairwise disjoint, so we find λj such that f j+λjϕ 6= vj a.e. in Ω′∩G. We denote
wj = f j + λ jϕ, w = (w1, . . . , wm). Let us recall that w is a bounded Lipschitz
function which coincides with v on F , differs from v in each coordinate a.e. in Ω′∩G

and equals inf η − 1 in each coordinate outside Ω′. The Lipschitz continuity of w

means that

(2.6) |Dw(x)| ≤ C2 for a.e. x ∈ Ω .

The constant C2 may depend on ε. We set

(2.7)
wj

n = max
(

min(wj , vj
n + 2

−n), vj
n − 2−n)

, j = 1, . . . , m,

wn = (w
1
n, . . . , wm

n ) .

Then wn are locally Lipschitz functions on Ω which coincide with v on F . Obviously,
wn → v a.e. Since the sequence {wn} is bounded in L∞(Ω), it converges to v in
Lq1(Ω). Let us introduce the multiindex set I = {−1, 0, 1}m. With every ξ ∈ I and

n ∈ N we associate a function z
ξ
n : Ω→ Rm by the formula

zξ,j
n =











wj , if ξj = 0 ,

v
j
n + 2

−n, if ξj = 1 ,

v
j
n − 2−n, if ξj = −1 .

Then the graph of wn is covered by the graphs of z
ξ
n, ξ ∈ I. For every ξ ∈ I, α ∈ Jk

and β ∈ Jk (k ∈ {1, . . . , N}) there is i ∈ {0, . . . , k} and b ∈ J i such that

(2.8) |Mβ
αDzξ

n(x)| ≤ Ck−i
2

∑

a∈Ji

|M b
aDvn(x)| a.e. in Ω .
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It easily follows that for every ξ ∈ I the sequence (z
ξ
n)n is bounded in Ar. We fix

k ∈ {1, . . . , N}. We want to estimate

∫

Ω
|MkDwn − MkDv|qk dx =

∫

G
|MkDwn − MkDv|qk dx .

We write
Eξ

n = {x ∈ G : wn = zξ
n} .

The multiindex ξ is called pure if |ξj | = 1 for all j and mixed otherwise. We write

Epn =
⋃

{Eξ
n : ξ is pure} ,

Emn =
⋃

{Eξ
n : ξ is mixed} .

If x ∈ Emn , then there is j ∈ {1, . . . , m} such that w
j
n(x) = wj(x). By (2.7),

|vj
n(x) − wj(x)| = 2−n. This means that either |vj

n(x) − vj(x)| ≥ 2−n or |wj(x) −

vj(x)| ≤ |wj(x)− v
j
n(x)|+ |vj

n(x)− vj(x)| < 2−n + 2−n. We see that

Emn ⊂ {x ∈ G : |vn(x)− v(x)| ≥ 2−n} ∪
m
⋃

j=1

{x ∈ G : |wj(x)− vj(x)| ≤ 2−n+1} ,

and thus by (2.5) and the definition of w,

(2.9) lim
n→∞

|Emn | = 0 .

Using (2.3), (2.8) and the Hölder inequality we estimate

∫

G
|MkDwn − MkDv|qk dx ≤

∫

Epn

|MkDwn − MkDv|qk dx

+

∫

Emn

|MkDwn − MkDv|qk dx

≤
(

∫

G

(

|MkDvn|+ |MkDv|
)rk dx

)qk/rk

|G|1−qk/rk

+
(

∫

Emn

(

|MkDwn|+ |MkDv|
)rk dx

)qk/rk

|Emn |1−qk/rk

≤ 2qk−1C
qk

1 |G|1−qk/rk + C3|E
m
n |1−qk/rk ,

where the constant C3 does not depend on n. Now, from (2.4) it follows

2qk−1C
qk

1 |G|1−qk/rk ≤
1

2
ε

and by (2.9)

C3|E
m
n |1−qk/rk → 0
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as n → ∞. It follows that
∫

Ω
|wn − v|q1 dx < ε

and
∫

Ω
|MkDwn − MkDv|qk dx < ε

for each k ∈ {1, . . .N} if n is big enough. Let such an n be fixed. Since w
j
n =

v
j
n − 2−n on RN \Ω′ (as wj = f j = inf η − 1 < vn − 2−n on RN \Ω′), we see that

wn−vn+(2
−n, . . . , 2−n) is a Lipschitz continuous function with a compact support

in Ω. Now, if h is a C1 function with a compact support in Ω which is sufficiently
close to wn−vn+(2

−n, . . . , 2−n) in the H1,Np1-norm, then vn− (2
−n, . . . , 2−n)+h

is a C1 function which is a good approximation associated with a fixed choice of q
and ε. Using εn ց 0 and qn ր p we obtain the desired approximating sequence.

�

3. Example.

In this section we consider the case N = m = 2 and the set Ω = B(0, 1) (the unit
disc in R2). All multiexponents will be constant. We will investigate the function

u(x) =
(x1|x2|(x

2
1 − x22)

|x|4
,

x1x2

|x|2

)

.

The function u is differentiable in Ω \ {0} and, except at zero, detDu = 0 and
|Du(x)| ≤ C|x|−1. It follows that u ∈ Ap(Ω,R2) for all p ∈ (1, 2). We fix exponents
1 < q < p < 2. We want to prove that u does not belong to Cartp(Ω,R2). To this
end, we consider a sequence {un} of locally Lipschitz functions from Aq(Ω,R2) such
that un → u strongly in H1,q(Ω); passing if necessary to a subsequence, we may
assume that

(3.1) ‖un − u‖q
H1,q(Ω)

≤ 4−n .

We will obtain

Theorem 3.2. In the above described situation, we have

lim

∫

Ω
| detDun|

q dx → ∞ .

This means that u has not the approximation property of Section 2, and thus
by Theorem 1.1 it is not in Cartp(Ω,R2). Theorem 3.2 will be proved later in this
section.

Remark 3.3. This remark is addressed to the reader who is familiar with the
correspondence between functions, graphs and cartesian currents as it is described
in [1], [2], [4]. Let Tu be the cartesian current associated with the graph of u. Then
obviously ∂Tu = 0 (cf. Example 1 on p. 405 in [2]) and thus u belongs to the class
cartp(Ω). This solves negatively the problem whether the classes cartp and Cartp

coincide (cf. [1], [2]). Notice that the inclusion Cartp ⊂ cartp always holds and
these spaces are equal in certain special situations (see [3]).
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Lemma 3.4. Let 0 < ρ < 1. Then there is R ∈ (0, ρ) such that un → u uniformly

on ∂B(0, R).

Proof: It follows easily from (3.1) using the capacity theory of Sobolev spaces.
An elementary argument is the following: By (3.1) and the monotone convergence
theorem,

∫

Ω

∞
∑

n=1

2n(|un − u|q + |Dun − Du|q) dx < ∞ .

Hence there is R ∈ (0, ρ) such that

∫

∂B(0,R)

∞
∑

n=1

2n(|un − u|q + |Dun − Du|q)ds < +∞ ,

which gives
∫

∂B(0,R)
(|un − u|q + |Dun − Du|q)ds ≤ C2−n

with C independent of n. Since ∂B(0, R) is one-dimensional, from the Sobolev
imbedding theorem we obtain the uniform convergence of un → u on ∂B(0, R). �

Notation 3.5. We denote

U+ = B((0,
1

4
),
1

7
) , U− = B((0,−

1

4
),
1

7
) , E = U+ ∪ U− .

A routine calculation shows that the range of u does not meet E.

Lemma 3.6. Let R > 0. Then the mapping u is not homotopic with a constant

in the domain ∂B(0, R) and the range R2 \ {(0, 14 ), (0,−
1
4)}.

Proof: The increment of the multivalued analytic function

ζ → ln
(

√

ζ −
1

4
i +

√

ζ +
1

4
i
)

along the closed curve

ζ(t) = u1(R cos t, R sin t) + iu2(R cos t, R sin t) , t ∈ [0, 2π]

is different from zero. �

Corollary 3.7. Let R ∈ (0, 1). Suppose that un → u uniformly on ∂B(0, R). Then
there is n0 ∈ N such that for all n ≥ n0
(a) E ∩ un

(

∂B(0, R)
)

= ∅ and for any couple of points y+ ∈ U+, y− ∈ U−,

the mapping un is not homotopic with a constant in the domain ∂B(0, R) and the
range R2 \ {y+, y−},



666 J.Malý

(b) either U+ ⊂ u(B(0, R)), or U− ⊂ u(B(0, R)).

Proof: (a) is an immediate consequence of Lemma 3.6. Now, if un is continuous,
then

H(x, s) = un
(

(1− s)x
)

, x ∈ ∂B(0, R), s ∈ [0, 1]

is a homotopy and thus by (a) its range contains either U+ or U−. �

Proof of Theorem 3.2: Choose ρ ∈ (0, 1). By Lemma 3.4 there is a radius
R ∈ (0, ρ) such that un → u uniformly on ∂B(0, R). By Corollary 3.7 there is
n0 ∈ N such that for all n ≥ n0 we have |un(B(0, R))| ≥ |U+| = |U−| = π

49 . Hence
using the Hölder inequality we obtain

π

49
≤

∫

B(0,R)
| detDun| dx ≤

(

∫

B(0,R)
| detDun|

q dx
)1/q
(πR2)1−1/q

≤
(

∫

Ω
| detDun|

q dx
)1/q
(πρ2)1−1/q .

Since we may choose ρ arbitrarily close to zero, we have proved that

lim
n→∞

∫

Ω
| detDun|

q dx =∞ .

�
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